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ABSTRACT 

 
Due to the rapid growth in technology employed by the spammers, there is a need of classifiers that are 

more efficient, generic and highly adaptive. Neural Network based technologies have high ability of 

adaption as well as generalization. As per our knowledge, very little work has been done in this field using 

neural network. We present this paper to fill this gap. This paper evaluates performance of three supervised 

learning algorithms of artificial neural network by creating classifiers for the complex problem of latest 

web spam pattern classification. These algorithms are Conjugate Gradient algorithm, Resilient Back-

propagation learning, and Levenberg-Marquardt algorithm. 
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1. INTRODUCTION 

 
In this paper we are studying three artificial neural network (ANN) algorithms, which are 

Conjugate Gradient learning algorithm, Resilient Back-propagation algorithm, and Levenberg-

Marquardt algorithm. All of these algorithms are supervised learning algorithms. 

 

We are evaluating performance of these algorithms on the basis of classification results as well as 

computational requirements in training. The application on which we are evaluating these 

algorithms is web spam classification. 

 

Web spam is one of the key challenges for search engine industry. Web spam are the web pages 

that are created or manipulated to lead users from search engine result page to a target web page 

and also manipulate search engine ranking of the target page. 

 

2. RELATED WORK 

 
Svore (2007) [1] devised a method for web spam detection based on content-based features and 

the rank-time. They used SVM classifier with linear kernel. 

 

Noi (2010) [2] proposed a combination of graph neural network and probability mapping graph 

self organizing maps organized into a layered architecture. It was a mixture of unsupervised and 

supervised learning approaches but the training time was computationally very expensive. 
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Erdelyi (2011) [3] achieved superior classification results in experiment using learning methods 

LogitBoost and RandomForest with less computation hungry content features. They used 100,000 

hosts from WebspamUK2007 and 190,000 hosts from DC2010 datasets and investigated the 

trade-off  between feature generation and spam classification accuracy. They proved that more 

features improve performance but complex features such as PageRank improves the classification 

accuracy marginally. 

 

According to Biggio (2011) [4], SVM can be manipulated in adversarial classification tasks such 

as spam filtering. 

 

Similarly, Xiao (2012) [5] showed that injection of contaminated data in training dataset 

significantly degrades the accuracy of the SVM. 

 

This is well known that neural network perform better with noisy data. Similar is the case of 

adversarial dataset of web spam. 

 

3. ARTIFICIAL NEURAL NETWORK 

 
An ANN is a collection of simple processing units which communicate with each other using a 

large number of weighted connections. Each unit receives input from neighbour units or from 

external source and computes output which propagates to other neighbours. There is also a 

mechanism to adjust weights of the connections. Normally there are 3 types of units. 

 

• Input Unit: which receives signal from external source. 

• Output Unit: which sends data out of the network. 

• Hidden Unit: which Receives and sends signals within the network. 

 

Many of the units can work parallel in the system. ANN can be adapted to take a set of inputs and 

produce a desired set of outputs. This process is known as learning or training. There are two 

kinds of training in neural network. 

 

• Supervised: The network is provided a set of inputs and corresponding output patterns, 

called training dataset, to train the network. 

• Unsupervised: The network trains itself by creating clusters of patterns. Here no prior set 

training data is provided to the system. 

 

3.1. Multi-Layer Perceptron (MLP) 

 
MLP is a nonlinear feed forward network model which maps a set of inputs x into a set of outputs 

y. It has 3 types of layers: input layer, output layer, and hidden layer. 

 

Standard perceptron calculates a discontinuous function: 
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smoothing is done using a logistic function to get 
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MLP is a finite acyclic graph where the nodes are neurons with logistic activation. Neurons of i

layer serves as input for neurons of (i+1)

network containing many neurons. All the 

next layer. 
 

Figure 1. A Multilayer Perceptron with one input, two hidden, and one output layer.

 
All connections are weighted with real number. Weight of connection i 

output layer neurons have a bias weight w

 

Figure 1. A Neuron outputs an activation function applied over weighted sum of its all inputs

 
Each node of the network outputs an activation function applied over weighted sum of 

inputs. 

�
 

The network output is given by the ai of the output neurons.

 

3.2. Neural Network Supervised Learning Algorithms

 
While implementing any learning algorithm, our objective is to reduce the Global

by: 
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. A Neuron outputs an activation function applied over weighted sum of its all inputs 

Each node of the network outputs an activation function applied over weighted sum of its all 
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Error E defined 
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Where P is the total size of training dataset, and Ep is the error for training pattern p. And 

also, 
 

%
 	� 	 �*+ 	(O� 	−	 t��*/
�"�      (5) 

 

where N is total number of output nodes, Oi is output of the i
th
 output node and ti is the target 

output at the ith output node. Every learning algorithm tries to reduce the global error by adjusting 

weights and biases. Now first we will discuss the three algorithms one by one. 

 

3.3. Conjugate Gradient (CG) Algorithm 

 
It is basic back-propagation algorithm. It adjusts weights in the steepest descent direction i.e. the 

most negative of the gradients. This is the direction in which the function is decreasing most 

rapidly. It is observed that although the function decreases most rapidly along the negative of the 

gradient direction, it does not always provide the fastest convergence. In the Conjugate Gradient 

algorithm a search is done in conjugate directions, which generally provides the faster 

convergence than the steepest descent direction[6]. 

 

Conjugate Gradient Algorithm adjusts step size in each iteration along the conjugate gradient 

direction to minimize performance function. It searches the steepest descent direction on the first 

iteration. 

 

p0  =  - g0       (6) 

 
Then it performs line search to determine the optimal distance to move along the current search 

direction by combining new steepest descent direction with the previous direction. 

 

pk  =  -  gk  +  βk  pk - 1      (7) 
 

where the constant βk is 

 

β1 		� 			 234	23
23�54	23�5     (8) 

 

It is the ratio of the norm squared of current gradient to the norm squared of the previous 

gradient[7]. 

 

3.4. Resilient Back-propagation (RB) Algorithm 

 
Multilayer Perceptron networks typically use sigmoid transfer function in the hidden layer. It is 

also known as squashing function because it compresses an infinite input range into finite output 

range. The sigmoid function's slope approaches to zero as input gets large. It causes problem 

when we use steepest descent to train network. Because since gradient may have very small value 

so it may cause small changes in weights and biases even though the weight and biases are fairly 

far away from the optimal values. 

 

The purpose of the resilient back-propagation (RB) learning is to remove the harmful effect of the 

magnitude of partial derivatives. It uses only the sign of the partial derivative to determine the 

direction of the weight update. The magnitude of the weight change is calculated as following 

rule [8]: 
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• Values of each weight and bias are increased when the derivative of performance 

function with respect to that weight has same sign for two successful iterations. 

• Values of each weight and bias are decreased when the derivative with respect to weight 

changes sign from the previous iteration. 

• If the derivative is zero the values of the weights and biases are remain same. 

• When weights oscillate, values of weight change is reduced. 

• If weights continuously change in the same direction, weight change is increased. 

 

3.5. Levenberg-Marquardt (LM) Algorithm 

 
It provides a numerical solution to the problem of minimizing a generally non-linear function, 

over a space of parameters for the function. It is popular alternative to the Gauss-Newton method 

of finding the minimum of a function. It approaches second order training speed without 

computing the Hessian Matrix [9], 

 

If the performance function is of the form of a sum of squares, then Hessian matrix can be 

approximated as: 

H  =  JT J      (9) 

 

and the gradient is: 

g  =  J
T
 e      (10) 

 

where J represents the Jacobian matrix containing the first derivatives of network error with 

respect to weights and biases, and e is the vector of network errors. 

 

The Jacobian matrix can be computed through a standard back-propagation technique that is 

much complex than computing Hessian matrix. This approximated matrix is used in following 

Newton like update 

 

xk + 1  =  xk  -  [  J
T J  +  µ I  ]-1 JT e    (11) 

 

When the scalar µ = 0, it becomes the Newton's method on approximated Hessian matrix. When µ 

is large, it becomes gradient descent with small step size. The Newton's method is faster and more 

accurate so algorithm shifts towards it. So the µ is decreased with each successful step (i.e. when 

performance function reduces). It is increased when a tentative step would increase the 

performance function. So the performance function always reduces at each iteration. It is more 

powerful than conventional gradient descent technique. 

 

LM Algorithm is very sensitive to initial network weights. It does not consider outliers in the data 

which may lead to over-fitting noise. To avoid these situations, Regularization technique is used. 

One of such technique is Bayesian Regularization. 

 

3.6. Bayesian Regularization (BR) 

 
It is used to overcome the problem of interpolating noisy data. Mackay (1992) proposed Bayesian 

framework which can be directly applied to the NN learning problem. It allows to estimate 

effective number of parameters actually used by the model i.e. the number of network weights 

actually needed to solve a particular problem. Bayesian Regularization expands the cost function 

to search not only for minimal error but for minimal error using minimal weights. By using 

Bayesian Regularization one can avoid costly cross validation. It is particularly useful for the 
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problems that cannot, or would suffer, if a portion of available data were reserved to a validation 

set. Furthermore, the regularization also reduces or eliminates the need for testing different 

numbers of hidden neurons for a problem. Bayesian regularized ANN are difficult to be over 

trained and over-fit. 

 

4. CONFUSION MATRIX 
 

Confusion matrix or contingency table is used to evaluate the performance of a machine learning 

classifier. We used four attributes of confusion matrix while evaluating the performance of the 

algorithms. These attributes are Sensitivity, Specificity, Efficiency and Accuracy. These attributes 

are defined as following: 
 

Sensitivity or True Positive Rate (TPR), also known as Recall Rate is given by: 
 

Sensitivity � =)
(=)	�	>/�     (12) 

 

Specificity or True Negative Rate (TNR) is given by: 

 

SpeciAicity � =/
(>)	�	=/�       (13) 

 
Efficiency  is given by: 

EfAiciency � CDEF�G�H�GI�C(DJ�A�J�GI
* � =)K�=/K

*    (14) 

 

 

Accuracy is given by: 

Accuracy � =)�=/
()�/�      (15) 

 

where P is number of positive instances, N is number of negative instances, TP is number of 

correctly classified positive instances, TN is number of correctly classified negative instances, FP 

is number of incorrectly classified as positive instances and FN is number of incorrectly classified 

as negative instances. 

 

5. EXPERIMENT 

 
We evaluated 3 supervised learning algorithm which uses back-propagation on multilayer 

perceptron neural network. We checked the performance of these algorithm to automatically 

detect web spam. These algorithms are Conjugate Gradient, Resilient Back-propagation and 

Levenberg-Marquardt learning. 

 

We created neural network with single hidden layer and used one neuron in the output layer. We 

employed bipolar sigmoid function which has the output range of [ -1 , 1 ]. 

 

�(�� 		� 	 *
�	�		�OP 		− 		1     (16) 

 

We selected in the experiment: 

 

Stopping Criteria as Number of Iterations θ = 100,  

Learning Rate α = 0.1 
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Number of neurons in hidden layers = 10 (or 20 where specified). 

 

We created a corpus of 368 instances of manually selected web pages, in which about 30% 

instances were labelled as spam and rest of the pages were labelled as ham. To create training 

dataset, we randomly selected about 80% of records from the corpus and for testing we used 

remaining 20% of the records. 

 

We extracted total 31 low cost quality features of the pages and categorized them in 3 categories: 

URL (10 features), Content (16 features) and Link (5 features). We call these factors low cost 

because they are computationally less expensive to be extracted. These features are listed in table 

1. 

 
Table I. Low Cost Quality Features of a Web Page 

 

URL Features 

SSL Certificate 

Length of URL 

URL is not a sub-domain 

TLD is authoritative (*.gov, *.edu, *.ac) 

Domain contains more than 2 same consecutive 

alphabet) 

Sub-domain is more than level 3 (e.g. 

mocrosoft.com.mydomain.net) 

Domain contains many digits and special symbols 

IP address instead of Domain Name 

Alexa Top 500 site. 

Domain Length  

Content Features 

HTML Length 

Word Count 

Text Character Length 

Number of Images 

Description Length 

Existence of H2 

Existence of H1 

Video Integration 

Number of Ads 

Title Character Length 

Compression Ratio of Text 

Ratio of text to HTML 

Presence of alt text for images 

Presence of obfuscated JavaScript code (pop-ups, 

redirections etc)  

% of Call to Action in the Text 

Percentage of Stop words in Text 

Links Features 

Number of Internal links 

Internal link is self referential 

Number of External links 

Fraction of anchor text / Total Text 

Word Count in Anchor Text 
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To test the performance of each algorithm, we trained, tested and obtained 10 performance result 

values for each category and calculated the average.  

 

We used Accord.net and Aforge.net libraries to create neural network. 

 

6. RESULT 

 
We have created tables (Table II to Table VIII) to show the performance results of each 

algorithm. Consider the number of neurons in hidden layer as 10 unless specified. The values in 

the tables represent average of 10 experimental readings of each category. The values in 

underlined show the best results. 

 
Table 2. Using Url Features Only (10 Features) 

 

Algorithm Sensitivity 

(TPR) 

Specificity 

(TNR) 

Efficiency 

 

Accuracy 

 

Training Time 

(seconds) 

CG 0.9153 0.3088 0.6121 0.5716 0.149 

RB 0.4653 0.9117 0.6885 0.7183 0.168 

LM 0.6884 0.7647 0.7265 0.7316 2.723 

LM+BR 0.4224 0.9264 0.6744 0.7090 5.790 
 

Table 3. Using Content features Only (16 Features) 
 

Algorithm Sensitivity 

(TPR) 

Specificity 

(TNR) 

Efficiency 

 

Accuracy 

 

Training Time 

(seconds) 

CG 0.7384 0.8823 0.8104 0.8200 0.198 

RB 0.7269 0.9205 0.8237 0.8366 0.191 

LM 0.6615 0.8441 0.7528 0.7650 9.685 

LM+BR 0.6116 0.9380 0.7748 0.7952 16.445 

 

Table 4. Using Links features Only (5 Features) 
 

Algorithm Sensitivity 

(TPR) 

Specificity 

(TNR) 

Efficiency Accuracy Training Time 

(seconds) 

CG 0.9230 0.6382 0.7806 0.7616 0.113 

RB 0.6692 0.9117 0.7904 0.8066 0.157 

LM 0.7230 0.9088 0.8159 0.8282 1.923 

LM+BR 0.7038 0.8880 0.7959 0.8080 2.722 
 

Table 5. Using URL + Links Features (15 Features) 
 

Algorithm Sensitivity 

(TPR) 

Specificity 

(TNR) 

Efficiency Accuracy Training Time 

(seconds) 

CG 0.9538 0.7970 0.8754 0.8650 0.191 

RB 0.8076 0.9823 0.8950 0.9066 0.187 

LM 0.8115 0.9352 0.8734 0.8816 3.744 

LM+BR 0.9115 0.9558 0.9337 0.9366 13.458 
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Table 6. Using URL + Content features (26 Features) 

 

Algorithm Sensitivity 

(TPR) 

Specificity 

(TNR) 

Efficiency Accuracy Training Time 

(seconds) 

No. of neurons in hidden layer=10  

CG 0.8846 0.9264 0.9055 0.9083 0.266 

RB 0.8538 0.9764 0.9151 0.9233 0.190 

LM 0.8807 0.8823 0.8815 0.8816 10.743 

LM+BR 0.7115 0.9911 0.8513 0.8700 59.957 

No. of neurons in hidden layer=20  

CG 0.8730 0.9558 0.9144 0.9200 0.539 

RB 0.8576 0.9823 0.9200 0.9283 0.312 

LM 0.8884 0.9205 0.9045 0.9066 32.789 

LM+BR 0.7692 1.000 0.8846 0.9000 304.134 

 
Table 7. Using Content + Links features (21 Features) 

 

Algorithm Sensitivity 

(TPR) 

Specificity 

(TNR) 

Efficiency Accuracy Training Time 

(seconds) 

CG 0.7269 0.8705 0.7987 0.8083 0.230 

RB 0.7593 0.9088 0.8340 0.8438 0.188 

LM 0.7038 0.8441 0.7739 0.7833 7.940 

LM+BR 0.6846 0.9470 0.8158 0.8333 36.674 

 
Table 8. Using URL + Content + Links features (31 Features) 

 

Algorithm Sensitivity 

(TPR) 

Specificity 

(TNR) 

Efficiency Accuracy Training Time 

(seconds) 

No. of neurons in hidden layer=10  

CG 0.8500 0.9676 0.9088 0.9166 0.297 

RB 0.8769 0.9735 0.9252 0.9316 0.214 

LM 0.8653 0.9029 0.8841 0.8866 13.146 

LM+BR 0.6923 0.9852 0.8388 0.8583 92.248 

No. of neurons in hidden layer=20  

CG 0.8384 0.9823 0.9104 0.9200 0.575 

RB 0.8807 0.9588 0.9197 0.9250 0.377 

LM 0.8653 0.9264 0.8959 0.9000 45.499 

LM+BR 0.8115 0.9882 0.8998 0.9116 357.580 

 

Data from the tables suggest that Conjugate Gradient (CG) Algorithm gave best TPR (Sensitivity) 

in most of the categories, whereas Levenberg-Marquardt algorithm with Bayesian Regularization 

(LM+BR) gave best TNR (Specificity) in most of the categories.  

 

The overall best classification performance was achieved in most of the categories by Resilient 

Back-propagation (RB) algorithm in both Efficiency and Accuracy measures.  

The training time was found lowest in most of the cases for Resilient Back-propagation (RB) so 

we can say that it is not only best in classification, it is fastest algorithm as well. Conjugate 
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Gradient (CG) works fast when number of inputs are  less, but when number of inputs are 

increased, its becomes slower than RB. The slowest algorithm observed was Levenberg-

Marquardt with Bayesian Regularization (LM+BR) in all of the cases in the experiment.  

 

The overall classification performance of each algorithm improved with increased number of 

page quality factors but training time also increased. The cases where the number of quality 

factors were high, increasing number of neurons improved the classification performance of 

algorithms but it also increased the training time. 

 

7. CONCLUSION 
 

In the experiment we can conclude that the Resilient Back-propagation algorithm is fastest and 

performs best in both Efficiency and Accuracy measures. Conjugate Gradient algorithm gives 

best sensitivity, whereas Levenberg-Marquardt algorithm with Bayesian Regularization gives best 

specificity but it is the slowest when training time is considered. 

 

Classification performance of each algorithm improves with increased input factors. If the 

number of factors are high, increased number of neurons improves the performance of algorithm. 

The training time increases for all algorithms when either number of inputs are increased or 

number of neurons in hidden layer are increased. 
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