Advanced Computational Intelligence: An International Journal (ACII), Vol.2, No.2, April 2015

Comparison And Implementation Of Random4
Algorithm And Hirschberg Algorithm Using Open
Source Software For Prevention Of SQL Injection
Attack

!Mohammed Ahmed, 2Sayyed Saima, 3Shaikh Shagufta, *Shaikh Tazreen
(Department of Computer Engineering)

M.H. Saboo Siddik College of Engineering, Clare Road, Byculla, Mumbai-400008, India.

ABSTRACT

SQL injection attacks are easy way to attack the web applications and gain access to the private data in a
database. Using different types of the SQL attacks one can easily gain access, modify the database or can
even remove it. Details such as fields and table names are required for a hacker to modify a database.
Hence, to provide the increased amount of security to users and their data, different types of techniques are
used such as Random4 algorithm, which is based on randomization and used to encrypt the user input,
Hirschberg algorithm which is a divide and conquer technique used to match the query pattern. In this
paper we are providing a comparative study and implementation of these prevention techniques using open
source software.

Keywords

SQL injection, Random4, Hirschberg.

1. INTRODUCTION

According to the White Hat report on the web security vulnerabilities in the year 2011 it is shown
that nearly 14-15 % of web application attacks account for SQL Injection [1].

SQL Injection Attack is a type of code-injection attack [2] which penetrates in the web
applications and gets illegal access to the databases, it is very easy for the attackers to inject the
code in the web page and gain access to all the databases, or to modify or even delete the
databases. This type of attack is mainly caused due to improper validation of user input. [3].

With the leading attacks on the web applications it is very important to prevent them. So,
different techniques are used for the prevention, named as Random4 Algorithm which is based on
randomization. It will take user input and encrypt it using Random4 Look up table, the encryption
of the current characters will be based on the next character. Second technique is Hirschberg
Algorithm which is a divide and conquer version of the Needleman-Wunsch algorithm [4] and is
based on pattern matching of the query. Any input given to the web application goes in the form
of query, so using Hirschberg one standard query format will be set and if the received pattern of

27

Advanced Computational Intelligence: An International Journal (ACII), Vol.2, No.2, April 2015

the query from web page is not matched with the set query pattern then no one can get access to
the web page or the databases.

The following prevention techniques are chosen for comparison and implementation named as
Random4 Algorithm and Hirschberg Algorithm.

IMPLEMENTED ALGORITHMS:
I- RANDOM4 ALGORITHM:

Input:
input String inp[]
Output: Encrypted String en[]
N: Length of inp[]
R[]: Random values of character
Fori=1toN
If(inp[i+1]==null || inp[i+1]=lowercase)
Then en[i]=R[lower]
End {if }
Else If(inp[i+1]=uppercase)
Then en[i]=R[upper]
End { Else if }
Else If(inp[i+1]=number)
Then en[i]=[number]
End { Else if }
Else If(inp[i+1]=special_character)
Then en[i]=[special]
End { Else if }
End { For }
Return en[]

Random4 is based on the randomization and is used to convert the input into the cipher text. Any
input in the web forms will be containing numbers, uppercase, lowercase or special characters.
Using the look up table, the user input will be converted into cipher text. Each character in the
input can have 72 combinations. Hence there will be 726 combinations possible for 6 character
inputs possible. To encrypt the input, each input character is given four random values. A sample
look up table is given below. The first column in the table is for lower case, second is for upper
case, third is for numbers and fourth is for special characters now based on the next input
character, one of these four values is substituted for a given character. For example, if the input is
provided in the form of username as xXY(@2 then the first character ‘x’ is given four Random
values in the look up table based on the next input character which is upper case here, the value
“R[Upper]” is chosen.

If the next character was lower case then the value “R[lower]” is chosen. If the next character

was number, the value “R[number]” is chosen. If the next character was special character then
value “R[Special]” is chosen.

28

Advanced Computational Intelligence: An International Journal (ACII), Vol.2, No.2, April 2015

R

B :

z N 5 % D
(A [A S 8
0

Al & Q 3 o
[l U $

L

Ell ¢) i e
@ B 2 C (
=

Bl # L 4

Table 1: Look Up table
I1- HIRSCHBERG ALGORITHM:

Hirschberg’s algorithm is a divide and conquer version of Needleman-Wunsch algorithm. In this
algorithm one standardized form of an SQL Query is set for the login.

This algorithm works on the logic 1 and 0. Each word in the login query is considered as a
column and row wise for checking. When the user enters the input in the web page, it goes into
the form of query. Each word of the query will be verified with the predefined set query and if the
query word is perfectly matched then it will be marked as 1 otherwise 0. If in the whole table a
single 0 is found then it will be considered as an attack and system will block the access.

For example if the username and password entered as ‘Soni” and ‘1234’ respectively.
Then the query will be formed as

SELECT * FROM logintable WHERE username="Soni’ AND password="1234’;
In this query each format of the query will be matched and it will be considered as a correct user.

Now suppose the SQL injection query
Username: soni and password: ‘abed” OR ‘1°="1

Here after ‘abcd’ it will be detected as SQL injection because after password’s quotes () it will

not get AND statement instead it will get OR statement which is not in the predefined query. So
in this way the attack is prevented.

29

Advanced Computational Intelligence: An International Journal (ACII), Vol.2, No.2, April 2015

LD Select | * | From | Logintable | Where | User =" * | And | Password | =
Name
Select 1

* 1

From 1

Logintable 1

Where 1

User 1
Name

= 1

DIVIDE | AND | CONQUER

And 1

Pazsword 1

= 1

Table 2: Look Up table
3.IMPLEMENTATION:

| - RANDOM4 ALGORITHM:

package com.java.utility;
public class Random4 {

Il a-z26 A-Z 26 0-9 10 Special 25 Total 87
public char[] mainList=

{

la'l'bl,lcll'd'Ilelllf'llglllhlllilllj'lIk'llllllmlllnlllolllp'lIq'lIrllls'lItllIullIVIlIW'lIXIlIyIlIZ'l
‘AVBVCVDVEVEGYHL T, IVK LMY N OLPYQLRY'S, T ULV WX Y 2,
|0|!|1|!|2|l'3|1'411'5'1'6'1'7'118'119|l
l!'!l@ll'#'l'$'lI%'1'/\llI&I1'*'1'(|1')'ll-'ll\\lll;'I'I"ll\"llll
j
public charf] firstList=
{
‘1'!'\"!"“!‘;‘!I\\'I'_'I')‘I'('ll*‘lI&‘I'A'II%'lI$'ll#‘ll@'lll'1
'9','8,'7,'6,'5,'4,'3,'2','1','0,

‘ZI!‘Y'!lxl!‘W'llvll'UlllTll'S'SIR‘1'Q'Y'PI,IO‘!IN'SIM‘Y'LIY'KIIIJII'I'Y'HIlIGIIIF'Y'E'Y'D'Y'CIIIBIY'AIl
‘Z'!'y"‘x"‘W'lIVI!Iu'lIt‘lls‘llr‘llq‘I'p‘llolllnlllmllIl‘llkllljIlli'llh'llglllf'lIell'dlllclllbllla'
+

Advanced Computational Intelligence: An International Journal (ACII), Vol.2, No.2, April 2015

public char[] secondList=

0,1,2,3,4,5,6,7,8,9,
‘!"‘@'1'#'1'$"l%'1ll\|’|&|1'*'1'(‘1')"|_"|\\I1';'1""’I\“’I!IY
‘a'1'b'l‘C|1'd'1'e|l|f'l‘g‘l‘h‘l|i‘1'j'l‘k'l‘I‘l‘mlllnlllolllp'lIq'lIr'llsllIt‘llulllvlllwlllxlllyllIZI!

AVBYCYDELFGHY K LML NY O PLQURY S T UV WYX Y 2,

public char[] thirdList=

‘N"|O"‘P|"Q"'R"'S‘,'T‘,'U‘,‘V‘,'W‘,‘X',‘Y"‘ZI,|a"'b"'C|,IdI,IeI,If',Igl,Ih','i‘,‘j‘,‘k‘,‘l','m‘,

‘Z'!'y"‘X"‘W"‘Vl"u"‘t|1'S|1'r‘1'q‘1'p|1'0|1'n'1'A|1'B"‘C|1'D|1'E‘1'F"IG‘Y'H'Y'IIY'\]IY'KIY'LIY'M"
‘9‘1‘ ‘l‘7‘1'6‘1'5|1'4'1'3'1'2'l|1'l|0‘l
‘l'1'\"1""l|;‘l‘\\'i'-'1')|1'('ll*lll&lill\'i‘%'l‘$'lI#‘ll@'ll!'

public charf] fourthList=
5','6','7,'8','9','0','1",'2','3','4’,

ln‘!|o|!|p|l'qll'r‘!‘s‘l't'1'u'llVlllW'l‘X'llylllZ'1'AlilB'l‘ClilDlilE‘llF'lIG‘YIH'YIIIYIJ|1IK|1ILI1IM'1
‘!'ll@'1'#'1'$'ll%'1'/\lll&|1'*'1'(‘1')'l|-'ll\\lll;'YII"lI\“lIlIY

lmlilllllklilj'!lill'hll'g'1'flile'lldlllclllb'llalilN|1'O|1'P'1|Q'1|R|1IS'1IT'!IU'IIV|1IWI1IX|1IY|1IZI
+

//Encryption module
public String encrypt(String data)
{
String encdata = "";
for(int i=0;i<data.length();i++)
{
char get = data.charAt(i);
String getcase = "lower";
if(i'=data.length()-1)
{

char findcase = data.charAt(i+1);
getcase = getCase(findcase);

}

int position = getPosition(get);
if(position == -1)

{

¥

else

{

encdata = encdata + get;

Advanced Computational Intelligence: An International Journal (ACII), Vol.2, No.2, April 2015
if(getcase.equals("lower™))
{

encdata = encdata + firstList[position];

else if(getcase.equals(*upper™))

{
encdata = encdata + secondList[position];
}
else if(getcase.equals(“number"))
{

encdata = encdata + thirdList[position];

else if(getcase.equals(“'special™))

{
¥

System.out.printin("Case : "+getcase+" "+get+" a : "+encdata);

encdata = encdata + fourthList[position];

¥

return encdata;

public String getCase(char ch)

{
String charcase ="";
int val = (int)ch;
if(val>64 && val<91)
{
charcase = "upper";
else if(val>96 && val<124)
{
charcase = "lower";
}
else if(val>47 && val<58)
{
charcase = "number";
}
else
{ _
charcase = "special";
}
return charcase;
}
public int getPosition(char ch)
{

int position = -1;
32

Advanced Computational Intelligence: An International Journal (ACII), Vol.2, No.2, April 2015

for(int i=0;i<mainList.length;i++)

if(ch == mainL.ist[i])
{
position =i,
break;
}
}
return position;

¥
Il - HIRSCBERG ALGORITHM:

package com.java.utility;
import java.util.StringTokenizer;
import java.util.Vector;

public class Hirshberg {

boolean analysis = false;//not allowed
[ltrue allowed
Vector<Object> xAXis;
Vector<Object> yAXis;
Vector<Object> result;
Vector<Object> output;
String applicationQuery;

/I Setting the predefined Query pattern

public Hirshberg() {
XAXis = new Vector<Object>();
yAXis = new Vector<Object>();

keywords();

public void keywords() {

xAXxis.add("SELECT");
xAXxis.add("*");
xAxis.add("FROM");
xAxis.add("LoginTable™);
xAxis.add("WHERE");
xAxis.add("username");

xAxis.add("=");
xAxis.add("\"");
xAXxis.add(");

xAxis.add("\"");
xAxis.add("AND");
xAxis.add("password");

33

Advanced Computational Intelligence: An International Journal (ACII), Vol.2, No.2, April 2015

xAXxis.add("=");
xAxis.add("\"");
xAXxis.add(");

xAxis.add("\"");
xAxis.add(";");

¥

/Ipattern matching module
public boolean Checker(String query) {
try {
result = new Vector<Object>();
applicationQuery = query.trim();
StringTokenizer st = new StringTokenizer(applicationQuery, " ");
while (st.hasMoreElements()) {
String e = st.nextToken();
if (e.contains("™)) {
result.add(e);
}else {
String r =¢;
StringTokenizer stk = new StringTokenizer(r, "");
while (stk.hasMoreElements()) {
result.add(""");
result.add(stk.nextElement());
result.add(""");
¥
}
}

System.err.printIn(result.size());
for (int z = 0; z < result.size(); z++) {
if (result.elementAt(z).toString().equals(")) {
if (result.elementAt(z + 2).toString().equals("")) {
result.setElementAt("", (z + 1));
2=2+3;
}
}
}

System.out.printIn(xAxis);
System.err.printIn(result);

/[Analysis Module

output = new Vector<Object>();

int count = 0;
for (int i = count; i < XAXxis.size(); i++) {
for (int j = count; j < result.size(); j++) {
String x = xAxis.elementAt(i).toString();
String y = result.elementAt(j).toString();

Advanced Computational Intelligence: An International Journal (ACII), Vol.2, No.2, April 2015

System.out.printin("x==""+x + " y==""+vy);
if (x.equalsignoreCase(y)) {

output.add(*"1");

analysis = true;

count++;

break;
}else {

analysis = false;

count++;

break;

}

}

if (lanalysis) {
break;

}

¥
} catch (Exception e) {
e.printStackTrace();
¥

return analysis;

¥
by

4. RESULTS:

= Normal Login

Home About Services Confact Login Register

Nt registersd | Click Here 1o Register

35

Advanced Computational Intelligence: An International Journal (ACII), Vol.2, No.2, April 2015

Attacker gets illegal access to database.

Online Banking Customer Transaction Close AIC Setting

(a.‘)

Gastomer-Ueians

ACNO
0602014500001
29602014500002
12014500003
4500004
9602014500005

329602014500006

= Login using Random4 Algorithm

Home About Services Contact Login Register

Wet regintensd | Click Ham 1o Register

36

Advanced Computational Intelligence: An International Journal (ACII), Vol.2, No.2, April 2015

= Attacker doesn’t get access to database.

The page at localhost:8080 says:

Invalid Login Details Please Provide wvalid Login

details
| oK

= Login using Hirschberg Algorithm

fu i }:"'""" Barking Home About Services Contact Login Register

Lomnm Eage

Technigue

Ulsanmame

Kot registensd | Click Hede to Register

37

Advanced Computational Intelligence: An International Journal (ACII), Vol.2, No.2, April 2015

=» Attacker doesn’t get access to database.

| The page at localhost:8080 says: . E

Invalid Login Details.Please Provide valid Login
details

[o |

e

5. COMPARATIVE STUDY:

Parameters Hirschberg Random4

Proxy Overhead No No

Time Complexity Less More

Space Complexity Less Bit more

Encryption No encryption (query | User Input
pattern is matched only)

Computational Overhead | Less Bit more

Table 3: Comparative Study

6. CONCLUSION:

This paper presents the methods for preventing the web applications from SQL injection attack.
And by the above comparative study, we have concluded that Hirschberg algorithm is easy to
implement, it has less time and space complexity and no proxy or computational overhead. On
the other side Random4 is also a powerful technique because of encryption but due to that time

38

Advanced Computational Intelligence: An International Journal (ACII), Vol.2, No.2, April 2015

and space complexity is more than Hirschberg Algorithm. It is easy to implement, and it has no
proxy or computational overhead.

REFERENCES:

[1] https://www.whitehatsec.com/resource/stats.html

[2] W.G halfond and A. orso AMNESIA: Analysis and monitoring for neutrilizing SQL injection
attacks.in proceedings of the IEEE and ACM International Conference on Automated Software
Engineering (ASE-2005), Long Beach, CA, USA, NOV 2005.

[3] Random4: An Application Specific Randomized Encryption Algorithm to prevent SQL Injection
Avireddy, S. Dept. of Inf. Technol., Anna Univ. Chennai, India Perumal, V. ; Gowraj, N. ; Kannan,
R.S. ; Thinakaran, P. ; Ganapthi, S..Gunasekaran, J.R. Prabhu,S. IEEE TRANSACTIONS ON
COMMUNICATIONS, VOL. 60, NO.5, MAY 2012

[4] 2009 IEEE International Advance Computing Conference (IACC 2009) Patiala, India, 6-7 March
2009 Combinatorial Approach for Preventing SQL Injection Attacks ,R. Ezumalai, G. Aghila
Department of Computer Science, Pondicherry University, Puducherry, India.

AUTHORS:

Mumbai and formerly trainee hardware & network engineer in DSS Mobile communication,
Mumbai. He is having 9 years teaching and 1 year industry experience.

Mohd. Ahmed is currently Assistant professor at the M.H. Saboo Siddik College of
Engineering and has completed his M.E. from Vidyalankar Institute of Technology (VIT),

Shaikh Tazreen is currently pursuing B.E. from M.H. Saboo Siddik College of
engineering, Mumbai.

Sayyed Saima is currently pursuing B.E. from M.H. Saboo Siddik College of engineering,
Mumbai.

Shaikh Shagufta is currently pursuing B.E. from M.H. Saboo Siddik College of
engineering, Mumbai.

39

