
International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.6, November 2012

DOI : 10.5121/ijcnc.2012.4607 91

DEVELOPMENT OF SEARCHBADGER,
A FRAMEWORK FOR EVALUATION OF SEARCH

RESULTS

Sebastian Merli1,2 and Hao Shi1

1School of Engineering and Science, Victoria University, Melbourne, Australia
hao.shi@vu.edu.au

2Technische Universität München,Germany
sebastian.merli@mytum.de

ABSTRACT

Google represents a significant share in the search market and dominates the world of search engines.
Although Google has constantly made effort to improve its search results by adding a result page preview
and offering a block URL option, individual user feedback to the real time search operation is still very
limited. In this paper, a new framework called SearchBadger is proposed to optimise search results in
real time by interacting with user and taking into account immediate user feedback. The proposed
framework SearchBadger is developed using C#, db4o and Visual Studio. SearchBadger architecture
contains the major component BadgerWorkspace and is followed by graphical user interface and search
behaviour. Keyterm significance and stemming are discussed and then page re-ranking is achieved by
instant user feedback. The framework can be integrated to the existing search engines or served as a test
bed for future development of semantic web.

KEYWORDS

SearchBadger, BadgerWorkspace, Framework, Web Search, Search Engine, Google, db4o(database for

objects), WPF (Windows Presentation Foundation) and Search Optimisation.

1. INTRODUCTION

Who dominates Search Engine market share? The answer undoubtedly is Google. Google, Bing
and Yahoo are the front runners followed by Baidu, a Chinese search engine with support of a
largest population in the world. The first four search engines have almost 99% market with
Google’s share over 85% [1]. Google holds the leading edge which is reflected by many new
products introduced in recent years. For example, Google Search added a top menu bar to
provide a direct link to its Image Search, Google Maps, YouTube, Gmail and Translation.
Google released its own web browser, Google Chrome in 2008. Google Chrome is catching up
very quickly with current share over 20% [2] even though Internet Explorer is till dominating in
Web Browser market. The report from Wikimedia indicates Google Chrome exceeding other
web browser on Wikimedia with over 27.25% share [3]. The growth of Google Chrome from
1% in February 2009 to 10% in April 2011, and then 27% in August 2012 is unprecedented
[4].Android, Google’s open source Operating System for touch screen mobile devices has
helped Samsung overtake Apple to claim smartphone market share lead [5]. Google
phenomenon heavily replies on the success of Google Search which is regarded as the most-
used search engine on the World Wide Web, receiving hundred million hits each day [6].
Although Google Search is constantly improving its search results, for example, a result page
preview and a URL block option, fundamentally Google replies on ‘page rank’ from collected

mailto:shi@vu.edu
mailto:merli@mytum.de

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.6, November 2012

92

user actions in a period of time, not individual user action in real time. In this paper, the
proposed SearchBadger aims to optimise search results by individual user feedback in real time.

2. THE SEARCHBADGER FRAMEWORK

The SearchBadger framework is developed using C#, db4o(database for objects) and Visual
Studio. A graphical user interface developed using WPF is set on top of it.WPF is framework
for developing graphical interfaces by Microsoft [7]. WPF provides a tier approach which
completely separates the user interface from the business logic:“WPF applications can be either
deployed as standalone desktop programs or hosted as an embedded object in a website” [7].
db4o is one of the open source object databases. It supports both Java and .NET platforms with
their respective APIs [8]. Visual Studio is an integrated software development environment
created by Microsoft [9]. It supports multiple programming languages such as C++, C#, and VB
.NET and can be deployed as desktop or web-based application. The overall development
environment for SearchBadger is illustrated in Figure 1.

Figure 1. SearchBadger development environment
(user icon is sourced from images.google.com)

The SearchBadger framework aims:

• To provide a UI which allows a user to conduct web search more efficiently
• To allow the user to influence search criteria and change weighting
• To capture the user’s search strategies
• To collect the user’s feedback for statistical analysis in term of successful searches
• To use the user’s just-in-time feedback to optimise immediate search results

2.1. System Architecture

The main part of SearchBadger’s framework is the BadgerWorkspace as shown in Figure 2. It
provides a facade to control search and page ranking. Basically the BadgerWorkspace allows a
user to add and update criteria and start search operations on a chosen search engine. The
management of the results and tracking of the user’s actions are carried out in background

WPF
(Windows Presentation

Foundation)

db4o
(database for

objects)

Microsoft
Visual Studio

Using C#

SearchBadger
Database

BadgerWorkspace

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.6, November 2012

93

automatically and asynchronously. That means, the workspace is accessible during operations
and offers a consistent view all the time.

Figure 2. SearchBadger architecture

The search request presented to the user is formulated in criteria, where one Criterion stands for
one feature of a result page. Every implemented Criterion derives from the abstract base class
Criterion, which implements communication with the workspace for evaluating every result
page. The specific Criterion implements the code that actually evaluates a page. The
BadgerWorkspace consists of three implemented criteria:

• OccurrenceCriterion
Count the occurrences of a given keyword and compare it to a target value.

• ExclusionCriterion
Look for a given keyword and rate it good if it isn’t in the page

• RankCriterion
Check how the search engine ranks the page in a given search

Whereas criteria are listed and managed by BadgerWorkspace itself, for searches it uses the
class SearchManager, which keeps track of the list of performed searches and starts the search
asynchronously, e.g. Google Result Scraper, which is a placeholder for any possible search
operation using Google search engine. This approach makes the SearchBadger framework
portable, scalable and extensible. Later a class like BingResultScraper can be easily added to
perform searches on Bing. The detail is presented in the class diagram as shown in Figure 3.

Every new result generated by SearchManager, creates a Page, which is responsible for
extracting its content from the search engine and reporting results so that evaluations can be
carried locally. Once the Page is loaded and evaluated by all criteria, the Page calculates its
overall rating.

Like search, pages are also managed by a special class, ConcurrentPageListManager which has
an immensely more difficult task. While a search is running, new pages are continuously added
and evaluated by every Criterion. In the meantime, the user can add or change criteria, which
make it necessary to re-evaluate every existent page. ConcurrentPageListManager keeps track

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.6, November 2012

94

of these operations and ensures that the lists of pages are sorted by rating and kept consistent at
all times, while informing the UI of every change that has occurred.

Figure 3. The class diagram

2.2. Graphical User Interface

The developed GUIbased on Google search engine consists of two columns as shown in Figure
4. The criteria list on the right is to control the search. A new criterion can be edited and added
to the list, which means the user can change a search strategy while running over the search
results, and receive a page ranking in real-time. The left column shows the actual contents. The
search results are listed under their title, URL and short description which are gathered from the
search engine. In addition every search result has its own rating, calculated from the criteria
defined on the right and the result for every single criterion is shown in a list. Once a result page
is shown to a user, the user can give the feedback, telling if the page is helpful, by using the
gradient slider under the rating.

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.6, November 2012

95

Figure 4. Graphical User Interface

2.3.Analysis of Search Behaviour

When a user searches using SearchBadger several ‘behaviours’ can be traced:

• the way that the user searches, e.g. the keywords or criteria that the user chooses,

• the order of pages viewed during search,

• the success of the search through the user feedback to the results,

• the fine-tune to the query while the user is searching and gathering more information
about the search domain.

Likewise, SearchBadger can easily be used for studying search behaviour. However, keep in
mind that even the usage of another frontend, i.e. SearchBadger’s UI instead of web browser
window with Google, could change the user’s actions.

2.4.User Influence and Statistical Analysis

One important part of SearchBadger is to give a user wider influence in the way the search is
conducted and how the ranking of the result pages is presented. This is achieved by splitting
every search request in a number of criteria, where each stands for one ‘feature’ of the result
page, e.g. like “has at least 7 occurrences of the word ‘Melbourne’ on it”, “is highly ranked in
Google when searching”, “has the words ‘Melbourne’, ‘liveable’ and ‘city’ in one sentence”.
Every criterion can be given a weight by the user, defining how important this particular
‘feature’ is.

As the user can see for every page how well it fulfils each criterion, the user can get an idea the
influence. By changing the weight or even the configuration of one criterion, the user can watch
the rating of the results being updated instantly, which allow the user to analyse his current

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.6, November 2012

96

request in real time. That means, the moment a user rates a page helpful, the result ranking can
be changed immediately, so that pages that are similar to the rated page are shown on top and
vice versa if the page has been rated not helpful.

When the user provides feedback about the results on screen, it can be used to do a statistical
analysis on the effectiveness of different criteria depending on the type of search request. Most
search engines are able to use feedback just by recognizing if a user returns from a result page
as well as how much time the user spends before returning to the page. Having an environment
where the user rates every visited page with a percentage value and where every of these pages
is downloaded and stored locally, statistical analysis can be produced very efficiently. It leads to
find correlations between the (user stated) helpfulness of a page and different properties of the
page (measured as the evaluation of different criteria). It results in the integration of a new
criterion not only offers more specific ways of defining a search to the user, but also gives more
opportunity to analyse search success.

3. KEY WORD CONSIDERATIONS

As described in Sections 2.4, the SearchBadger can propose more specific keywords to the user
such as a rate with “good” which should be included in a result page, “bad” which should not be
included in a result page, “ignore” which isn’t relevant at all or doesn’t matter if it is on a result
page. So the result can be re-ranked immediately according to the user’s feedback.

3.1 Keyterm significance

In order to evaluate the significance of a word in search, the frequently used words like “the”
should NOT be taken into consideration or at least with very little influence. Usually this kind
of words is made of corpora with millions of words. Here another attempt is tried: having
downloaded many pages of search results to a specified topic, it is important to determine
whether the amount of data is enough to get a good rating of word significance. If so, the word
is rated highly significant to the related topic.

For every keyterm (1-4 consecutive words) its occurrences are counted per page. The idea is: a
word that appears on many topic related pages is topic related itself, whereas a word that
appears often on a page is a frequent word itself and rather insignificant. The attempt to get a
value for significance is to divide the number of pages a word is on by the number of overall
occurrences, where the number of pages is powered by a number between 1 and 2 to increase its
influence. A sample calculation of the keyterm significance is listed below:

currencesoverall oc

pagesnumber of
gnificancekeyterm si

2)(=

In order to determine the index value, 1, 2 and 3 are tested. It is found that 2 to be

reasonable while 1 is too small and 3 is too big.

3.2 Stemming

To be able to properly count word occurrences, it needs to recognize a word in its different
forms (e.g. house, houses, housing, …). Stemming finds the stem of a word, so that an
occurrence for the stem can be counted. Doing stemming is not necessary to find the actual
word stem, but to find the same stem for every form of a word (and for nothing else). Much
research has been done in this field[10, 11, 12]. For illustration purposes, a very simple
stemming algorithm is developed for the SearchBadger. The algorithm can be summarised as
follows:

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.6, November 2012

97

• Remove any special chars from the word
• Replace the ending “ier” by “y” (e.g. heavier -> heavy)
• Cut off the ending “er” (e.g. harder -> hard)
• Replace “gg” by “g” (e.g. bigger -> bigg -> big)
• Cut off any of this endings: “s”,”ly”,”ing”,”n” (e.g. houses -> house, friendly -> friend,

growing -> grow)
• Replace ending “tion” by “te” (e.g. ignition -> ignite, distribution -> distribute)

3.3 Page re-ranking

In order to use the user’s feedback as one way to re-rank the result pages, a new Criterion called
FeedbackTopicCriterion has been created. Once all pages are downloaded and the keyterm
significance is calculated, it is ready to use. For every significant keyterm the average value of
the user’s feedbacks of the pages on which the term is on is then saved. To re-rank the pages,
the most significant keyterms are listed with their values. The page evaluation value used for
ranking is the average of these keyterm values weighted by their significance. Figure 5
illustrates a typical example of a re-ranked page.

Figure 5. Re-ranked page by SearchBadger

4. CONCLUSION & FUTURE WORK

It is important to understand that, in terms of search optimization, SearchBadger is still in its
infancy and may not be beneficial to inexperienced searchers. However, SearchBadger
framework presents an opportunity for further development to optimise the existing search
engines. New criteria can be developed quickly and integrated into the SearchBadger and
evaluation of its efficiency can be carried out easily. As SearchBadger loads all result pages and
stores it in a local database, it can also be used for lasting analyses on the page content and the

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.6, November 2012

98

subjective helpfulness to the user. SearchBadger could be an ideal platform for developing
future semantic web.

REFERENCES

[1] Search Engine Market Share,
http://www.netmarketshare.com/search-engine-market-share.aspx?qprid=4

[2] Web Browser Market Share, http://www.statowl.com/web_browser_market_share.php

[3] Goole Chrome,http://en.wikipedia.org/wiki/Google_chrome

[4] Usage Share of Web browsers,http://en.wikipedia.org/wiki/Usage_share_of_web_browsers

[5] Samsung Overtakes Apple,
http://appleinsider.com/articles/12/05/01/samsung_overtakes_apple_to_claim_smartphone_market_share_lead.html

[6] Google Search, http://en.wikipedia.org/wiki/Google_search_engine

[7] WPF, http://en.wikipedia.org/wiki/Windows_Presentation_Foundation

[8] db4o, http://en.wikipedia.org/wiki/Db4o

[9] Microsoft Visual Studio, http://www.microsoft.com/visualstudio

[10] Lovins, Julie Beth (1968). "Development of a Stemming Algorithm". Mechanical Translation
and Computational Linguistics 11: 22–31.

[11] Savoy, Jacques; Light Stemming Approaches for the French, Portuguese, German and
Hungarian Languages, ACM Symposium on Applied Computing, SAC 2006,ISBN 1-59593-
108-2

[12] Jongejan, B.; and Dalianis, H.; Automatic Training of Lemmatization Rules that Handle
Morphological Changes in pre-, in- and Suffixes Alike, in the Proceeding of the ACL-2009, Joint
conference of the 47th Annual Meeting of the Association for Computational Linguistics and the
4th International Joint Conference on Natural Language Processing of the Asian Federation of
Natural Language Processing, Singapore, August 2-7, 2009, pp. 145-153 [1]

Authors

Mr. Sebastian Merli is a final year Computer Science student at Technische
Universität München in Germany. He was supervised by Associate Professor Hao
Shi as a research intern at Victoria University from May 2012 to September 2012
and successfully completed the project with topic “Development of
SEARCHBADGER, a framework for evaluation of search results”.

Dr. Hao Shi is an Associate Professor in School of Engineering and at Victoria
University, Melbourne, Australia. She completed her PhD in the area of Computer
Engineering at University of Wollongong and obtained her Bachelor of
Engineering degree at Shanghai Jiao Tong University, China. She has been
actively engaged in R&D and external consultancy activities. Her research
interests include p2p Network, Location-Based Services, Web Services,
Computer/Robotics Vision, Visual Communications, Internet and Multimedia
Technologies.

http://www.netmarketshare.com/search-engine-market-share.aspx
http://www.statowl.com/web_browser_market_share.php
http://en.wikipedia.org/wiki/Google_chrome
http://en.wikipedia.org/wiki/Usage_share_of_web_browsers
http://appleinsider.com/articles/12/05/01/samsung_overtakes_apple_to_claim_smartphone_market_share_lead.html
http://en.wikipedia.org/wiki/Google_search_engine
http://en.wikipedia.org/wiki/Windows_Presentation_Foundation
http://en.wikipedia.org/wiki/Db4o
http://www.microsoft.com/visualstudio

