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ABSTRACT 
 
The research on Internet traffic classification and identification, with application on prevention of attacks 
and intrusions, increased considerably in the past years. Strategies based on statistical characteristics of 
the Internet traffic, that use parameters such as packet length (size) and inter-arrival time and their 
probability density functions, are popular. This paper presents a new statistical modeling for packet length, 
which shows that it can be modeled using a probability density function that involves a normal or a beta 
distribution, according to the traffic generated by the users. The proposed functions has parameters that 
depend on the type of traffic and can be used as part of an Internet traffic classification and identification 
strategy. The models can be used to compare, simulate and estimate the computer network traffic, as well 
as to generate synthetic traffic and estimate the packets processing capacity of Internet routers 
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1. INTRODUCTION 
 
The evolution of the Internet in the last few years has been characterized by changes in the way 
users behave, interact and utilize the network. The availability of broadband connections, 
particularly those based on cable TV and ADSL technologies, and new applications and dynamics 
of the Internet traffic, such as P2P applications and video sharing, have caused changes in various 
network management activities, such as capacity planning and provisioning, traffic engineering, 
application performance, anomaly detection and pricing. The correct identification of user 
applications may give valuable information for network operators to develop new traffic 
engineering policies and for providers to offer services based on user demand. Diagnosing 
anomalies is critical for both network operators and end users in terms of data security and 
service availability. Anomalies, such as the ones produced by worms or Denial of Service (DoS) 
attacks, may have unexpected behavior and may cause significant changes in the network traffic. 
Besides that, knowledge of the applications used by the subscribers may be of interest for 
application-based accounting and charging or even for the Internet Service Provider (ISP) to offer 
new products [1]-[6]. 
Characterization of Internet traffic is an important issue for telecommunications networks [7]. 
The literature presents several traffic identification techniques, and those using packet length 
(size) are important strategies [1]-[24]. The research usually involves experimental measurements 
[13],[14],[17]-[23], because this information can be used to design and estimate the network 



International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.3, May 2013 

18 
 

infrastructure and application  attributes. Li Bo, for example, indicates that the packet size (or 
length) distribution can be used to identify many Transport Control Protocol (TCP) applications 
[18]. Alfonso Iacovazzi reports that statistical traffic classification is possible based on some 
features of the Internet Protocol (IP) flow and that the packet length is a key feature to classify the 
application level content of a packet flow and that this classification can be useful for security 
policies, traffic filtering and support to the quality of service mechanisms [7]. Mushtaq mentioned 
that the probability density function and the cumulative distribution function can be used to 
design, control, manage, interpolate and extrapolate the network traffic. It enables to develop 
professional simulators and fast, efficient and robust algorithms for the optimization of computer 
and communication systems, along with applications [22].  
 
 Therefore, the analysis and characterization of those parameters is important to design new 
methods for traffic identification and classification. Traffic classification based on packet length 
was attempted by some authors in recent papers [1]-[5]. The main contribution of this paper is to 
propose a new probability density function for the packet length which can be used to identify 
and classify the Internet traffic. This paper also summarizes results from the literature on packet 
size distribution. Using these results, mathematical models for the packet distribution are 
presented and compared with actual measurements of packet size. The analysis of the results 
suggests that the model can be used to estimate the distribution of packet traffic in computer 
networks.  Besides, this investigation shows that it is possible to relate parameters of the proposed 
distribution function with the traffic type or network application. 
 
The remaining of the paper is organized as follows. Section 2 presents mathematical models to 
estimate the length distribution of the packets. Section 3 compares the measured values with the 
proposed mathematical models. Section 4 shows a summary of applications. Section 5 presents 
the conclusions of the paper. 

 
2. MATHEMATICAL MODELS 
 
The usual configuration for a Local Area Network (LAN) with Internet access is shown in Figure  
 
1. Using this configuration some mathematical models for the packet length in computer 
networks can be derived. 
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Figure 1.  Packet aggregation by the network server 
 

The packet length was measured between the network server and the Internet connection, as 
illustrated in Figure 1, to obtain the packet length relative frequency distribution. The results are 
discussed in Section 3 and show that the packet length has a bimodal traffic distribution. Similar 
results are found in [13]-[23]. Using the measured values, one can derive two equations to 
describe this bimodal traffic distribution, which can be obtained using a mathematical procedure 
presented in this paper. In the absence of a priori information, the Uniform (Figure 1a) is usually 
considered  for the packet length generated by the computers (users). The Normal (Figure 1b) and 
Beta (Figure 1c) distributions are considered when additional information can be obtained. The 
discussion and mathematical analysis are presented in the Section 2.1, for the Uniform and the 
Normal distribution, and in the Section 2.2 for the Beta distribution. 
 
2.1. Model based on the Normal distribution 
 
Consider that the traffic produced by a computer (user) presents, originally, a uniform distribution 
(Figure 1a) for the packet length, as shown in Figure 2a. When the data traffic flows through the 
aggregation point (router, gateway or server) it suffers a non-linear transformation (Figure 1d), 
which produces a bimodal distribution [13]-[23] (Figure 1f). Figure 2b shows this non-linear 
transformation at the aggregation point, which generates the bimodal distribution (Figure 2c), in 
accordance with the published results. 
 
However, considering that the packets are produced by several computers one can invoke the 
Central Limit Theorem, and infer that the aggregate traffic has a Gaussian distribution (Figure 
1b), as shown in Figure 3a [27]. Therefore, when the data traffic flows through the aggregation 
point, it suffers a non-linear transformation (Figure 1e) and the network servers group the packets 
(bytes) according to the adopted protocol (IP, ICMP, TCP or UDP), as depicted in Figure 1, and 
this produces a non-uniform distribution for the packet size, as shown in Figure 3c (or Figure 1f). 
The probability density function transformation (illustrated in Figure 3b), at the aggregation point 
can be obtained using 

                                       ℓ=
cos x+M

2                                       (1) 
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in which, M is the normalized MTU (1500 bytes/1500 bytes), ℓ is the output that represents the 
packet length (size) and it is function of the x, the input random variable. This is the traffic 
generated by the user and it is not known previously. Equation (1) is responsible for the non-
linear transformation that appears in the following. 
 
Rewriting x as a function of ℓ, gives 
 

                   M)(=x ℓ2arccos        (2) 

in which ℓ is the non-linear transformation used in Figure 3b and 
 

2ℓ21
2

1ℓ
ℓ

M)(

(x)p
=

dx

d
(x)p

=)(p LL
N








                                                                (3) 

in which )(pN ℓ  is the probability density function of a packet length after the aggregation point 

[27]. 
 
Considering that the traffic produced by a single computer presents a Normal distribution for the 
packet length, then 

Figure 2.  Non-linear transformation of probability density function. (a) Uniform distribution,  (b) Non-
linear transformation and (c) Probability density function. 
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Figure 3.  Non-linear transformation of probability density function.  (a) Normal distribution.   (b) Non-
linear transformation and  (c) Probability density function. 
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in which, x is given by Equation (2), E[x]=m is the mean and σ
2

 is the variance. 

Using equations (3) and (4) with m=0, the following equation is proposed to model the network 
traffic distribution 
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in which, )(pN ℓ  is the probability density function of the packet length at the output of the 

aggregation point, ℓ and σ are parameters of the distribution function related to the traffic type.  
 

Notice that σ
2

 is the variance of the Normal distribution, which is related with the traffic 
generated by the computers [27]. This is an important parameter and, as seen in the Section 5, 
may be associated with the type of traffic in the network. Paper [27] presents the comparison 
between )(pN ℓ  and experimental measurements. 
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2.2. Model based on the Beta distribution 
 
The Normal distribution (Figure 3a) is useful, but has a long tail which does not properly adjust to 
the limited range of packet length defined by the Internet transport protocols. 
 
The Beta distribution provides better approximations, that match the practical results, considering 
that the limited range of the random packets, Figure 4a, and Figure 1c. This leads, after the non-
linear transformation (Figure 1e or Figure 4b ), to the new model discussed in the following, 
originally proposed by Castro et al [28]. The initial conditions to derive the mathematical packet 
length model, to obtain the probability density function presented in Figure 4, are: 
 

 Consider that x is a random variable, with 0≤ x≤ 1 ; 

 The minimum and maximum normalized packet length are Lm  and LM  defined by: 

                    10 <Lm        (6) 

       e  10 <LM  , Lm<LM                   (7) 

the parameters are the ratio between the minimum (maximum) packet length, in terms of bits or 

bytes that can be sent through a network interface, and N Max . N Max  is the maximum number 
of bits or bytes that can be send through a network interface in a time interval t. 
 
Definition 1: consider that ℓ(x), or simply ℓ, is the random variable that represents the normalized 
packet length sent through a network interface in a time interval t, and that it is possible to 
express ℓ by 
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and from Equation (8), one can obtain the random variable x as a function of the packet length  ℓ  
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Equation (8) or (9), presented in Figure 4b, represent the non-linear transformation of the Beta 
distribution and that transformation gives the bimodal distribution illustrated in Figure 4c [13]-
[23] illustrated in Figure 4c. This equation is obtained from Equation (1) [27] after some 
simulations and curve fitting [26].  
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Figure 4.  Aggregated packet length non-uniform distribution. (a) Beta distribution B(2,2),       (b)  
Non-linear transformation and (c) Probability density function. 

 
Initially, the possibility of obtaining a consistent probability density function using curve fitting 
by software, as for example Matlab, was investigated.  A few models were obtained, but they had 
several tuning parameters (the minimum number was four parameters, and the approximation was 
poor). With this number of parameters is it difficult to associate each of them with the use of the 
probability density function in methods for traffic identification or classification. Therefore, the 
mathematical approach was preferred. 
 

 For the Ethernet network standard the Maximum Traffic Unit (MTU) is N Max = 1500 bytes. 
The maximum packet length that can be sent through a network interface is 1492 bytes, because 

eight bytes are used in the LLC header [25].  This gives 0.9946
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bytes (20 bytes for the IP header + 8 bytes used in the LLC header), that can be sent through a 

network interface, this means 0.0186
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computation purposes. Other values for Lm  are also possible depending on how the protocols 
are combined. 
 
The following formula, obtained from the non-linear transformation (8), with the bimodal traffic 
distribution, is proposed to model the packet length probability density function after the 
aggregation point. 
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=A  is the mean, B(.) is the Beta function,  .Γ  is the Gama function, ℓ is a 

random variable that represents the packet length (or size) after the aggregation point, p B�ℓ� is 
the probability density function of a packet length ℓ obtain from the Beta distribution, α nd β are 

parameters of the distribution function related to the traffic type, LM  is the maximum packet 

length, Lm  is the minimum packet length, 0>Lm ,  0>LM  and Lm<ℓ<LM .  

The cumulative distribution function of the packet length is 

β)(ααI=)(P xL ℓ          (12) 

is modeled as a regularized incomplete Beta function, in which, 00 =β)(ααI , 11 =β)(ααI  and 

y=x(ℓ ) is given by 
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One can obtain Equation (13) as a function of the packet length ℓ, given by Equation (8), with 
n=1. 
 
3. Comparison Results 
 
This section shows a comparison between the proposed models and some measurements. The 
measurements are obtained from: backbones with different bit rates [20], [21], ISP with Wi-Fi 
access [14], data traffic between cities (Chicago and Seattle) [21], and measurements made by the 
authors [27]-[30]. 
 
The proposed probability density function is compared with measurements presented in several 
articles [14]-[16], [20], [21], which were obtained from different networks scenarios, as, for 
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example, backbones with different bit rates [20], [21], ISP with Wi-Fi access [14], and data traffic 
between cities (Chicago and Seattle) [21]. 
 
3.1 Tafvelin measurements 
 
A comparison between the measurements found in the literature and results obtained from the 
proposed models for the cumulative distribution function of the packet length is shown in the 
following figures and tables.  
 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.  Tafvelin [15] measurements versus )(PB ℓ  function and other cumulative distributions. 

Table 1.  Tafvelin [15] measurements versus, )(PB ℓ  and other cumulative distributions. 

 

Dist. Par.1 Par.2 SSE RMSE RS ARS 
Exp λ = 1.6 - 0.59 0.21 0.17 0.17 
Log μ = 4e−13 σ = 7.0 0.54 0.19 0.24 0.24 
Par α = 0.18 β = 0.003 0.03 0.05 0.87 0.86 
Wei α = 0.26 β = 0.79 0.02 0.05 0.89 0.88 
P B�ℓ�

 

α = 0.089 β = 0.097 0.01 0.03 0.97 0.97 

 

The dashed lines are the cumulative measurements obtained from the literature [13]-[15],[20], 
[21]. The continuous lines are the cumulative measurements obtained from the CDF model, 

)(PB ℓ , adjusted by the least squares method to find the best value for the parameters α and β, 
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considering α, β > 0. The adjusted curve )(PB ℓ is plotted along with measured data found in the 
literature. The other lines are the Exponential, Log-normal, Pareto and Weibull distributions. 

The metrics Sum of Squares due to Error (SSE), Root Mean Square Error (RMSE), R-square 
(RS) and Adjusted R-square (ARS) were used to compute the difference between the analytic and 
experimental data. SSE and RMSE values close to zero indicate that the model has a small error 
component. RS is the square of the correlation between the response and the predicted response 
values. RS can take any value between 0 and 1, a value closer to 1 indicates that a large 
proportion of variance is accounted by the model. The ARS statistics can take on any value less 
than or equal to 1, a value closer to 1 indicates a better fit [26]. 
 
Tafvelin et al [15], collected data during 20 consecutive days, in April 2006, for a bidirectional 
traffic on an OC-192 backbone link (10 Gbit/s bit rate). For this link, the author used optical 
splitters attached to two Endace DAG6 2SE cards. The dashed bold line in Figure 5 illustrates the 
cumulative distribution of IPv4 packet lengths. Table 1 and Figure 5 summarize the comparison 
between Tafvelin measurements, )(PB ℓ  and other distributions. 

As one can see in Figure 5,  the CDF model, )(PB ℓ ,  is the nearest curve of the dashed line, 
cumulative measurements obtained from Tafvelin et al [15].  This result is confirmed by  Table 1 
results. SSE and RMSE is very close to zero, the best theoric value is zero. For RS and ARS, the 
best value is one. In this comparison we obtain 0.97 for both (SSE and RMSE).  The numeric and 
graphically results for )(PB ℓ  model presents very good results. For this comparison, the second 
best results are presented by Weibull distribution. In both, α and β are the distribuition parameters 
adjusted using the Matlab fitting tool [26]. 
 
A important point to be noted is the presence of two jumps. The first, near zero, and the second 
near 1500 (MTU). These two points of rapid growth is present in the collected values, but the 
Exponential, Log-Normal, Pareto and Weibull distribuitions can not capture both. Only the first 
one, near zero. This not happen in the proposed model. 
 
3.2 Rastin measurements 
 
The paper by Rastin Pries [14] presents measurements taken from an ISP switching center 
providing access to 250 households. The customers access the wireless LAN from several access 
points, and then the traffic is multiplexed using an IEEE 802.11a radio link. A comparison 
between Pries measurements, )(PB ℓ  and other distributions is summarized in Table 10 and 
Figure 12. 

 

Table 2.  Rastin [14] measurements versus, )(PB ℓ  and other cumulative distributions. 

 
Dist. Par.1 Par.2 SSE RMSE RS ARS 
Exp λ = 5.65 - 0.85 0.22 - - 
Log μ = 4e−10 σ = 10 1,36 0.27 - - 
Par α = 0.36 β = 0.01 0.27 0.13 0.66 0.64 
Wei α = 0.24 β = 0.18 0.09 0.08 0.65 0.63 
P B�ℓ�

 

α = 0.086 β = 0.18 0.03 0.05 0.9 0.89 
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Figure 6.  Rastin [14] measurements versus )(PB ℓ  function and other cumulative distributions. 

 
The Exponential distribution, with λ distribuition parameter, presents the worst results in 
comparsion with Rastin Pries [14] measurements. In Figure 6, the Exponential distribuition is far 
from the measured values and in Table 2, the SSE and RSME is very distant from zero. For RS 
and ARS,  Matlab fitting tool [26] can not obtain any value. The Log-normal distribuition has 
same results, μ and σ are the distribuition parameters adjusted using the Matlab fitting tool [26]. 
The difference is that Exponential is very far for up values and Log-normal is very far for down 
values. This results confirm that Exponential distribution can not modeled computers packts 
traffic. 
 
3.3 CAIDA measurements 
 
The comparison shown in Figure 7 is from the Cooperative Association for Internet Data 
Analysis (CAIDA), the measurements were taken from an OC-192 IP backbone link, in march 
2008, a link between Chicago and Seattle [21]. Figure 7 and Table 3 summarize the comparison 
between the CAIDA measurements, )(PB ℓ  and other distributions. The comparison results show 

a good fit between the measured values and the )(PB ℓ  curve. 
 
The Pareto and Weibull distributions, both with α and β parameters adjusted using the Matlab 
fitting tool [26], presents better results than Exponential and Log-Normal distribution in 
comparsion with CAIDA [21] measurements. In Figure 7, the Pareto and Weibull distributions 
are very near between then and both have a small distance from the dash-line. In Table3, values 
of SSE and RSME are small and near zero as expected. For RS and ARS values are near 1.  
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Table 3.  CAIDA [21] measurements versus, )(PB ℓ  and other cumulative distributions. 

 
Dist. Par.1 Par.2 SSE RMSE RS ARS 
Exp λ = 2.03 - 0.82 0.21 0.03 0.03 
Log μ = 3e−12 σ = 9.28 0.79 0.20 0.06 0.06 
Par α = 0.21 β = 0.004 0.08 0.07 0.76 0.75 
Wei α = 0.29 β = 0.55 0.07 0.06 0.79 0.79 
P B�ℓ�

 

α = 0.10 β = 0.13 0.03 0.04 0.95 0.94 

 

Figure 7.  CAIDA [21] measurements versus )(PB ℓ  function and other cumulative distributions. 

 
 3.4 Sprint measurements 
 
The Sprint (Sprint Academic Research Group) measurements were collected, in February 2004, 
from the San Jose 84 Mbit/s IP backbone link [20]. Sprint measurements, )(PB ℓ  and other 

distributions are summarized in Figure 8 and Table 4. The first Sprint set of measurements 
indicates that )(PB ℓ  has better results then other cumulative distributions. 

 
For Sprint measurements [20], Exponential and Log-Normal distributions are far from the 
measured values, as presented in Figure 8 and in Table 4. Pareto and Weibull distributions are 
better. These explain why both are used in computers traffic-analysis. But for this comparison, 
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using the proposed model )(PB ℓ  , the results is improved and this new distribution can be used 
to modeled computers packts traffic. 
 

Table 4.  Sprint [20] measurements versus, )(PB ℓ  and other cumulative distributions. 

Dist. Par.1 Par.2 SSE RMSE RS ARS 
Exp Λ = 3.3 - 0.84 0.19 0.14 0.14 
Log μ=1.5e−10 σ =23.2 1.45 0.26 - - 
Par α = 0.29 β = 0.006 0.05 0.05 0.87 0.86 
Wei α = 0.32 β = 0.24 0.05 0.05 0.88 0.88 
P B�ℓ�

 

α = 0.11 β = 0.21 0.04 0.04 0.92 0.92 

 

Figure 8.  Sprint [20] measurements versus )(PB ℓ  function and other cumulative distributions. 

 
4. Conclusion 
 
The analysis of the results suggests that the models can be used to estimate the distribution of 
packet traffic on computer networks. This important information can be used as part of a strategy 
of traffic identification, application level traffic classification and performance measurement of 
the routers. Future work in this direction is expected. Besides, the numerical results show that 

)(PB ℓ  has a good fitting and that it performs better then the Exponential, Log-normal, Pareto or 

Weibull distributions, for bimodal traffic. This result is important because one of these 
distributions may be used in network traffic simulators. 
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Two different equations were also obtained to model the packet length probability density 
function using the Matlab fitting tool [26]. The equations use a sum of two Exponential two 
Normal distributions. The disadvantage is that, with the Exponential, four parameters are needed 
to adjust, and the use of Normal distribution implies six parameters to adjust. In both cases, the 
results are better then )(pB ℓ , but the increase in the number of parameters, makes it more 
difficult to associate the measured parameters and the variables present in the computer network 
traffic. 
 
Some new possible application for the proposed cumulative distributions are improve the metrics 
for measuring the performance of routers, strategy to be used in the characterization of Internet 
traffic and help to discover denial-of-service (DoS) attacks characteristics. In papers [27] and 
[28], some preliminary results and models are presented.   
 
It was also found that many of the measurements made on 10 Gbit/s (OC-192) links made by 
[15], [21],  [20] and for the access network by [14] used cumulative packet length data. Thus, this 
paper also presented a cumulative distribution to compare the measured data with the proposed 
model.  
 
As suggestions for future work, it is possible to perform more measurements of packet lengths in 
the network layer for other specific applications (Skype, games on-line, etc) to classify the traffic 
based on the values of α and β of the new proposed distribution. The traffic classification, based 
on the packet lengths has already been done by some other authors in recent papers [1]--[5]. 
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