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ABSTRACT 

 
The SIR model is used extensively in the field of epidemiology, in particular, for the analysis of communal 

diseases. One problem with SIR and other existing models is that they are tailored to random or Erdos type 

networks since they do not consider the varying probabilities of infection or immunity per node. In this 

paper, we present the application and the simulation results of the pSEIRS model that takes into account 

the probabilities, and is thus suitable for more realistic scale free networks. In the pSEIRS model, the death 

rate and the excess death rate are constant for infective nodes. Latent and immune periods are assumed to 

be constant and the infection rate is assumed to be proportional to ( ) ( )I t N t , where N (t) is the size of the 

total population and I(t) is the size of the infected population. A node recovers from an infection 

temporarily with a probability p and dies from the infection with probability (1-p).  

 

KEYWORDS 

 

SIR model; SEIRS model; Delay differential equations; Epidemic threshold; Scale free network. 

 

1. INTRODUCTION 

 
The growth of the internet has created several challenges and one of these challenges is cyber 
security. A reliable cyber defense system is therefore needed to safeguard the valuable 
information stored on a system and the information in transit.  To achieve this goal, it becomes 
essential to understand and study the nature of the various forms of malicious entities such as 
viruses, trojans, and worms, and to do so on a wider scale. It also becomes essential to understand 
how they spread throughout computer networks. 
 
A computer virus is a malicious computer code that can be of several types, such as a trojan, 
worm, and so on [1, 14]. Although each type of malicious entity has a different way of spreading 
over the network, they all have common properties such as infectivity, invisibility, latency, 
destructibility and unpredictability [10].  
 
More recently, we have also started witnessing viruses that can spread on social networks. These 
viruses spread by infecting the accounts of social network users, who click on any option that 
may trigger the virus’s takeover of the user’s sharing capabilities, resulting in the spreading of 
these malicious programs without the knowledge of the user. While their inner coding might be 
different and while their triggering and spreading mechanisms (on physical vs. virtual social 
networks) may be different, both traditional viruses such as worms and social network viruses 
share, in common, the critical property of proliferation via spreading through a network (physical 
or social). 
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These malicious programs behave similarly to an infection in a human population. This, in turn, 
allows us to draw comparisons between the study of epidemiology, in particular the mathematical 
aspect of infectious diseases[2]  and the behavior of a computer virus in a computer network.  This 
is generally studied via mathematical models of the spread of a virus or disease. Any 
mathematical model’s ability to mimic the behavior of the infection largely depends on the 
assumptions made during the modeling process. 
 
Most of the existing epidemiology models are modified versions of the classical Kermack and 
McKendrick’s [15] model, more commonly known as the SIR (Susceptible/Infected/Recovered) 
model. For example, Hethcote [9] proposed a version of the SIR model, in which it was assumed 
that the total population was constant.  But in real world scenarios, the population will change in 
time. Thus, this model was later improved by Diekmann and Heersterbeek[8] by assuming that: 
 

I. The population size changes according to an exponential demographic trend. 
II. The infected individuals cannot reproduce. 

III. The individuals acquire permanent immunity to further infection when removed from the 
infected class. 
 

The eigenvalue approach has recently emerged as one of the popular techniques to analyze virus 
or malicious entity propagation in a computer network. Wang et al. [17] have associated the 
epidemic threshold parameter for a network with the largest eigenvalue of its adjacency matrix. 
This technique works only with the assumption that the eigenvalues exist. There are also certain 
restrictions on the size of the adjacency matrix, since calculating eigenvalues may not be easy or 
even possible for large matrices. 
 
In this paper, we apply the malicious object transmission model [12] in complete and scale free 
networks, that assumes a variable population and with constant latent and immune periods.  The 
current model extends the classical SIR model proposed in [11] to a probabilistic SEIRS 

[12]
 type 

model in several directions:  
 

I. It includes an Exposed class in addition to the Susceptible, Infected and Recovered 
classes. 

II. It furthermore includes a constant exposition period ω  and a constant latency period τ . 
III.  When a node is removed from the infected class, it recovers with a temporary immunity 

with a probability p and dies due to the attack of the malicious object with probability (1-
p).   

 
The rest of this paper is organized as follows. In section 2, we introduce the classical SIR model 
and implement it on a small network. After presenting simulation and statistical results, we 
conclude that the SIR model does not capture the realistic nature of the virus propagation in a 
computer network. Thus, we consider the more realistic scale free network in section 3 and give 
some historical background about such networks. A system of delay differential equations is then 
presented that includes a probabilistic temporary immunity with probability p. A complete 
mathematical justification follows the introduction of pSEIRS model.  Section 4 discusses the 
mathematical conditions for an infection free equilibrium. We also discuss the stability analysis of 
the proposed model using the phase plane plots. We then present simulation experiments to 
validate the scalability aspect of the proposed model and compare it with the classical SEIRS 
model. Section 5 presents our conclusion, then discusses some limitations of compartment type 
mathematical models, and finally closes with some possible directions for future work in this 
area. 
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2. The Classical SIR Model 
 

The SIR (Susceptible/Infected/Recovered) model [15] is used extensively in the field of 
epidemiology, in particular, for the analysis of communal diseases, which spread from an infected 
individual to a population. So it is natural to divide the population into the separate groups of 
susceptible (S), infected (I) and those who have recovered or become immune to a type of 
infection or a disease (R). These subdivisions of the population, which are also different stages in 
the epidemic cycle, are sometimes called compartments. A total population of size N is thus 
divided into three stages or compartments: 
 

.N S I R= + +  
 

Since the population is going to change with time (t), we have to express these stages as a 
function of time, i.e., S (t), I (t) and R (t). Here β (infection rate) and α (recovery rate) are the 
transition rates between S I→ and ,I R→  respectively, and are both in [0, 1]. 

 
The underlying assumption in the traditional SIR model is that the population is homogenous; that 
is, everybody makes contact with each other randomly. So from a graph theoretical point of view, 
this population represents a complete graph, which would be the case of a computer network that 
is totally connected. In this situation, the classical SIR model may be sufficient enough to 
understand the malicious object’s propagation. The dynamics of the epidemic evolution can be 
captured with the following homogenous differential equations: 
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Based on (1), we define a basic reproduction rate as 

0R
β

α
=  

R0 is a useful parameter to determine if the infection will spread through the population or not. 
That is, if R0 >1 and I (0) > 1, the infection will be able to spread in a population, to a stage that is 
called Endemic Equilibrium and is given by 
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If R0 <1, infection will die out in the long run. This is called disease free equilibrium and is 
represented as 

 

(3) 

 

 

 

 

lim
t→∞

S(t), I (t),R(t)( ) → N ,0,0( )  .     
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2.1: Simulation Results of the SIR Model with A Small Complete Network 

 

The simulation results of the SIR model in a 12K
 
network (complete graph with 12 nodes) are 

presented in Fig. 1(a) and 1 (b) with different values of β andα .  

 

 
Fig.1 (a): SIR model based on 0.06 ,  = 0.1β α=  

 

In Fig 1(a), R0 =0.6 < 1. So, the infection will not spread through the entire network. 
 

 
Fig. 1 (b): SIR model based on 0.1 ,  = 0.2β α=  

 
In Fig. 1 (b), R0 = 2 > 1. In this case, infection will spread to most of the nodes and the network 
will be in an endemic stage. 
 

We gleam useful information about the virus propagation from Fig. 1(a) and 1(b) in a 12K  type 

network and make an analysis based on these simulations. Two obvious observations are the 
long-term behavior of the infection and the speed at which the population gets infected. Also, we 
can determine the rate at which the population is getting immune to the infection, i.e., the removal 
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rate from the susceptible group. Information such as the maximum, minimum, and mean rate of 
the infected population can also be determined in each class. A statistical analysis of the cases in 
Fig. 1(a) and 1(b) are presented in Table 1 and Table 2. 
 
           Table 1: Statistical Analysis of Fig. 1(a)                  Table 2: Statistical Analysis of Fig. 1(b) 
 Susceptible Infected Recovered 

Min 0.008 0.1297 0 
Max 11 7.189 11 
Mean 3.619 2.522 5.859 

 

This analysis is based on some crucial assumptions, such as: 
 

• Once a node is removed or recovered from the infection, it develops immunity and it 
cannot be infected again. 

• The population is homogenous and well mixed. 
• There is no latency, i.e., there is no time delay between exposure to the infection and 

actually getting infected. 
 
The above assumptions make it clear that in order to capture the essence of virus propagation in a 
computer network, in a more realistic sense, the SIR model is not sufficient to study virus 
propagation.   In order to address this limitation, we must assume a network with a scale free 
distribution of the node connectivity degrees. We also must take into account the real phenomena 
of possible re-infection and the time delay incurred during incubation (between exposition and 
infection). For these reasons, in the following sections, we will first briefly review scale free 
networks and then present the pSEIRS[12] model that addresses the limitations of the classical 
model. 
 

3. Application of Probabilistic SEIRS Model 

 

3. 1: Scale Free Networks 

 
Scale free networks were first observed by Derek de Solla Price in 1965, when he noticed a 
heavy-tailed distribution following a Pareto distribution or Power law in his analysis of the 
network of citations between scientific papers. Later, in 1999, the work of Barabasi and Albert [3]  
reignited interest in scale free networks.  

 
Fig. 2: Example of a scale free network. 

 Susceptible Infected Recovered 

Min 0 0.090 0 
Max 11 9.954 11 
Mean 1.965 4.832 5.203 
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For example, Lloyd and May [11] generated the scale free network, depicted in Fig. 2, using the 
network generating algorithm of Barabasi and Albert [3]. There are 110 nodes that are colored 
according to their connectivity degree in red, green, blue, and yellow, with the most highly 
connected nodes colored in blue. It is worth noting that there are only a few highly connected 
nodes, while the majority of the nodes have only a few connections. Thus, in a classical scale free 
network, the connectivity of a node follows a power law distribution [11].  
 
3.2: Probabilistic SEIRS Model: pSEIRS 

 

In the time delay model, parameter, γ , represents the probability of spreading the infection in one 

contact. It is obvious that the rate of propagation is proportional to the connectivity of the node. 
The propagation rate does not change in time throughout the network. 
 
In order to capture more realistic dynamics within real world scale free networks, several more 
variables compared to the classical SIR model are used and to capture more realistic behavior, 
delay is consider on the network. An additional stage (Exposed) in the model represents the 
phenomenon of incubation, leading to a delay between susceptibility to infection and actual 
infection. The Exposed stage makes the model a SEIR model instead of a SIR model. 
Furthermore, the pSEIRS model is different from the classical SEIRS model (the latter is obtained 
for an immunity probability p = 1). The resulting model is described in terms of the following 
variables and constants: 
 

N (t): Total Population size 
S (t): Susceptible Population 

E (t): Exposed Population 
I (t):  Infected Population 

R (t): Recovered Population 

β : Birth rate.  

µ : Death rate due to causes other than an infection by a virus.  

ε : Death rate due an infection by a virus, it is constant.  

α : Recovery rate which is constant. 
γ : Average number of contacts of a node, also equal to the probability of spreading the virus in 

one contact. 
ω : Latency period or time delay, which is a constant i.e., the time between the exposed and 

infected      stages.  
τ : Period of temporary immunity, which is a positive constant. 

p : Probability of temporary immunity of a node after recovery. 

 

Once an infection is introduced into a network, its nodes will become susceptible to the infection 
and, in due course, will get infected. Once a node is exposed, an incubation period is observed, 
which is captured by the new time delay parameter, which therefore models reality better: any 
infection goes through an incubation period before it propagates. After infection, anti-virus 
software may be executed to treat an infected node, thus providing it with temporary immunity. It 
is important to realize that there is no permanent immunity in a real network, thus an immune 
node may revert to the susceptible stage again. All these stages of infection from susceptible to 
recovered, and the phases in between, are shown in Fig. 3.  
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Fig. 3: Flow of infection in a SEIRS model. 

 

The pSEIRS model in Fig. 3 works under the following assumptions: 
 

• Any new node entering the network is susceptible. 
• The death rate of a node, when the death is due to other reasons that are separate 

from virus infection, is constant throughout the network. 
• The death rate of a node due to infection is also constant. 
• The latency period and immune period are constant. 
• The incubation period for the exposed, infected and recovered nodes is 

exponentially distributed. 
• Once infected, a node can either (i) recover and become immune with probability 

of temporary immunity p, or (ii) die from the infection with probability (1-p). 
 
Once a network is attacked (some initial nodes become infective), any node that is in contact with 
the infective nodes becomes exposed, i.e., infected but not infectious. Such nodes remain in the 
incubation period before becoming infective and have a constant period of temporary immunity, 
once an effective anti-virus treatment is run. The total population size is expressed as  

 
                                        (4) 

 
Also, it is important to understand that the infection remains in the network for at least κ = max 

(τ, ω), so that we have an initial perturbation period. The model in Fig. 3, has the following form 
for t > τ: 

 
             (5) 

 
(6)                        

 
(7) 

 
             (8) 

dS(t)

dt
= βN (t) − µS(t) −γ

S(t)I (t)

N (t)
+αI (t −τ )e−µτ         

E(t) = γ
S(x)I (x)

N (x)
e

−µ(t−x)
dx,                      

t−ω

t

∫

dI (t)

dt
= γ

S(t −ω)I (t −ω)

N (t −ω)
e−µω − (µ +ε +α)I (t),           

R(t) = pαI (x)e−µ(t−x)
dx.                                             

t−τ

t

∫

N (t) = S(t) + I (t) + E(t) + R(t) . 
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equations (5) - (8) are called an integro-differential equation system. On differentiating (6) and 
(8), we get the following: 

 
 

(9)
 

 
(10) 

 
The system of differential equations (5), (7), (8) and (10) is collectively called a differential 
difference equation system and we will refer to it as M1. That is  
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It is important for the continuity of the solution to M1 to have  
 

           

E(0) =
γS(x)I (x)

N (x)
eµx dx                  

−ω

0

∫
                                                             (11) 

 
              (12)  

 
 

It is worth noting that M1 is different from the model by Cooke and Driessche 
[5]

 because they do 
not discuss the probability of immunity when a node recovers from the infection. M1, on the other 
hand, is a probabilistic model; here, a node acquires a temporary immunity with probability p and 

dies with probability 1-p. M1 is also different from Yan and Liu 
[16]

 because their model assumes 
that a recovered node acquires permanent immunity, which may not be the case in real networks.  
 

Theorem 1
[15]

: A solution of the integro-differential equations system (5-8) with N (t) given by 
(4) satisfies (9) and (10). Conversely, let S (t), E (t), I (t) and R (t) be a solution of the delay 

differential equation system (M1), with N (t) given by (4) and the initial condition on[ ], 0τ− . If in 
addition,  
 

0 0

(0) ( ) ( )     and    (0) ( ) ,x x
E S x I x e dx R p I x e dx

µ µ

ω τ

γ α
− −

= =∫ ∫  

then this solution satisfies the integro-differential system in (5-8). 
 

4. Infection Free Equilibrium 

dR(t)

dt
= pαI (t) −αI (t −τ )e−µτ − µR(t).                     

dE(t)

dt
= γ

S(t)I (t)

N (t)
−γ

S(t −ω)I (t −ω)

N (t −ω)
e−µω − µE(t),    

R(0) = pαI (x)eµx
dx

−τ

0

∫ .                                  
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Let D be a close and bounded region such that 
 

                      D = ((S,E, I ,R) : S ,E, I , R ≥ 0,S + E + I + R = 1).                                                   (13)       
                                       

 In (13), we consider the equilibrium of M1, when the infection I = 0, then E = R = 0 and S =1. 
This is the only equilibrium on the boundary of D and we also have the threshold parameter for 
the existence of the interior equilibrium: 

R
0

=
γe

−βω

ε + β +α
 .                               

                                               (14)
 

The threshold parameter R0 is a measure of the strength of the infection. The quantity 
1

β ε α+ +
 is 

the mean waiting time in the infection class, thus R0 is the mean number of contacts of an 
infection during the mean time in the infection class.  Asymptotically, as time t → ∞ , we get an 
infection free equilibrium [5].  
 
The system of equations in M1 will always reach a disease free equilibrium if R0 < 1, thus all the 
solutions starting in D will approach the disease free equilibrium. On the other hand, when R0 > 1, 
we have an endemic equilibrium meaning that the infection will not die off in the long run.   
 
4.1. Simulation Results with the pSEIRS Model 

 

The dynamic behavior of the system M1 is presented in Fig. 4, with the following values:  
 

0.330, 0.006, 0.060,β µ ε= = = 0.040, 0.308, 0.15, 30, 1.pα γ ω τ= = = = =  

 
Fig. 4: pSEIRS model.  

 

Under the above assumption, we find that the threshold parameter is R0 = 7.77. Hence, the system 
is in the endemic state. We also have p=1, thus assuming that all the recovered nodes have 
permanent immunity. In Fig. 5, we present the overall impact on the population with the above-
mentioned parameters. 
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Fig. 5: Population propagation under the pSEIRS model with p =1. 

 
We notice from Table 3, that there are 33 nodes, which will get infected, and that the mean rate of 
infection is 12.37 nodes, while the number of recovered nodes is 20.00 with a mean recovery rate 
of 7.5 nodes 

Table 3: Statistical Analysis of Fig. 4. 

 
Stability is an important issue with any dynamical system. In Fig. 6, we present the phase plane 
portrait of our proposed model, which shows that we have an endemic equilibrium; hence our 
modeled system is asymptotically stable at the equilibrium (4.511, 0.9362, 4.161). 
 

 
Fig. 6: Phase Plan Portrait for temporary immunity probability p = 1 and latency period 0.15ω = . 

 
We now look at the dynamics with the temporary immunity probability p = 0.4. We can clearly 
notice that the recovery R (t) has declined in Fig. 7 compared to Fig. 4, since we have chosen a 
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lower probability for temporary immunity. 

 
Fig. 7: pSEIRS model. 

 
We also notice from Table 4, that 34 nodes will get infected and the mean rate of infection is 
13.00 nodes while the number of recovered nodes is 14.00, with a mean recovery rate of 7.255 
node. 
 

Table 4: Statistical Analysis of Fig. 7. 
 

 
Because of the lower temporary immunity rate, we expected the population to decline further, and 
this is confirmed in Fig. 8. 

 
Fig. 8: Population propagation under the pSEIRS model with p = 0.4. 

 
In Fig. 9, we again see an asymptotically stable system at the equilibrium (7.054, 0.9407, 4.05).   
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Fig. 9: Phase Plane Portrait for temporary immunity probability p = 0.4 and latency period 0.15ω = . 

 

 Now consider the case, when the latency period is increased. We also consider the temporary 
immunity probability to be p = 1 and all the other parameters remain the same as before. The 
latency effect on the virus propagation dynamics can be clearly seen in Fig. 10. 
 

 
Fig. 10: pSEIRS model with 30.ω =  

  

Infection is less likely to become an endemic in this case because R0 = 0.3703 < 1. Instead, we 
expect to have an asymptotically stable system at a disease free equilibrium (1.118e-006, 20.63, 
11.65), as shown in Fig. 11. 
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Fig. 11: Phase Plane Portrait for temporary immunity probability p = 1 and a longer latency period ( 30.ω =

) 
4.2. Scalability of the pSEIRS model 

 

So far, we have used relatively speaking a small network of 110 nodes in a scale free network. 
We now consider a larger network of 5000 nodes, as shown in Fig. 12. The network was 
generated in the Matlab environment using the Barabasi-Albert graph generation algorithm [3]. 

 
Fig. 12: Scale free network of 5000 nodes. 

 

It is important to realize that it is very typical for most of the networks arising from social 
networks, World Wide Web links, biological networks, computer networks and many other 
phenomena, to follow a power law in their connectivity. Thus, networks are conjectured to be 
scale free[4]. Here, the immunity probability is p = 0.5 and the rest of the parameters remain the 
same as before. So, under these assumptions, R0 = 8.621329079589127e-001 < 1, meaning that 
the infection is less likely to become endemic. The global behavior of the proposed model is 
presented in Fig. 13. 
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Fig. 13: pSEIRS Model with 5000 nodes. 

 

Moreover, we have an asymptotically stable system at a disease free equilibrium of (5.778, 2.51, 
4.158). This can be seen in Fig. 14.  

 
Fig. 14: Phase Plane Portrait. 

 

The overall population propagation is presented in Fig. 15, with p = 0.5. 
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           Fig. 15: Population propagation under the pSEIRS model with p = 0.5 and 5000 nodes. 
 
We now compare the pSEIRS model and the classical SEIRS model (the latter is obtained for an 
immunity probability p = 1). In Fig. 16 and Fig. 17, we can clearly see the difference between the 
recovery rates R(t) for the different models. 
 

 
Fig. 16:  pSEIRS model with p = 0.25 and p =0.75. 
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Fig. 17: Comparison between the classical SEIRS (where p=1) and the  pSEIRS model. 

 
In Table 5, we present a comparison of the model under different choices of the immunity 
probability p. The pSEIRS model gives a more realistic picture of the scale free network of 5000 
nodes since it is unrealistic for all nodes to develop permanent immunity from getting infected 
with viruses, trojans and similar entities. 
 

Table 5: Statistical Analysis of Fig. 16 and Fig. 17. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

5. Conclusions and Discussion of Future Directions of Research 

 

We have applied a variable population malicious object transmission model in complete and scale 
free networks, with constant latent and immune periods.  The applied model extends the classical 
 SIR model proposed in [11] to a probabilistic SEIR type model in several directions: (i) it includes 
an Exposed class in addition to the Susceptible, Infected and Recovered, (ii) it furthermore 
includes a constant exposition period ω  and constant latency period τ ,  (iii) when a node is 
removed from the infected class, it recovers with a temporary immunity with a probability p and 

Compartment Probability Min Max Mean 

Susceptible 

p = 0.25 8.008 2000 345.9 
p = 0.5 5.379 2000 327.1 
p = 0.75 8.41 2000 346.4 

p = 1 5.797 2000 318.3 

Exposed 

p = 0.25 2.509 1000 296.6 
p = 0.5 2.515 1000 322 
p = 0.75 2.504 1000 320.2 

p = 1 2.506 1000 349.1 

Infected 

p = 0.25 0.5927 1039 144.5 
p = 0.5 1.799 1040 163 
p = 0.75 1.212 1038 159.4 

p = 1 3.047 1039 175 

Recovered 

p = 0.25 8.63 1027 364.7 
p = 0.5 3.497 1000 253.9 
p = 0.75 9.491 1075 324.4 

p = 1 0.154 1018 196.5 
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dies due to the attack of the malicious object with probability (1-p).  This is in contrast with Yan 
and Liu’s model [16] which assumed that the node recovers with permanent immunity.   
 
The model will be in an endemic state if the threshold parameter R0 > 1. As ω  increases, R0 
decreases and the condition of permanent infection will become less likely to be satisfied. Thus, 
the longer the exposure period of a system, the less likely it is that it will become endemic in the 
long run.  
 
Another important information that we can gleam from the proposed model is the maximum 
number of nodes that will be infected. Knowing this number, we can assume that the most 
connected nodes are the most vulnerable to an attack; thus special attention should be paid to 
these nodes. This information is of great importance to network administrators. Moreover, one 
can get the global dynamic behavior of the network under certain assumptions, as illustrated in 
our simulations.  
 
The SEIRS and other related compartment models are good tools to study the global behavior of 
an epidemic in a network or a population dynamic. They are relatively simple to implement, yet 
they can still give valuable information about the network dynamics.  One of the major issues for 
these types of models is setting the right set of values for the parameters, thus making them highly 
restricted in terms of their behavior. To make these models more realistic, it is important to make 
them as robust as possible.   
Some of the possible ways in which future work in this topic can expand is to consider a dynamic 
rate of change, i.e., dynamic death rate, transmission rate, and latency period. Demirci et al. [7] 
considered only one such parameter. Ozalp and Demirci [13] also considered a non-constant 
population within their SEIRS model. This is a good starting point to improve the existing SEIRS 
model [13]. Choosing a nonlinear incident rate in a SIERS model is also another direction. Though 
Ning and Junhong [6] have done some work on this, one can think of improving their work.  
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