
International Journal of Computer Networks & Communications (IJCNC) Vol.6, No.6, November 2014

DOI : 10.5121/ijcnc.2014.6611 137

ON MODELING CONTROLLER-SWITCH
INTERACTION IN OPENFLOW BASED SDNS

Ameen Chilwan1, Kashif Mahmood2, Olav N. Østerbø2 and Michael Jarschel3

1Department of Telematics, NTNU, Norway
2Telenor Research, Norway

3Nokia, Germany

ABSTRACT

With an increase in number of software defined network (SDN) deployments, and OpenFlow consolidating
as the protocol of choice for controller-switch interactions, a need to analytically model the system for
performance analysis is increasing. An attempt has previously been made in [1] to model the system
considering both a controller and a switch as an M/M/1 queue. The method, although useful, lacks
accuracy for higher probabilities of new flows entering the network. The approach is also deficient of
details on how it can be extended to more than one node in the data plane
.
These two short-comings are addressed in this paper where the controller and switch are modeled
collectively as Jackson’s network, with essential tuning to suit OpenFlow-based SDN. The consequent
analysis shows the resilience of the model even for higher number of new flow entries. An example is also
used to illustrate the case of multiple nodes in the data plane.

KEYWORDS

OpenFlow, Performance analysis, Queuing theory, Software defined networks.

1. INTRODUCTION

Software defined networking (SDN) is a networking concept which involves separating the
control plane from the data plane. SDN promises network deployment and service upgrade on
software time scales which has huge benefits especially in the carrier network domain because in
the future the network operators will not compete on the basis of network coverage alone but on
the basis of features and services.

The initial impact of SDN was seen in the datacenters. As early as January 2012, Google had their
full scaled datacenter WAN running as OpenFlow based SDN [2]. SDN is now all set to roar in
the wireless domain too. All this has been possible due to the basic architectural principle of SDN
which is the separation of the control plane from the data plane. The architecture involves SDN
controller(s) residing in the control plane while the forwarding element(s) make the data plane. In
order to handle the communication between the control plane and the data plane elements,
OpenFlow is the only open, standard protocol [3].

OpenFlow started as a test protocol in Stanford but is now managed and maintained by Open
Networking Foundation (ONF) [3]. It started with OpenFlow version 1.0.0 and at the writing of
the paper, version 1.4 has been specified [3]. The working principle is the same but each version
involves some additional features. For example the version 1.1.0 has support for group tables



International Journal of Computer Networks & Communications (IJCNC) Vol.6, No.6, November 2014

138

which was not there in version 1.0.0. The work in this paper is based on OpenFlow version 1.0.0
and we believe that it can be easily extended to the new versions.

Under an OpenFlow network, the controller-to-switch communication takes place as follows:
where we use the term switch and node interchangeably to represent the forwarding element in
the data plane in an SDN network.

When a flow with no specified forwarding instructions comes into a network the following actions
are taken:

i. A packet (or part of the packet) of the flow is sent by the switch to the controller, assuming
that the switch is not configured to drop unknown packets.

ii. The controller computes the forwarding path and updates the required nodes in the data
path by sending entries to be added to the flow tables.

iii. All subsequent packets of the flow are forwarded based on pre-calculated forwarding
decisions and do not need any control plane action.

It is important to model the controller-to-switch communication for the performance analysis of
OpenFlow (OF)-based SDN networks. The modeling of OpenFlow networks will help us to
answer questions such as how much data we can pump into the network, what is the packet
sojourn time, when and what (switch or the controller) is the bottleneck in a network.

Most of the work on performance analysis of SDN networks is based on simulations or
experimentations. Albeit their benefits, analytical modeling is a time efficient alternative because
setting up an SDN experiment or performing a simulation can take hours. The analytical model
for an OF-based SDN should be able to capture the OpenFlow working principle and at the same
time shall be flexible to handle any amount of query traffic going to the controller. Further, the
model shall be readily extendable to more than one node in the data plane.

The analytical modeling of OpenFlow-based networks has only been attempted in a handful of
papers before. For example feedback oriented queuing theory has been used in [1] to capture the
control plane and data plane interaction where the Markovian servers are assumed for both the
controller and the switch. However the model becomes less accurate as the probability of traffic
going to the controller increases. Secondly it is not clear how the model can be extended to more
than one switch in the data plane.

In [4] a network calculus based approach is used to quantify the packet processing capability of
the switch in the data plane. However the feedback between the nodes in the data plane and the
controller is not considered. This shortcoming of feedback modeling is addressed in [5]. However
the model is depicted only for a single node in the data plane and the time stopping method
employed therein has limited real time application. Secondly the framework used in [4] and [5] is
based on deterministic network calculus which does not provide any meaningful bounds [6]. To
the best of our knowledge apart from these handful analytical works, almost all the other efforts
of evaluating performance of OpenFlow-based networks are carried out by simulations or
measurements, for example [7], [8], [9]. Moreover, Cbench tool to benchmark the controller
performance is also introduced in [10] and is proved to be instrumental in benchmarking.

It is therefore of paramount importance to have an analytical model which can capture the
feedback interaction between the controller and the switch, is able to model any amount of traffic
going from switch to controller (and vice versa), and can be easily extended to more than one
switch in the data plane. The model proposed in this paper is an attempt in that direction. We
model the OpenFlow network as a Jackson network but with a modification to accurately
represent the traffic flow from the switch to the controller in an actual OF-based SDN network. It



International Journal of Computer Networks & Communications (IJCNC) Vol.6, No.6, November 2014

139

needs to be emphasized that this model was first presented by us in [11]. Here in this work we
elaborate the model with more performance measures.

It is highlighted later in the paper (Fig. 2) that this modification to the native Jackson network is
necessary to capture the OpenFlow working principle. The model is in turn used for performance
analysis of OF-based SDN networks to calculate the mean packet sojourn time, to find out how
much data we can pump into the network and when and what (switch or the controller) is the
bottleneck in a network. The main contributions of this work are:

• A model is proposed to capture the feedback interaction between the switch and the
controller mimicking an actual OpenFlow based SDN network

• The model is accurate even for the case when large amount of new flows are arriving at the
switch.

• The model can be easily extended to more than one switch in the data plane.
• We show mathematically that the packet sojourn time calculated by our proposed model

based on Jackson assumption is the same as the one explicitly calculated for OF-based SDN
network in [1].

The rest of the paper is organized as follows; we first present the system model along with the
limitations and the necessary preliminaries in Section 2. The performance measures are outlined
in Section 3, while the numerical results are presented in Section 4. An insight as to how the
proposed model can be used for multi-node case is highlighted in Section 5, while the conclusions
along with the future research directions are presented in Section 6.

2. MODEL DESCRIPTION

We assume that the overall traffic process at the switch and at the controller follows Poison
process similar to [1] given that the two processes are on a different time scale. Further we
assume Markovian servers for the switch and the controller wherein we incorporate the
transmission time of the packets from the switch to the controller in the service time of the
controller. As for the buffer size we assume infinite buffer for the switch while for the controller
we initially do the analysis based on infinite buffer and later in the paper we extend it to the finite
buffer case.

We use Jackson network model to represent the OF-based SDN network. To this end a recap of
the Jackson model for open queuing networks [12], in which the nodes behaves locally as single
M/M/1 queues, is outlined. Albeit trivial, this is done in order to highlight that Jackson model
cannot be used as such for modeling OF-based SDNs.

Let us consider a Jackson network consisting of two nodes 1 and c connected in a feedback path
as shown in Fig. 1(a). The service rates of nodes 1 and c are exponentially distributed with
average values of μ1 and μc, respectively. The external traffic arrival to the node 1 is denoted as λ1

packets per unit time.

Let Γ1 be the net input to node 1 out of which Γc=q1
jack Γ1 goes to the node c where q1

jack is the
probability that the packet goes to the node c.

Assuming that no packet is lost at the controller (infinite buffer at the controller) the balance
equation for the system can be written as

Γ1 = λ1 + q1
jack Γ1 (1)



International Journal of Computer Networks & Communications (IJCNC) Vol.6, No.6, November 2014

140

It is the term q1
jack which needs modification in order to model OF-based SDN in Fig. 1(b) as a

Jackson network in Fig. 1(a). This is because an OF-based SDN, as shown in Fig. 1(b), has the
following two salient features:

i. A packet coming to any node in the data plane will at most visit the controller once.
ii. Only a fraction of the external traffic λ1 and not a fraction of the net input traffic Γ1 will go

the controller. (Two lines directly out of the data node in Fig. 1(b) as opposed to one line in
Fig. 1(a) are used to represent this phenomenon).

In an OpenFlow network, let q1
nf be the probability that the packet goes to the controller in case

there is no flow entry in flow-table of the node, then in order to use the Jackson network to
represent the OF-based SDN we have to adjust q1

jack by demanding that the input rates to the
nodes in both the models are the same. Hence

Γ1 = λ1 + q1
nf λ1 (2)

and

q 1
jackΓ1 = q1

nf λ1 (3)

As a result q1
jack can be solved as

q1
jack=

q1
nf

1 + q
1
nf (4)

Fig. 2 highlights the need of having a modified Jackson model to represent OF-based SDN
networks where we represent mean time spent by a packet in the network (node + controller) as a
function of load on the controller.

The curve simulation is obtained from simulating the OpenFlow behavior taking into account the
aforementioned two salient features. Further, in the simulation, we assume Poisson arrivals at the
input and exponentially distributed service times for the nodes.

The curve denoted by Jackson Model is obtained by using q1
jack as such without modification i.e.

q1
jack = q1

nf while the curve Modified Jackson Model is based on q1
jack in (4).

It can be seen that as the percentage of traffic going to the controller dictated by q1
nf increases, the

modification to the probability q1
jack in (4) becomes all the more important.

Figure 1(a): Jackson Model Figure 1(b): Simple OpenFlow Model [1]



International Journal of Computer Networks & Communications (IJCNC) Vol.6, No.6, November 2014

141

Figure 2: Jackson model without modification overestimates the mean packet sojourn time

2.1. Limitations

The work in this paper makes the following assumptions:

• The overall traffic arrival process at the switch and the controller is Poison. Further
exponentially distributed service times are used for the switch and the controller. This allows
us to use the Jackson network results based on M/M/1 queues.

• Secondly we assume a single queue at the switch instead of a separate queue per line card.
• TCP traffic is used for which only the first packet of the unknown flow is sent to the

controller.
• Infinite buffer is assumed at the switch as typically it is quite large.

It needs to be emphasized that the main goal of this work is to develop an analytical model for
OF-based SDN networks. The assumptions will be relaxed in the subsequent work.

3. PERFORMANCE MEASURES

One of the advantages of our proposed model is that we can leverage the well-established results
for performance analysis of Jackson networks for analysing OpenFlow-based SDNs. In this
section, we will use the proposed model to find two elementary performance measures, the
average packet sojourn time, and the distribution of time spent by a packet in the network.



International Journal of Computer Networks & Communications (IJCNC) Vol.6, No.6, November 2014

142

3.1. Average Packet Sojourn Time

The average packet sojourn time, E[Wjack], is defined as the time spent by a packet in the network
from the moment it enters the network at its source node, until it leaves through the destination.
E[Wjack] for the network in Fig. 1 is given as [12]

E[W jack]=
1

λ1

ρ1

1 - ρ1

+
ρc

1 - ρc

(5)

where ρ1 = Γ1/μ1 and ρc = Γc/μc denote the load on the node 1 and the controller c, respectively.
Further, in order to have a stable system, it is assumed that all the loads are less than unity that is
ρ1 < 1 and ρc < 1.

Alternatively, we can use the delay formula derived explicitly for the OpenFlow model, depicted
in Fig. 1(b), as highlighted in [1].

To this end it needs to be highlighted that a packet arriving at the switch in the data plane of the
OpenFlow network is confronted with two conditions. If there is already a flow entry installed in
the switch then the packet is forwarded as such after spending time T1 otherwise it goes to the
controller, spends time Tc then returns back to the same switch for packet matching where it
spends time T1

(2) and is forwarded on the output interface.

So the absolute value of packet sojourn time Wof in an OF-based SDN network where node 1
interacts with the SDN controller c as shown in Fig. 1(b) is given as

Wof=
T1 with probability 1- q1

nf

T1+ Tc+ T1
(2) with probability q1

nf (6)

where T1 and Tc are sojourn times in node 1 and node c respectively, while T1
(2) is the sojourn time

when a packet enters node 1 the second time after visiting the controller.

Eventually, the mean of Wof is given as

E Wof = 1- q1
nf E[T1]+ q1

nf E[T1]+ E[Tc]+ E T1
(2)

= 1+ q1
nf 1

μ1- Γ1
+ q1

nf 1

μc- Γc

(7)

We draft a short proof in Lemma 1 to show that the mean packet sojourn time calculated by the
two methods is indeed the same.

Lemma 1: For the single node case the packet sojourn time calculated in (5) using the standard
Jackson assumption is the same as explicitly calculated using (7).

Proof: By rearranging (7) in terms of traffic loads we have:

E Wof =
1+ q1

nf

Γ1

ρ1

1 - ρ1

+
q1

nf

Γc

ρc

1 - ρc

(8)



International Journal of Computer Networks & Communications (IJCNC) Vol.6, No.6, November 2014

143

Using Γ1 = (1 + q1
nf) λ1 from (2) and Γc = q1

nf λ1 from (3) we obtain E[Wjack], in (5) which proves
the Lemma.

3.2. Distribution of Time Spent by the Packet

In this section we take a step forward by presenting the probability density function (PDF) and the
cumulative density function (CDF) of the time spent by a packet in the node.

Lemma 2: The PDF w1
c(t) and the CDF W1

c(t) of the time spent by a packet in the node 1 are
given respectively as

w1
c(t)= b1

(1)a1e-a1t+b1
(2)

a1(a1t)e-a1t+ d1ace-act (9)

W1
c(t) = P Wof>t = b1

(1)
+ b1

(2)
e-a1t+ b1

(2)(a1t)e-a1t+ d1e-act (10)

where

a1 = μ1 - Γ1, ac = μc - Γc

while

b1
(1)

=1- q1
nf- q1

nf a1ac

(ac- a1)2 , b1
(2)

= q1
nf ac

ac- a1
, d1= q1

nf a1
2

(ac- a1)2

Proof: If we assume that the sojourn times T1 and T1
(2) are independent then the Laplace

transform W1
c(s) = E[e-sWof

] may be written as

W1
c(s)= 1- q1

nf a1

a1+s
+ q1

nf a1

a1+s

2 ac

ac+s
(11)

which can further be written as

W1
c(s)= b1

(1) a1

a1+s
+ b1

(2) a1

a1+s

2

+d1
ac

ac+s
(12)

Inverting the Laplace transform proves the Lemma.

3.3. Finite buffer at the controller: The M/M/1-S case

We relax the assumption of having infinite buffer at the controller. Instead we assume that the
buffer space at the controller is limited to at most S places and the rest remains the same. Let pb

be the probability that the packet is blocked at the controller. For this model (M/M/1-S) the
distribution of the number of packets jc is given as

P jc =
1- ρc

1- ρc
S+1 ρc

jc (13)

Hence pb which is the probability that the buffer is full can be written by replacing jc with S in
(13). Further the mean numbers of packets E[Nc] in the controller is found as [12]



International Journal of Computer Networks & Communications (IJCNC) Vol.6, No.6, November 2014

144

E[Nc] =
ρc

1- ρc
S+1

1- ρc
S+1

1- ρc

- Sρc
S (14)

where the load on the controller ρc is given as ρc = Γc/μc with Γc = q1
jack Γ1 being the traffic

going to the controller.

Finally by applying Little's formula [12], the sojourn time of a packet in controller is calculated as

E[Tc] =
E[Nc]

Γc(1 - pb)
(15)

Applying the rate equivalence detailed earlier and incorporating pb in the balance equation for Γ1

we get q1
jack for the finite buffer case as

q1
jack=

q1
nf

1+ q
1
nf 1- pb

(16)

4. NUMERICAL RESULTS

In order to verify our proposed model we developed a discrete event simulation model to mimic
the queuing behavior in an OF-based SDN. We assume that at the arrival to the node 1, packets
are queued in the data node before being processed. The processing time of data node 1/μ1 is
considered to be exponentially distributed with a mean value of 9.8μs. The value of 9.8 is the
average processing time taken by Pronto 3290 switch for forwarding packets of size 1500 bytes
[1]. We here assume that TCP uses maximum transmission unit (MTU) of 1500 bytes.

At the controller, the number of responses per second are taken to be 4175 as reported in [1] by
using the Cbench tool [10]. Hence this is parameterized as 1/μc = 240μs in the model.

To enhance confidence in the simulation result, five replications for each value were run and the
normally distributed 95% confidence interval is incorporated in the plots.

We first highlight in Fig. 3 that our proposed model provides a fix to the results reported by [1].
To this end we first plot the Simulation curve from [1] as a reference. On top of it we plot the
analytical curves; Analytical [1] and Modified Jackson Model, obtained using the model in [1]
and our proposed Jackson model, respectively.



International Journal of Computer Networks & Communications (IJCNC) Vol.6, No.6, November 2014

145

Figure 3: Comparing Modified Jackson Model to Results from [1]

It can be seen that the model proposed by [1] performs very well for small loads (q1
nf=0.2).

However in the cases when there is a large amount of query traffic coming to the controller due to
unknown flows the model in [1] falls short. In such cases the proposed modification to the
Jackson model is quite accurate as seen for the extreme case of q1

nf=1.0.

Figure 4: Dimensioning Network Throughput

In Fig. 4, the effect of q1
nf on network throughput is studied where the network throughput is

defined as the amount of traffic λ1 which can be injected into the OF-based SDN for a given delay
guarantee. In this case the delay guarantee is the average packet sojourn time. This plot also
highlights how the proposed model can be used to dimension the network if packet sojourn time
is considered as the design parameter. A striking feature of this plot is that the network



International Journal of Computer Networks & Communications (IJCNC) Vol.6, No.6, November 2014

146

throughput saturates after reaching a certain value of packet sojourn time. Subsequently, it can be
inferred that even if the network is over-loaded after crossing a certain traffic threshold, the result
will be just increased packet sojourn time without further enhancing the network throughput.
Similarly, it is also observed that the critical value for packet sojourn time remains almost the
same for all the values of q1

nf but the resulting network throughput for each of them is quite
different.

In Fig. 5 a fundamental performance plot is shown in which packet sojourn time is plotted against
the controller load ρc for differing values of the controller service time μc with q1

nf constant at 0.5.
Although the plot is mainly for evaluating performance, it can also play a role in designing a
network with controller of known average service time and giving guarantees on packet sojourn
time by keeping the controller load at a certain level.

In Fig. 6, the plot shows the probability that packet sojourn time ≤ 0.5 ms for varying values of
controller load ρc and for different q1

nf values. The plot can be used to determine the maximum
load that the controller should reach before its performance is compromised. The plot in Fig. 6 is
pilot and similar plots for different values of packet sojourn time can be obtained depending upon
the requirements.

Figure 5: Effect of the controller service rate μc



International Journal of Computer Networks & Communications (IJCNC) Vol.6, No.6, November 2014

147

(a) Node is Bottleneck (b) Node/Controller is Bottleneck

(c) Controller is Bottleneck

Figure 6: CCDF of packet sojourn time as a function of load on controller

Figure 7: Bottleneck: the Controller or the Data Node?

Finally in Fig. 7 we plot the load on both the switch and the controller against q1
nf for different

values of mean controller service rate μc. By doing so, the sensitivity of the load on the switch and
the controller for varying values of q1

nf are inferred. Furthermore this plot can also be helpful in
determining the bottleneck node for different network settings. Hence, for a specific value of
controller service time, it can be determined by using Fig. 7 that which node is actually service
bottleneck and should be selected intelligently. For example for the average controller service



International Journal of Computer Networks & Communications (IJCNC) Vol.6, No.6, November 2014

148

(b) Multi-node OpenFlow Model

times (μc) of 31μs, the switch is the bottle neck while for 5.3ms it is the controller. However for
the case when the mean service time of the controller is 240μs, the switch is the bottleneck for
approximately q1

nf ≤ 0.04 while it is the controller when q1
nf > 0.04.

It needs to be emphasized that blocking probability pb was zero for the setup which we had for the
simulation and infinitesimal small for the analytical model.

5. THE MULTI-NODE CASE

In a real life SDN deployment, an SDN controller is responsible for more than one node in the
data plane. In this section we highlight how the proposed model can be used to model this
scenario. To this end we take a toy example in which we only have two nodes in the data plane as
shown in Fig. 8. We define q2

jack and q2
nf for node 2 similar to q1

jack and q1
nf defined earlier for

node 1.

Figure 8: Modeling more than one node in the data plane

In order to leverage the Jackson model in Fig. 8(a) for modeling the OF-based SDNs in Fig. 8(b),
the probabilities q2

jack and q1
jack need to be adjusted. This is accomplished by forcing the rates at

all the nodes in both the models to be the same as

For node 1: λ1 1+q1
nf = Γ1, q1

nfλ1 = q1
jackΓ1 (17)

For node 2: λ1+λ2 1+q2
nf = Γ2, q2

nfλ2 = q2
jackΓ2 (18)

Solving (17) we get q1
jack same as (4) while by solving (18) we have q1

jack as

q2
jack =

q2
nf λ2

λ1+ λ2 (1+ q2
nf)

(19)

We can then use the modified q1
jack and q2

jack to derive the appropriate performance metrics such
as packet sojourn time using existing queuing theory results [12] similar to the single node case.

6. CONCLUSION

In this work we have proposed an analytical model for an OpenFlow enabled SDN based on
Jackson network. We have shown that the model is accurate even for the case when the
probability of new flows is quite large. The applicability of the model is determined by
establishing two performance measures, the average packet sojourn time and the distribution of
time spent by a packet in the network, by using the proposed model. Secondly we showed by a



International Journal of Computer Networks & Communications (IJCNC) Vol.6, No.6, November 2014

149

toy example that the model can be readily extended to more than one switch in the data plane.
Conclusively it is noted, and can be safely stated, that the model proposed in this paper caters for
realistic OpenFlow-based SDNs and this argument has readily been validated in this paper.

Furthermore, the effects of key parameters in an SDN network are studied which include the time
required by the controller to process a request, amount of traffic going to the controller, average
time spent by a packet in a network and the network throughput.

There is more than one direction that the work presented in this paper can be taken forth. First of
all, the work presented and validated for a single node can be extended to larger and more
realistic topological scenarios, such as fat-tree topology. Secondly, the model in this work is
based on Markovian arrival and service processes which can be generalized and more realistic
distributions or traces can be used in modeling. This can be supplemented with simulations for
validation and verification of the model. Also, a test-bed study for verifying our model can be
performed which will enhance the confidence in the proposed model.

REFERENCES

[1] Jarschel, Michael & Oechsner, Simon & Schlosser, Daniel & Pries, Rastin & Goll, Sebastian &
Tran-Gia, Phuoc (2011) “Modeling and Performance Evaluation of an OpenFlow Architecture”,
Proceedings of the 23rd International Teletraffic Congress (ITC ’11), pp1-7.

[2] Hoelzle, Urs (2012) “Opening Address: 2012 Open Network Summit”, [Online] Available:
http://www.opennetsummit.org/archives/apr12/hoelzle-tue-openflow.pdf, Date Retrieved:
08/08/2014.

[3] ONF, Open Networking Foundation, [Online] Available: https://www.opennetworking.org.
[4] Bozakov, Zdravko & Rizk, Amr (2013) “Taming SDN Controllers in Heterogeneous Hardware

Environments”, 2nd IEEE European Workshop on Software-Defined Networks (EWSDN).
[5] Azodolmolky, Siamak & Nejabati, Reza & Pazouki, Maryam & Simeonidou, Dimitra (2013) “An

Analytical Model for Software Defined Networking: A Network Calculus-based Approach”, IEEE
Globecom.

[6] Ciucu, Florin & Schmitt, Jens (2012) “Perspectives on Network Calculus: No Free Lunch, but Still
Good Value”, SIGCOMM Computer Communication Reviews, vol. 42, no. 4, pp 311-322.

[7] Naous, Jad & Erickson, David & Covington, G. Adam & Appenzeller, Guido & McKeown, Nick
(2008) “Implementing an OpenFlow Switch on the NetFPGA Platform”, Proceedings of the 4th
ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS
’08), pp 1-9.

[8] Bianco, Andrea & Birke, Robert & Giraudo, Luca & Palacin, Manuel (2010) “OpenFlow
Switching: Data Plane Performance”, IEEE International Conference on Communications (ICC)
2010, pp 1-5.

[9] Khan, Asif & Dave, Nirav (2013) “Enabling Hardware Exploration in Software-Defined
Networking: A Flexible, Portable OpenFlow Switch”, IEEE 21st Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM), 2013.

[10] Sherwood, Rob “Cbench (Controller benchmarker)”, [Online] Available:
http://archive.openflow.org/wk/index.php/Oflops, Date Retrieved: 13/03/2014.

[11] Mahmood, Kashif & Chilwan, Ameen & Østerbø, Olav N. & Jarschel, Michael (2014) “On the
Modeling of OpenFlow-based SDNs: The Single Node Case”, Proceedings of the Sixth
International Conference on Networks and Communications (NeCOM 2014), CS & IT-CSCP
2014, vol. 4, pp 207-214, [Online] Available: http://airccj.org/CSCP/vol4/csit42920.pdf.

[12] Jackson, James R. (1957) “Networks of Waiting Lines”, Operations Research, vol. 5, no. 4,     pp
518-521.

http://www.opennetsummit.org/archives/apr12/hoelzle-tue-openflow.pdf
www.opennetworking.org
http://archive.openflow.org/wk/index.php/
http://airccj.org/CSCP/vol4/csit42920.pdf


International Journal of Computer Networks & Communications (IJCNC) Vol.6, No.6, November 2014

150

AUTHORS

Ameen Chilwan is currently pursuing his PhD in Telematics at the Norwegian University
of Science and Technology (NTNU) from where he did his MSc too in 2011. Previously, he
received BSc in Telecommunications Engineering from the University of Dar es Salaam
(UDSM). His current work focuses on providing network infrastructure with guaranteed
delays for distributed media plays. His research interests also include modelling and
performance analysis of communication systems, dependability modelling, buffer
management, real-time internet, cloud computing and SDNs.

Kashif Mahmood is a Research Scientist at Telenor Research in Norway. He received his
MS in Electronics from Ghulam Ishaq Khan Institute (GIKI), and PhD degree in
Telematics from Norwegian university of science and technology (NTNU), Norway.
Kashif is a recipient of the “Youth Award in Science and Technology” by the government
of Pakistan. His work on radio wave propagation modelling using semi deterministic
approach was awarded the best paper presentation award in ISAP 2007 while the work on
cross layer modelling of CDMA networks won the best student paper award in ICON 2011.His research
interests include cross layer modelling of communication networks, NFV and SDN, scheduling algorithms,
traffic modelling and M2M.

Olav N. Østerbø received his MSc in Applied Mathematics from the University of Bergen
in 1980 and his PhD from the Norwegian University of Science and Technology in 2004.
He joined Telenor in 1980 and has more than 30 years of experience in telecom research.
Activities in recent years have been related to QoS and performance analysis. Current
research topics include traffic modelling, analysis of interference in radio networks,
scheduling, traffic differentiation and M2M.

Michael Jarchel is working as a research engineer in the area of Software Defined
Networking at Nokia in Munich, Germany. He finished his Ph.D. thesis, titled "An
Assessment of Applications and Performance Analysis of Software Defined Networking",
at the University of Würzburg in 2014. His main research interests are in the applicability
of SDN and NFV concepts to next generation mobile networks.


