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ABSTRACT 
 
One critical issue in designing and managing a wireless sensor network is how to save the energy consumption 
of the sensors in order to maximize network lifetime under the constraint of full coverage of the monitored 
targets.  In this paper, we adopt the common approach of creating disjoint sensor covers to prolong network 
lifetime.  The typical goal used in the literature is to maximize the number of covers without consideration of 
the energy levels of the sensors.  We argue that the network lifetime can be extended by maximizing the total 
bottleneck energy of the created covers.  We formally define the problem of maximizing the total bottleneck 
energy of the covers, present for the first time an integer programming formulation of the problem, and develop 
two algorithms to solve large problem instances.  Extensive experimental tests show that the use of  the goal of 
maximizing the total bottleneck energy of the covers creates covers with substantially longer network lifetime 
than the lifetime of the covers created with the goal of maximizing solely the number of covers. 
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1.INTRODUCTION 
 
 

Wireless sensor networks have recently achieved widespread attention because of their common 
applications in military,environment, health, and other commercialareas [1].For instance, one 
recent application involves the planning and design of a sensor network for asset tracking in 
healthcare environments [2] [3].  Two objectives are considered: (i) identify the optimal locations 
of a given number of sensors to maximize the coverage of the assets to be monitored [2] [3], and 
(ii) determine the minimum number of sensors and their locations to achieve a desired level of 
coverage of the assets [3].  The application problem was formulated as a set covering problem 
and solved using commercial/open source optimization solvers [3] and genetic algorithms [2]. 
 
A typical wireless sensor  network is composed of electronic devices, the sensors, which monitor 
targets and collect data about them and transmit itto the sink which acts as the network interface 
to serve external user applications.One significant feature of wireless sensor networks is that 
sensors are usually battery powered, and therefore have limited and commonly irreplaceable 
power supply.  Thus, one issue of common interest in designing and managingawireless sensor 



International Journal of Computer Networks & Communications (IJCNC) Vol.7, No.2, March  2015 

2 
 

network is how to save the overall energy consumption of the sensors in order to maximize the 
lifetime of the network under the constraint of full coverage of the targets being monitored [4] 
[5]. 
 

An adopted strategy to conserve sensor energy is based on an approximate data collection 
approach [6].  This approach attempts to exploit the spatial correlations among the sensor 
readings by selecting a subset of representative sensor nodes (referred to as R-nodes) to report 
their readings to the sink and estimating the readings of the remaining sensors as the readings of 
the corresponding R-nodes [7] [6] [8] [9] [10] [11] [12].  The quality of this approach depends on 
the number of the selected representative nodes and their energy consumption.  Kotidis [8] 
developed a method called snapshot query that constructs the set of R-nodes based on the spatial 
correlations among the one-hop neighboring nodes.  Liu et al. [9] formulated the problem as a 
clique-covering problem that partition the sensor nodes into cliques with similar readings.  It is 
reported in [6] that the clique-covering based method, named EEDC, performs better than the 
snapshot query in term of the number of R-nodes selected.  More recently, Hung et al. [6] viewed 
the problem of selecting R-nodes as an energy-aware set covering problem.  In this problem, 
sensor nodes with higher energy and wider data coverage ranges are selected as the R-nodes for 
approximate data collection.  Hung et al. [6] proposed a centralized algorithm, called DCglobal 
(standing for Data Coverage with global information) to construct the set of R-nodes based on 
available sensor energy and data coverage ranges.  They conducted computational tests that show 
that the algorithm outperforms in general other prior methods such as snapshot query [8], EEDC 
[9] and DomSet [12]. 
 

Anothercommon approach for prolonging network lifetime consists of scheduling sensors to 
switch between active and inactive modes to reduce energy consumption while maintaining full 
coverage of the targets [13] [14].  As explained by Ting and Liao [4], this approach basically 
divides all sensors in the network into disjoint sensor subsets, or sensor covers (or just covers) 
each of which must satisfy the full coverage constraint.  At any time of the network lifespan, only 
one sensor cover is in active mode providing network functionality, and the other sensor covers 
are inactive to save energy.  As soon as any sensor in the active cover depletes its energy, and can 
no longer provide full coverage, one of the inactive sensor covers is selected to become active 
and continue functionality.  Research studies [13] [15] show that this approach is effective in 
both reducing energy consumption and extending network lifetime. 
 

The premise has been that identifying a higher number of sensor covers allows the network 
lifetime to be extended further.  The problem of determining the maximum number of covers to 
extend network lifetime has been modeled as the SET K-COVER problem by Slijepcevic and 
Potkonjak [16].  Several algorithms have been proposed to solve the SET K-COVER problem.   
 
First, Slijepcevic and Potkonjak [16] proposed a heuristic to solve the problem, called the Most 
Constrained Minimally Constraining Covering heuristic (MCMCC).  The basic idea of the 
heuristic is to minimize the coverage of sparsely covered areas within one cover. The heuristic is 
fast, but often produces unsatisfactory results [4].  Cardei and Due [17] developed the Maximum 
Covers using Mixed Integer Programming (MC-MIP) heuristic, which computes the number of 
covers by first transforming the SET K-COVER problem into an integer maximum flow problem, 
and second constructing the covers from the solution to the flow problem. The MC-MIP heuristic 
can require an exhaustive search of the solution space to find the optimal solution.   
Hence, MC-MIP is impractical in large-scale applications due to its exponential time complexity. 
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Lai et al. [18] developed a genetic algorithm (called iGA) to solve the SET K-COVER problem. 
The authors reported computational results that show  that this algorithm outperforms MCMCC 
[16]  in terms of the number of covers and speed.  Recently, Ting and Liao [4] developed a 
memetic algorithm which uses the Darwinian evolutionary scheme and Lamarckian local 
enhancement to search for optima given the considerations of global exploration and local 
exploitation.  They reported results of computational tests which show that the algorithm 
outperforms several heuristicssuch as MCMCC [16] and iGA [18]. 
 

Other works have studied other variations of the problem of maximizing network lifetime [19] 
[20] [7] [21] [1] [22].  Cerulli et al. [20] addressed the problem of determining the activation 
times of sensors with adjustable sensing ranges to cover a set of targets.  The authors presented 
some heuristic approaches and an exact method based on the column generation technique to 
solve the problem.  They reported results of computational tests that show the advantage of using 
adjustable range sensors over fixed range sensors.  Rossi et al. [22] incorporated a genetic 
algorithm within a column generation scheme to solve the same problem faster.  Behdani et al.  
 
[19] considered a version of the problem where the sink node is mobile and the transmission of 
sensor readings to the sink can be delayed.  Li and Aneja [1] addressed a broadcasting problem 
which involves determining a transmission route between a specified source node and every other 
node in the network in order to minimize total energy consumption.  Lai et al. [21] studied the 
problem of arranging sensor cluster sizes and transmission ranges of sensor nodes in order to 
balance energy consumption among clusters and consequently prolong network lifetime. 
 

A close analysis of the literature dealing with the SET K-COVER problem as the basis for 
prolonging the lifetime of the wireless sensor network reveals that a key aspect of the problem 
has been ignored, namely the energy levels of the sensors.  Indeed, two factors have direct impact 
on the lifetime of the network: (i) the number of covers in the network, and (ii) the bottleneck 
energy of each cover.  The bottleneck energy of a cover is the minimum energy level among the 
energy levels of all sensors in the cover.  Once the sensor with this bottleneck energy runs out of 
energy, the cover looses full coverage of the target area regardless of the energy levels of the 
other sensors. 
 
The example [16] shown in fig. 1 illustrates the importance of incorporating the sensor energy in 
solving the SET K-COVER problem.  There are 6 sensors and 5 targets in the network.  If we 
solve the SET K-COVER problem with the goal of maximizing the number of covers, then the 
optimal solution consists of three covers C1={3,5}, C2={1,4}, and C3={2,6}.  The total bottleneck 
energy of the covers is 10 (i.e., 2+6+2).  On the other hand, if we solve the SET K-COVER 
problem with the goal of maximizing the total bottleneck energy of the covers, then the optimal 
solution consists of two covers C1={2,3} and C2={1,4}.  The total bottleneck energy of the 
solution is 13 (i.e., 7+6}.  Hence, by explicitly considering the sensor energy in the SET K-
COVER problem, the network lifetime can be further extended. 
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Sensor coverages and energy levels for the network example
Sensor Energy Coverage

1 8 1,2,3,4
2 8 1,2,5
3 7 2,3,4,5
4 6 2,3,5
5 2 1,3,5
6 2 3,4,5

 Set of covers based on maximinzing the number of covers
Cover Sensors

1 3,5
2 1,4
3 2,6

 Set of covers based on maximinzing the bottleneck energy of covers
Cover Sensors

1 2,3
2 1,4

Fig. 1. Importance of considering sensor energy in the set k-cover problem  
 
Since the common goal in designing and managing a wireless sensor network is to extend the 
network lifetime, we argue that the selection of the covers should take into consideration not only 
the target coverage of the sensors, but also their energy levels.  Indeed, if a cover with lower 
bottleneck energy is constructed, the network lifetime will be reduced.  Conversely, it is likely 
that including only sensors with higher energy levels may increase the number of sensors 
required to form a cover because sensors with more energy may have smaller target coverage 
ranges.  Therefore, we formulate the problem of maximizing the network lifetime as an energy-
aware SET K-COVER problem, which is an extension of the well-known SET K-COVER 
problem. 
 

Three aspects of the problem of extending the lifetime of a wireless sensor network stand out 
when reviewing existing literature: (i) as can be seen from the body of recent work, the network 
lifetime maximization problem remains a very important one, (ii) the formulation of the problem 
as a SET K-COVER problem is incomplete as it disregards the energy levels of the sensors, and 
(iii) there has been no attempt to formally define and formulate the problem mathematically.   
 
This paper fills this gap in the literature.  We frame the problem of extending the network 
lifetime as an energy-aware SET K-COVER problem, present a formal definition of the problem 
and develop for the first time, to the best of our knowledge, an integer programming formulation 
of the problem.  While this formulation can be used to solve optimally only relatively small 
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instances of the problem, it can form the basis of solution algorithms in future research studies.  
We also present an effective heuristic algorithm to solve the problem.  Results of extensive 
computational tests show that our algorithm is very robust and extends the network lifetime 
longer. 
 

2.   PROBLEM DEFINITION AND INTEGER PROGRAMMING FORMULATION 
 

A wireless sensor network is composed of a set of sensors (S) and a set of targets (T).  A target is 
said to be covered by a sensor if it lies within the sensing range of the sensor.  Each sensor ݅ ∈ ܵ 
is characterized by its energy level ei and its target coverage.  The SET K-COVER problem 
consists of finding the set of disjoint covers for T that prolongs the network lifetime the most.  A 
cover ܥ௜for T is a subset of sensors, ܥ௜ ⊂ ܵ, such that every target of T is covered by at least one 
sensor in ܥ௜.  The covers have to be disjoint, that is, for any two covers ܥ௜ and ܥ௝ ௜ܥ , ∩ ௝ܥ = ∅.   
 
Two features of this set cover have direct impact on the network lifetime: (i) the bottleneck 
energy of each cover, and (ii) the number of the sensors in each cover.  Obviously, (i) a cover 
should have a large level of bottleneck energy because as soon as the sensor with this bottleneck 
energy runs out of energy, the cover looses full coverage of the targets and (ii) the number of 
sensors in each cover should be minimized to create the maximum number of covers in order to 
prolong the overall network lifetime.  The first priority to prolong network lifetime is to 
maximize the energy levels of the sensors in the covers and the second priority is to minimize the 
number of sensors in each cover.  More precisely, the first priority is to maximize the bottleneck 
energy of each cover.  This bottleneck energy of a cover is the minimum energy level among the 
energy levels of all sensors included in the cover.  The problem of maximizing lifetime of a 
wireless sensor network can now be formulated as follows. 
 

Parameters  
 
S the set of sensors in the network 
T the set of targets in the network 
M the set of covers in the network 
௝݁ energy of sensor ݆ ∈ ܵ 

ܽ௜௝ = ቄ1					݂݆݅ݎ݋ݏ݊݁ݏ ∈ ݅݁݀݋݊ݐ݁݃ݎܽݐݏݎ݁ݒ݋ܿܵ ∈ ܶ
݁ݏ݅ݓݎℎ݁ݐ݋				0

 
 large positive number ߙ
 large positive number ߚ
 

Decision variables  
 
ܼ௞ = ቄ1			݂݅	ݐ݁ݏ	ݎ݁ݒ݋ܿ	݇ ∈ ݀݁ݐܽ݁ݎܿݏ݅ܯ

݁ݏ݅ݓݎℎ݁ݐ݋			0
 

௝ܻ௞ = ቄ1			݂݆݅ݎ݋ݏ݊݁ݏ ∈ ݇	ݎ݁ݒ݋ܿ	ݐ݁ݏ	݊݅	݀݁݀ݑ݈ܿ݊݅ݏ݅ܵ ∈ ܯ
݁ݏ݅ݓݎℎ݁ݐ݋			0

 

௜ܺ௝௞ = ቄ1			݂݅݅ݐ݁݃ݎܽݐ ∈ ݇	ݎ݁ݒ݋ܿ	ݐ݁ݏ	݂݋	݆	ݎ݋ݏ݊݁ݏ	ݕܾ݀݁ݎ݁ݒ݋ܿݏ݅ܶ
݁ݏ݅ݓݎℎ݁ݐ݋			0

 

௞ܸ = Bottleneck	energy	of	set	cover	݇ ∈  ܯ
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ProblemMNL: 
 
෍ߙݔܽܯ ௞ܸ

௞∈ெ

−෍෍ ௝ܻ௞
௝∈்௞∈்

																																																																																																								(1) 

 
 

Subject to 
 
෍ܽ௜௝ ௜ܺ௝௞
௝∈ௌ

= ܼ௞∀݅ ∈ ܶ,݇ ∈  (2)																																																																																											ܯ

 
෍ ௝ܻ௞
௞∈ெ

≤ 1																																															∀݆ ∈ ܵ																																																																						(3) 

 
௜ܺ௝௞ ≤ ௝ܻ௞∀݅ ∈ ܶ, ݆ ∈ ܵ, ݇ ∈ ௜௝ܽ	ݐℎܽݐ	ℎܿݑݏ		ܯ

= 1																																																																																																																							(4) 
 
௞ܸ ≤ ௝݁ ௝ܻ௞ + ൫1ߚ − ௝ܻ௞൯∀݆ ∈ ܵ, ݇

∈  (5)																																																																																																																							ܯ
 
௞ܸ ≤ ݆∀௞ܼߚ ∈ ܵ,݇

∈  (6)																																																																																																																							ܯ
 
ܼ௞, ௞ܸ , ௝ܻ௞ , ௜ܺ௝௞ ݅∀ݕݎܾܽ݊݅	 ∈ ܶ, ݆ ∈ ܵ, ݇ ∈  (7)																																																																									ܯ

 
 

The objective function maximizes the bottleneck energies of the selected covers while 
minimizing the number of sensors used.   Constraint set (2) ensures that a target is covered by 
sensor j of cover k only if cover k is created.  Constraint set (3) ensures that a sensor can be 
included in at most one cover.  Constraint set (4) requires that if a target i is covered by a sensor j 
of cover k, then sensor j should be included in cover k.  Constraint set (5) defines the bottleneck 
energy ௞ܸ of the covers; if a sensor j is included in cover k, then its energy should be greater than 
or equal to the bottleneck energy ௞ܸ and if sensor j is not included in cover k, then its energy is 
not considered in cover k.  Constraint set (6) allows the bottleneck energy ௞ܸ of the cover k to be 
positive only if cover k is created.  Constraint set (7) requires that the decision variables be 
binary.  Note that ߙ and ߚ are defined as generic large numbers.  However, any value of ߙ > |ܵ| 
is valid.  Similarly, any value of ߚ >  .௜∈ௌ݁௜ is acceptableݔܽ݉
 

3.  SOLUTION ALGORITHMS 
 

The Best-Sensor-Fit algorithm, as its name indicates, constructs the set of covers in a greedy 
fashion so as to maximize the total bottleneck energy of the covers.  For each cover to construct, 
it is important to select the fewest sensors with the highest bottleneck energy in order to cover all 
targets in the network.  Each cover is initially empty, and then sensors are added consecutively 
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until all targets in the network are covered, while simultaneously maximizing the bottleneck 
energy of the selected sensors and minimizing their number.  The algorithm uses a quantity 
called, score(j), to guide the search for the "winner" sensor to include in the current cover.  The  
quantity, score(j), is computed for each sensor (not included in any cover already) as follows:  
(݆)݁ݎ݋ܿݏ = ௝݁ ∑ ܽ௜௝௜∈ ෨் , where	 ෨ܶ 	is	the	set	of	targets	which	are	not	covered	yet.  Here, the 
quantity score(i) is used to identify the next sensor to include in the current cover under 
construction.  It is the sensor with the highest score; that is, the sensor that has the best 
combination of energy and target coverage range.   
 
We let ub be an upper bound on the number of covers K.  ub is determined in [18] as ܾݑ =
݉݅݊௧∈்|ܵ(ݐ)|, where S(t) is the set of sensors that cover target t and |.| denotes the cardinality.  
 
The Best-Sensor-Fit algorithm is outlined below. 
 
Input: T the set of targets and S the set of sensor nodes with target coverages and energy levels. 
Output: M the set of covers 
 
Step 1: Initialize 

 Each cover ܥ௞ = ∅∀݇ ∈ {1, …  {ܾݑ,
 set of covers ܯ = ∅ 
 Set of non-selected sensors: ሚܵ = ܵ 
 done=false 
 k=1 

Step 2: Generate set of covers 
      While ݇ ≤   and done=false do ܾݑ

 set of covered targets:  ܶ௖ = ∅; set uncovered targets: ෨ܶ = ܶ 
 whileܶ௖ ≠ ܶand	done = falseܗ܌ 

(݆)݁ݎ݋ܿݏ܍ܜ܉ܔܝ܋ܔ܉۱ = ௝݁෍ܽ௜௝
௜∈ ෨்

∀݆ ∈ ሚܵ 

Let݆∗ = argmax௝∈ ෨்{݁ݎ݋ܿݏ(݆) > 0} 
ifj* exists then 
Updateܥ௞ ≔ ௞ܥ ∪ {݆∗} 
Update ሚܵ ≔ ሚܵ\{݆∗} 
for each target node ݅ ∈ ෨ܶ  such that ܽ௜௝∗ = 1 do 
Updateܶ௖ ≔ ܶ௖ ∪ {݅}; ෨ܶ ≔ ෨ܶ\{݅} 
end for 
else 
  done=true 
end if 

  end while 
  if done=false then 
  Update ܯ = ܯ ∪ {݇} 
  Update k:=k+1 
  end if 
 end while 
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Basically, the algorithm works as follows. The covers are constructed one at a time.  Initially, 
none of the targets is covered (i.e., ܶ௖ = ∅).  Each cover is initially empty (i.e., ܥ௞ = ∅) and then 
sensors are iteratively added to the current cover under construction until either(i) all targets are 
covered or (ii) none of the un-used sensors can cover the remaining targets.  In the first case, a 
cover is constructed and in the second case, it is not and the algorithm terminates.  
 

Greedy heuristics can get trapped in a local optimum.  To overcome this problem, we add a 
randomization feature to our Best-Sensor-Fit algorithm similar to the one used in [24] to solve the 
set covering problem.  The idea of randomization is to slightly perturb the values of score(j)of the 
sensors evaluated in steps 2 as follows: ݁ݎ݋ܿݏ(݆) = (1 + ௝)݁௝ߝ ∑ ܽ௜௝௜∈ ෨் ∀݆ ∈ ሚܵ , where ߝ௝  is a 
small random number.  In our computational tests, ߝ௝  is drawn from the uniform random 
distribution U[0.05, 0.15].  This perturbation technique assumes implicitly that the optimal 
solution is not sensitive to small variations of the values of score(j) which are computed in terms 
of the values of the problem parameters ej's and aij’s.  The whole procedure made of steps 1 and 2 
has to be repeated a number of times, set to 500 in this study.  The hope of the technique is to 
diversify the search space, potentially leading to better solutions.  As noted in [24], the 
perturbation technique has been incorporated successfully in local search methods to solve other 
complex problems.  
 

The Randomized Best-Sensor-Fit Algorithm (RBSF) to solve the problem of maximizing 
network lifetime (MNL) can now be outlined as follows. 
 
Randomized Best-Sensor-Fit Algorithm (RBSF): 
 
Let F* be the best feasible solution found so far 
 
RepeatP times (P=500 in this study) 
 
Step 1: Initialize 

 Each cover ܥ௞ = ∅∀݇ ∈ {1, …  {ܾݑ,
 set of covers ܯ = ∅ 
 done=false 
 k=1 
 F is the current solution (made of the created covers and their sensors) 

 
Step 2: Generate set of covers 
 While ݇ ≤   and done=false doܾݑ
  set of covered targets:  ܶ௖ = ∅; set uncovered targets: ෨ܶ = ܶ 
  whileܶ௖ ≠ ܶand	done = falseܗ܌ 

(݆)݁ݎ݋ܿݏ܍ܜ܉ܔܝ܋ܔ܉۱ = (1 + ௝)݁௝෍ܽ௜௝ߝ
௜∈ ෨்

∀݆ ∈ ሚܵ 

   Let݆∗ = argmax௝∈ ෨்{݁ݎ݋ܿݏ(݆) > 0} 
   ifj* exists then 
   Updateܥ௞ ≔ ௞ܥ ∪ {݆∗} 
   Update ሚܵ ≔ ሚܵ\{݆∗} 
   for each target node ݅ ∈ ෨ܶ  such that ܽ௜௝∗ = 1 do 
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    Updateܶ௖ ≔ ܶ௖ ∪ {݅}; ෨ܶ ≔ ෨ܶ\{݅} 
   end for 
   else 
    done=true 
   end if 
  end while 
  if done=false then 
   Update k:=k+1 
  end if 
 end while 
 
Step 3:Update best feasible solution 
 If the current solution F is better than F* in term of the objective function, then F*:=F. 
 
End Repeat 
 
Output F* as the best feasible solution and stop. 
 

 

4.PERFORMANCE EVALUATION 
 

Extensive computational testing was conducted on synthesis data sets to evaluate the 
performance of the proposed algorithms for solving the problem of maximizing network lifetime 
(MNL). This section describes the data used for computational testing, discusses the parameters 
used, and analyzes the results. 
 

4.1.Data generation 
 

As in [4], the application scenario is based on static sensor networks.  That is, the communication 
connectivity graphs are given, where a target i is covered by sensor j if the target is located within 
the sensing range of the sensor.  The sensing range (r) of a sensor j is defined as the maximum 
distance between the sensor and a target i for this target to be considered as covered by the 
sensor.   

That is, ܽ௜௝ = ቄ1					݂݅݀݅݁ܿ݊ܽݐݏ(݅, ݆) ≤ ݎ
݁ݏ݅ݓݎℎ݁ݐ݋				0

 
 

The experiments were conducted using networks with varying sizes.  As in [4], we generated 
several groups of networks randomly but systematically to capture a wide range of problem 
structures.  One hundred problem instances from each group with the same structure were 
generated in order to achieve a reasonable level of confidence about the performance of the 
solution procedures on that problem structure.  The numbers of sensors and targets vary between 
50 and 500.  To evaluate the performance of the algorithmsas a result of changes in the problem 
parameters, a total of 6000  problem instances were solved.  Similar to [4], the sensors and targets  
in the network are deployed randomly over a 500 x 500 area.  The energy levels of the sensors 
are generated randomly from the uniform distribution between 100 and 200. 
Two factors ߩ௧ and ߩ௦ [4] are used to characterize the problems instances.  ߩ௧ represents the 
average number of targets covered by a sensor and ߩ௦ represents the average number of sensors 
which cover a target.  The factors ߩ௧ and ߩ௦are computed as follows (where |.| denotes 
cardinality): 
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௧ߩ =
∑ ∑ ܽ௜௝௜∈்௝∈ௌ

|ܵ|
 

 

௦ߩ =
∑ ∑ ܽ௜௝௜∈்௝∈ௌ

|ܶ|
 

 
An upper bound on the number of covers that can be formed is given by [18] [4]: 
 

ܾݑ = ݉݅ ௝݊∈்෍ܽ௜௝
௜∈ௌ

 

 
 

We used performance metrics similar to those adopted by Ting et al. [4] to evaluate the 
performance results, namely the number of covers which are created and the gap between this 
number and the upper bound (ub).  In addition, we report the total bottleneck energy of the 
created covers which determines the network lifetime, and the running time (in seconds) which is 
the time it takes to solve the problem on Windows 7 Intel Core i5-2500 3.3 GHz machine. 
 

4.2.  Computational results with different network design goals 
 

First, we run computational tests to study the effects of the goals of the network design on the 
lifetime of the network.   The first goal is the typical goal adopted in prior studies [4] which is to 
maximize the number of covers in the network with no consideration of sensor energy levels (i.e., 
goal of the classic SET K-COVER problem).  The second goal is the one adopted in our study 
which is to maximize the total bottleneck energy of the covers.  We considered small networks 
with the number of targets varying between 10 and 30 and the number of sensors fixed to 50.   
 
We used the commercial optimization software CPLEX to solve optimally the SET K-COVER 
problem with the first goal.  CPLEX failed to solve this problem with larger networks (i.e., 
networks with more than 30 targets).   In addition, CPLEX failed to solve the problem with the 
second goal using the small networks.  For this reason, we used our Randomized Best-Sensor-Fit 
Algorithm (RBSF) to solve that problem. 
 

Table 1 shows the effects of the goals of the network design on the network lifetime.   Both goals 
generated the optimal number of covers. However, the goal of maximizing the total bottleneck 
energy of the covers produced covers with substantially longer network lifetime than the lifetime 
of the covers produced with the goal of maximizing the number of covers.  Indeed, using the total 
bottleneck energy of the covers as the measure of network lifetime, the computational results 
show that network lifetime using the second goal is on average 14.7% longer than that using the 
first goal.  The outperformance using the second goal is achieved by succeeding in employing a 
higher number of sensors in creating the covers.  Indeed, the covers created based on the second 
goal employed on average 12.4% more sensors than the covers created based on the first goal.  
 
Hence, these results clearly show the merit of using the goal of maximizing the total bottleneck 
energy of the covers to prolong the lifetime of a wireless sensor network. 
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Table 1. Computational results obtained for different network design goals

Goal: maximize number of covers Goal: maximize bott leneck energy

|T | |S | ρ t ρ s ub # of Covers Bottleneck # of Active CPU # of Covers Bottleneck # of Active CPU

Created Energy Sensors Time Created Energy Sensors Time

10 50 5.7 28.6 18 18 2212 36 49 18 2423 40 38

15 50 8.2 27.3 15 15 1873 31 6292 15 2027 38 34

20 50 11.0 27.5 15 15 1836 38 789 15 2012 41 34

25 50 13.3 26.6 15 15 1771 39 1823 15 2121 44 34

30 50 15.3 25.4 11 11 1302 33 2258 11 1646 36 27

 
 

4.3.  Computational results with different sensing ranges 
 

Table 2 show the effects of changes in the sensing range (r) of the sensors.  For a given network, 
we varied the sensing range r from 50 to 500.  We used two network sizes: The smaller networks 
consist of 100 sensors and 100 targets and the larger networks consist of 300 sensors and 500 
targets, this larger size has also been used in [4].  The computational results show that a larger 
sensing range of the sensors results in a larger number of covers created and higher total 
bottleneck energy of those covers, indicating a longer network lifetime.  The results also show 
that the Randomized Best-Sensor-Fit Algorithm (RBSF) outperforms the Best-Sensor-Fit 
Algorithm (BSF) in terms of the number of covers obtained and the total bottleneck energy of the 
covers.  The number of covers obtained using RBSF is on average 1.43% higher than the number 
of covers obtained using BSF.  Similarly, the total bottleneck energy of the covers obtained using 
RBSF is on average 1.36% higher than the total bottleneck energy of the covers obtained using 
BSF.Thus, RBSF produces solutions that extend the network lifetime much longer than those 
produced by BSF.  This outperformance of RBSF over BSF shows the effectiveness of the 
randomization feature embedded in RBSF in prolonging the network lifetime. The statistical 
paired t-tests of the numbers of covers and the total bottleneck energy of the covers obtained 
using the two algorithms confirm the superiority of RBSF over BSF at 99% significance level.   
 
However, this superiority seems to be more significant for the smaller networks. 
 



International Journal of Computer Networks & Communications (IJCNC) Vol.7, No.2, March  2015 

12 
 

T able 2. Computat ional results obtained for different  sensing ranges (r )

BSF algorithm RBSF algorithm

|T | |S | ρ t ρ s ub r # of Covers Bott leneck # of Active CPU # of Covers Bot tleneck # of Active CPU

Created Energy Sensors Created Energy Sensors

100 100 3.1 3.1 0.2 50 0.2 21 5.8 0 0.2 21 5.6 13

100 100 10.4 10.4 2.8 100 2.8 369 39.2 0 2.8 378 40 17

100 100 21.1 21.1 7.8 150 7.4 994 58.8 0 7.8 1074 63 23

100 100 33.8 33.8 12.4 200 12.0 1691 69.2 0 12.4 1768 71.6 30

100 100 47.2 47.2 20.2 250 19.6 2779 79.2 0 20 2872 81.2 40

100 100 60.9 60.9 28.4 300 27.0 3896 82.4 0 28.2 4110 85.8 51

100 100 73.3 73.3 37.6 350 36.8 5400 86.6 0 37.6 5560 88 63

100 100 84.2 84.2 49.2 400 47.2 7051 92.8 0 48.2 7215 93 77

100 100 92.4 92.4 64.8 450 58.0 8752 98.0 0 59.2 8922 98.6 92

100 100 97.3 97.3 80.8 500 70.2 10655 99.0 0 70.6 10713 99 106

500 300 14.6 8.8 1.2 50 1.0 123 51.6 0 1.2 149 62.8 167

500 300 52.2 31.3 9.6 100 9.2 1267 164.0 0 9.6 1320 172.8 171

500 300 106.3 63.8 22.8 150 21.4 3078 202.0 0 22.6 3260 209.4 178

500 300 170.6 102.4 37.2 200 36.8 5491 248.4 0 37.2 5551 252.4 186

500 300 239.4 143.6 61.8 250 59.4 8359 273.8 0 60.6 8574 276.4 194

500 300 307.2 184.3 86.2 300 83.2 11953 274.8 0 84.8 12195 280.8 204

500 300 369.0 221.4 115.2 350 113.0 16523 277.6 0 114.2 16725 279.6 215

500 300 421.9 253.1 151.0 400 144.2 21545 288.4 0 145.8 21765 291.2 234

500 300 462.4 277.4 190.0 450 173.8 26225 297.4 0 175 26396 298.4 265

500 300 486.4 291.9 235.2 500 204.8 31225 299.4 0 206.2 31118 299.6 298

 
 

The results reported in table 2 show also the performance of the two algorithms based on  the 
comparison between the number of covers created and its upper bound (ub).  Based on these 
results, the average gap between the number of covers created using BSF and the upper bound 
(ub) is 4.6% and the average gap between the number of covers created using RBSF and the 
upper bound (ub) is 2.4%.  This is another indication of the good performance of RBSF and to a 
lesser extend BSF. 
 

4.4.  Computational results with different numbers of targets 
 

The second part of the computational study evaluated the performance of the two algorithms 
with different numbers of targets.  As in [4], the study considered two settings for the number 
of sensors and sensing range of each. The first involves networks with 100 sensors and a 
sensing range of r=250.  The second involves networks with 300 sensors and a sensing range 
of r=400.  Table 3 shows the characteristics of the problem instances for different numbers of 
targets, varying from 50 to 500. These characteristics are similar to those observed in [4].   
 
Specifically, varying the number of targets does not affect  ߩ௦, but causes ߩ௧to increase and ub to 
decrease.  The same table shows the effects of changes in the number of targets on the number of 
covers created and their total bottleneck energy.  An increase in the number of targets causes, in 
general, the number of created covers and their total bottleneck energy to decrease.  However, 
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this may not be the case for some problem instances because the algorithms are not exact and 
hence are not guaranteed to generate the optimal solutions.   
 
Indeed, the comparison between the number of covers created and its upper bound (ub) confirms 
the approximate nature of the algorithm. However, this comparison also shows the two 
algorithms are quite effective in generating good solutions to the problem.  Based on the results 
reported in the table, the average gap between the number of covers created using BSF and the 
upper bound (ub) is 3.1% and the average gap between the number of covers created using RBSF 
and the upper bound (ub) is 1.6%.  Again, this is an indication of the good performance of RBSF 
and to a lesser extend BSF.  In addition, one should keep in my mind  that ub is only an upper 
bound on the optimal number of covers and there is no measure that can indicate exactly how 
close or far these two values are.The statistical paired t-tests of the numbers of covers and the 
total bottleneck energy of the covers obtained using the two algorithms confirm the superiority of 
RBSF over BSF at 99% significance level.  However, this superiority seems to be more 
significant for the smaller networks. 
 

Table 3. Computational results obtained for different numbers of targets (|T |)

BSF algorithm RBSF algorithm

|T | |S | ρ t ρ s ub # of Covers Bottleneck # of Act ive CPU # of Covers Bott leneck # of Active CPU

Created Energy Sensors Time Created Energy Sensors T ime

50 100 24.2 48.4 23.4 22.6 3212 80.0 0 23.2 3330 81.8 44

100 100 47.2 47.2 20.2 19.6 2779 79.2 0 20.0 2872 81.2 40

150 100 70.4 46.9 18.4 17.8 2488 77.8 0 18.2 2577 79.4 38

200 100 93.3 46.7 17.2 17.2 2381 76.4 0 17.2 2421 77.0 37

250 100 116.6 46.6 17.2 17.0 2346 79.0 0 17.2 2428 79.2 37

300 100 140.7 46.9 17.2 16.4 2262 75.6 0 17.2 2377 78.0 36

350 100 164.6 47.0 17.2 17.0 2370 78.0 0 17.2 2452 78.4 36

400 100 188.9 47.2 17.2 16.8 2314 79.8 0 17.2 2397 80.2 36

450 100 212.1 47.1 17.2 16.8 2336 79.6 0 17.2 2421 80.2 37

500 100 235.9 47.2 17.2 17.0 2334 79.6 0 17.2 2389 80.2 37

50 300 42.1 252.4 167.2 159.6 23391 288.6 0 161.2 23654 292.2 230

100 300 84.6 253.7 160.0 154.2 22533 287.4 0 156.2 22786 292.0 223

150 300 126.7 253.5 155.6 149.6 21957 289.4 0 151.8 22262 292.2 218

200 300 169.6 254.4 155.2 151.2 22137 290.4 0 152.8 22385 293.2 219

250 300 211.4 253.7 155.0 148.8 21915 290.4 0 150.2 22120 293.4 216

300 300 253.6 253.6 155.0 148.8 21774 290.8 0 150.8 22053 293.8 217

350 300 295.6 253.4 153.0 146.8 21428 287.6 0 148.4 21644 289.8 213

400 300 337.7 253.3 152.6 145.4 21265 288.6 0 146.8 21499 289.4 215

450 300 379.7 253.1 152.6 145.4 21524 285.4 0 147.4 21788 288.4 222

500 300 421.9 253.1 151.0 144.2 21545 288.4 0 145.8 21765 291.2 237
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4.5.  Computational results with different numbers of sensors 
 

Table 4 shows the effects of changes in the number of sensors.  As in [4], the study considered 
two settings for the number of targets and sensing range of each. The first involves networks with 
100 targets and a sensing range of r=250.  The second involves networks with 500 targets and a 
sensing range of r=400.  Table 4 shows the characteristics of the problem instances for different 
numbers of sensors, varying from 50 to 500. These characteristics are similar to those observed in 
[4].  Note that although ߩ௧ remains almost unchanged, ߩ௦ and ub increase with the number of 
sensors. 
 

The table shows the effects of changes in the number of sensors on the number of created covers 
and their total bottleneck energy.  An increase in the number of sensors in the networks results in 
the increase in the number of covers created and their total bottleneck energy.  Table 4 shows that 
RBSF outperforms BSF in terms of the obtained number of covers and the total bottleneck 
energy.  Indeed, the number of covers obtained using RBSF is on average 1.53% higher than the 
number of covers obtained using BSF.  Similarly, the total bottleneck energy of the covers 
obtained using RBSF is on average 1.95% higher than the total bottleneck energy of the covers 
obtained using BSF.  Thus, RBSF produces solutions that extend the network lifetime much 
longer than those produced by BSF.  The statistical paired t-tests of the numbers of covers and 
the total bottleneck energy of the covers obtained using the two algorithms confirms the 
superiority of RBSF over BSF at 99% significance level.  However, this superiority seems to be 
more significant for the smaller networks. 
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Table 4. Computational results obtained for different numbers of sensors (|S |)

BSF algorithm RBSF algorithm

|T | |S | ρ t ρ s ub # of Covers Bottleneck # of Active CPU # of Covers Bottleneck # of Active CPU

Created Energy Sensors T ime Created Energy Sensors T ime

100 50 47.1 23.6 8.8 8.4 1209 33.4 0 8.6 1254 34.6 25

100 100 47.2 47.2 20.2 19.6 2779 79.2 0 20.0 2872 81.2 40

100 150 47.3 70.9 28.4 28.2 3931 119.4 0 28.4 4027 119.6 52

100 200 47.1 94.2 39.0 38.4 5404 159.0 0 39.0 5542 161.4 66

100 250 47.2 118.1 52.0 51.4 7103 211.2 0 52.0 7253 212.6 84

100 300 47.9 143.6 67.2 64.8 9008 266.4 0 67.2 9351 272.4 103

100 350 48.5 169.9 77.2 75.6 10642 303.6 0 77.0 10908 307.0 117

100 400 49.0 196.0 92.2 90.2 12670 353.4 0 91.4 12881 356.8 137

100 450 48.3 217.5 106.0 102.0 14142 408.8 0 102.6 14301 412.0 152

100 500 48.0 239.8 116.8 114.8 16029 456.0 0 116.0 16240 461.4 170

500 50 418.4 41.8 20.4 19.4 2794 43.8 0 19.8 2853 43.6 40

500 100 419.3 83.9 43.0 41.4 6084 89.0 0 42.6 6277 90.2 70

500 150 422.4 126.7 70.2 68.8 10124 138.8 0 70.2 10323 140.6 107

500 200 421.9 168.8 98.2 94.0 13693 187.4 0 95.4 13917 189.4 141

500 250 422.0 211.0 126.0 121.8 18016 241.2 0 123.4 18265 242.8 191

500 300 421.9 253.1 151.0 144.2 21545 288.4 0 145.8 21765 291.2 235

500 350 422.6 295.8 176.6 170.8 25295 338.4 0 172.8 25596 341.6 301

500 400 423.5 338.8 204.2 196.8 29041 386.8 1 198.6 29284 390.0 399

500 450 423.0 380.7 233.8 225.2 32976 440.6 1 226.6 33175 442.4 500

500 500 423.3 423.3 261.2 250.6 36666 485.8 1 252.2 36861 489.8 604

 
 

The results reported in table 4 show also the performance of the two algorithms based on  the 
comparison between the number of created covers and its upper bound (ub).  Based on the 
results, the average gap between the number of covers created using BSF and the upper bound 
(ub) is 3.1% and the average gap between the number of covers created using RBSF and the 
upper bound (ub) is 1.6%.  This is an indication for the good performance of RBSF and to a 
lesser extend BSF. 
 

5.  CONCLUSION 
 

The problem of maximizing lifetime of a wireless sensor network remains an important problem.  
In this paper, we adopt the common approach of creating disjoint sensor covers to prolong 
network lifetime.  Based on this approach, at any time of the network lifespan, only one cover is 
in active mode providing network functionality, and the other sensor covers are inactive to save 
energy.  The typical goal used in the literature is to maximize the number of covers with no 
consideration of the energy levels of the sensors.  We argue that the network lifetime can be 
extended further by maximizing the total bottleneck energy of the created covers because once 
the sensor with the bottleneck energy in a cover runs out of energy, the cover looses full coverage 
of the target area regardless of the energy levels of the other sensors.  In this paper, the 
maximization of the lifetime of a wireless sensor network is guided by two priorities: The first is 
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to maximize the total bottleneck energy of the covers and the second is to minimize the number 
of sensors included in the covers.   The combination of these guiding priorities would create as 
many covers as possible with the maximum overall bottleneck energy of the covers, resulting in a 
longer network lifetime. 
 

We formally defined the problem of maximizing the total bottleneck energy of the covers and 
presented for the first time an integer programming formulation of the problem.  Because of the 
NP-hard nature of the problem, the formulation can be used to solve only small instances of the 
problem optimally.  Consequently, we have developed two algorithms to solve the problem: (i) 
the Best-Sensor-Fit algorithm (BSF) and (ii) the Randomized Best-Sensor-Fit algorithm (RBSF).   
 
Extensive experimental tests on large wireless sensor networks show that the use of the goal of 
maximizing the total bottleneck energy of the covers creates covers with substantially longer 
network lifetime than the lifetime of the covers created with the goal of maximizing solely the 
number of covers.  The results of the tests also show that the RBSF algorithm outperforms the 
BSF algorithm in key performances metrics, namely the network lifetime and the number of 
created covers. 
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