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ABSTRACT 
 

In the last few years Compressed Sampling (CS) has been well used in the area of signal processing and 

image compression. Recently, CS has been earning a great interest in the area of wireless communication 

networks. CS exploits the sparsity of the signal processed for digital acquisition to reduce the number of 

measurement, which leads to reductions in the size, power consumption, processing time and processing 

cost. This article presents application of CS for the spectrum sensing and channel estimation in Cognitive 
Radio (CR) networks. Basic approach of CS is introduced first, and then scheme for spectrum sensing and 

channel estimation for CR is discussed. First, fast and efficient compressed spectrum sensing (CSS)  

scheme is proposed to detect wideband spectrum, where samples are taken at sub-Nyquist rate and signal 

acquisition is terminated automatically once the samples are sufficient for the best spectral recovery and 

then, after the spectrum sensing, in the second phase notion of multipath sparsity is formalized and a novel 

approach based on Orthogonal Matching Pursuit (OMP) is discussed to estimate sparse multipath 

channels for CR networks. The effectiveness of the proposed scheme is demonstrated through comparisons 

with the existing conventional spectrum sensing and channel estimation methods. 
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1.INTRODUCTION 
 

According to Kotelnikov, Nyquist and Shannon [1-3], a continuous-time band-limited signal x(t) 
with  bandwidth B > 0, can be exactly recovered from twice as many samples per second as the 

highest frequency present in the signal i.e. 2B, also known as the Nyquist rate. Around 

2004, David Donoho, Terence Tao and Emmanuel Candès [4-6] proved that if the signal is sparse 
in one domain, the signal may be reconstructed back with even fewer samples than required by 

Nyquist’s sampling theorem. In this way the sampling of the signal at sub-Nyquist rate is the 

basis of compressed sampling. 

 
There are two primary conditions for the perfect recovery of the signal [7]. The first one 

is sparsity i.e. the non-zero terms, of the signal. CS approach is based on the fact that the most of 

the signals can be well-approximated as sparse signals by expanding them in a suitable 
sparsifying basis. The second condition is incoherence, discussed in detain in Section 2, which is 

applied through the restricted isometric property for sparse signals [8].
  

 

http://en.wikipedia.org/wiki/David_Donoho
http://en.wikipedia.org/wiki/Terence_Tao
http://en.wikipedia.org/wiki/Emmanuel_Cand%C3%A8s
http://en.wikipedia.org/wiki/Sparsity
http://en.wikipedia.org/wiki/Coherence_(signal_processing)
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In the field of wireless communication system, there are many cases, where a large amount of 

information should be processed to obtain the interior characteristics, such as signal detection, 

channel estimation, network monitoring and data fusion in Cognitive radio (CR) networks. These 
problems share a common feature that the information being processed is huge but sparse in 

nature. For such cases, CS can be used to lower all of the cost attributes and increase efficiency. 

 
Fast and accurate spectrum sensing is extremely important in wide band CR networks. To 

implement wideband spectrum sensing, CR needs fast Analog-to-Digital Converter (ADC) but 

the achievable sampling rate of  ADC is only 3.6 Gsps. Capitalizing on the wideband signal 

spectrum sparseness, CS technique can be employed in spectrum sensing [9] in CR network. 
  

In most scenarios in CR networks, the number of used channels is comparatively much lesser 

than total channels; those are vacant at a particular time and space. Therefore, when dealing with 
channel estimation problem in CR system where the channel band is really wide and dynamic and 

occupation information of the channels is compressible, CS can be exploited, since CS does not 

require any knowledge of the underlying multipath channel, based on the fact that a sparse 
structure is exhibited by the physical multipath channels in angle delay Doppler spreading, 

especially at large signal space dimensions, it is advantageous to utilize sparse channel estimation 

method based on convex/linear programming, which can be proved to outperform the existing 

least square based methods [10]. Such channels with significant angle delay Doppler spreading 
can be handled by CS algorithms in the form of Basis Pursuit (BP) and Orthogonal Matching 

Pursuit (OMP), when coupled with a channel equalizer mitigating inter-carrier interference, as 

demonstrated in [11] using numerical simulation and experiments.  
 

The remainder of this paper is structured as follows– Section 2 presents notations. Section 3 

summarises the related works, In Section 4, the fundamentals of CS theory are introduced, and 
the reconstruction methods of CS are summarized. Then for spectrum sensing and channel 

estimation, CR system model is presented in section 5. Section 6 explains the theory of different 

components of CS algorithms. CS based fast and efficient spectrum sensing scheme is presented, 

after that in section 7 we formalize the notion of sparse multipath channels to apply the 
compressed channel estimation based on various CS algorithms. Section 8 demonstrates and 

summarizes the performance advantages of proposed CS based scheme over traditional energy 

detection spectrum sensing and maximum likelihood ratio based channel estimation techniques. 
Finally, we conclude the article in Section 9 by discussing some of the finer technical details 

pertaining to the results presented in the paper and future scope. 

 

2. NOTATIONS  

 
x Discrete time signal 

 Sparsifying basis 

S Non zero coefficients 

 Measurement matrix 

m Number of measurements 

Z Additive white Gaussian noise   

Ri Training subset  
Ti Testing subset   

Vi Verification parameter 

C Constant 

K Signal level 
Ts OFDM symbol duration   

TG Guard interval 
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 3. RELATED WORK 

 
To implement wideband spectrum sensing, CR systems need some essential components, i.e. 

wideband antenna, wideband radio frequency front-end, and high speed Analog-to-Digital 

Converter (ADC). [12] and [13] developed the wideband antenna and the wideband filter 
efficiently but the development of ADC converter is relatively behind as the ADC currently have 

limited sampling rates, of the order of 1 GHz, which is not sufficient for wideband spectrum.  

 

To solve this problem, Z. Tian and Giannakis [14] applied Compressive spectrum sensing (CSS) 
theory to CR systems for acquiring wideband signals at sub-Nyquist sampling rates. Capitalizing 

on the sparseness of the signal spectrum in open-access networks, compressed sensing techniques 

were developed for the coarse sensing task of unutilized spectrum i.e. spectrum holes’ (SHs) 
identification. 

 

Additionally, Malioutov et al. [15] described a stopping rule for a desired tolerance in 
reconstruction for the near-sparse case. Simin Bokharaiee et al. [16] applied cyclic prefix 

correlation coefficient (CPCC) based blind spectrum sensing for orthogonal frequency division 

multiplexing based cognitive radio (OFDM-CR) systems. Furthermore, by considering multipath 

correlation in the generalized likelihood ratio test (GLRT) algorithm and employing the inherent 
structure of OFDM systems a low complexity algorithm was obtained. Furthermore, M. Farrag et 

al. [17], proposed Distributed Sensing Matrix (DSM) based algorithm to reduce complexity at 

each sensing node and improve the unlicensed users i.e. primary users’ (PUs) detection 
performance.  

 

After spectrum sensing, deactivated subcarriers in non contiguous OFDM complicate the design 

of efficient pilot symbols for channel estimation [18-21]. In [22], the pilot design is formulated as 
an optimization problem minimizing an upper bound related to the Mean Square Error (MSE), 

where the pilot indexes are obtained by solving a series of 1-dimentional low complexity 

problems. To reduce the computational complexity for the optimal selection of pilot subcarriers, 
cross entropy optimization was utilized in [24] to determine the position of pilot subcarriers.  

 

Manasseh et al. [23], proposed a cross-entropy optimization based pilot design scheme using 
convex optimization together to minimize the MSE. Min Jia et al. [25] presented channel 

estimation algorithm for OFDM-CR, based on OMP and applied sparsity adaptive matching 

pursuit (SAMP) algorithm for the first time for channel estimation in NC-OFDM systems. 

Moreover, for the reconstruction time-consuming of SAMP algorithm was too large, modified 
adaptive matching pursuit (MAMP) algorithm was introduced as an improved SAMP algorithm. 

Chenhao Qi et al. [26] introduced sparse channel estimation (SCE) scheme in OFDM-CR, where 

pilot design was formulated as an optimal column selection problem and constrained cross 
entropy optimization based scheme was proposed to obtain an optimized pilot pattern.     

  

4. COMPRESSED SAMPLING THEORY 

 
According to the theory of CS, information about certain signals can be acquired directly and 

recovered back with high probability from far fewer measurements than traditional methods, 
provided that the signal is sparse, by solving an optimization problem with the small amount of 

projections. Consider a discrete time signal x ϵ  N
, which can be expressed as Х(n) where n = 1, 

2, …, N. The claim of compressive sensing is that from m (m<<n) measurements, we can 
reconstruct the original signal x with non-adaptive linear measurements. This does not violate the 

Shannon-Nyquist sampling theorem as reconstruction of only sparse signals is possible. 
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4.1 SPARSE REPRESENTATION OF THE SIGNAL 

 
Based on the CS theory, efficiency of signal acquisition depends on the sparse representation of 

the signal. Signal Xϵ  N can be expressed in a sparsifying basis  = [1,2,…N]as follows 
[27] : 

 

X =       =                                                                   (1) 

 

where   is the vector of inner products,  N = <X,  N>. When only S (S<<N) of the  N 
coefficients are nonzero, it is called S-sparse.  
 

4.2 MEASUREMENT MATRIX 

 
By using non-adaptive linear projections the useful information in the sparse signals can be 

acquired, via directly compressing signals into a smaller data [27]. Measurement of the signal x is 

done by sampling it with respect to a measurement matrix  ϵ  M×N
. Substituting X =    into 

Equation (1): 
 

Y =X =   Θ  (2) 
 

where Y and   are M × 1 column vector and M ×N measurement matrix respectively. Based on 

the CS theory signal recovery can actually be made possible when the matrix Θ =   obeys the 
rule of Restricted Isometric Property (RIP). For each integer n = 1, 2, . . .N isometry constant δn > 

0 of a matrix  can be defined as the smallest number and | · | is defined as the amplitude of a 

complex number,  For signal reconstruction to be successful,   must satisfy [28]: 

 

                (1-δn)       
   ≤    Θ    

   ≤  (1+δn)       
                                          (3) 

 

From equation (3) we can say that a matrix  has the RIP of orders if δn is not too close to 1. The 
restricted isometry constants give a measure of how much they can change the length of an S-

sparse vector. 

 

4.3 Signal Reconstruction 

 

As , X ϵ  N
 and Y ϵ RM

 for m <<  n there are infinitely many solutions to equation (2). If   is 

incoherent to  the original CS theory proposed l1 norm minimization for signal reconstruction 

when dealing with noise free measurements: 

 

                 min                   s. t. Y =                                               (4) 

 
Convex optimization techniques can be used for the sparse signal recovery with high probability. 

CS relied on the assumption that equation (4) provides the correct solution and is computationally 

not complex. However work has been done to find alternative algorithms those can be easily 

implemented, faster and give better reconstruction performance, such as Matching Pursuit (MP) 
[29] and OMP [30] algorithms, which can be fast and easily implemented. There also exist a 

variety of different kinds of iterative algorithms such as Compressed sampling Matching Pursuit 

(CoSaMP), iterative hard thresholding (IHT), and various similar thresholding algorithms for 
improved compressed signal reconstruction [31-37]. These algorithms are based on similar 

structure can be easily understood by identifying the locations of the nonzero coefficients of  
and then estimating the values of those coefficients. 
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5. SYSTEM MODEL AND PROBLEM STATEMENT 

 
System model considered in our work is same as that in [38], which assumes that CR with 

frequency range 0–W Hertz, as shown in Figure 1. Figures 1(a) and 1(b) corresponds to 

frequency frame and time frame. In time frame 0–t (second) is required for spectrum sensing and 
remaining t–T (second) is used for transmitting data. In out work, all the received signals from 

different PUs and SUs are treated as one received signal, s(t). Continuous signal received at the 

RF front-end of SU contains signal si and noise zi. Considered noise is a sequence of independent 

and identically distributed, additive zero-mean, circularly symmetric, complex Gaussian noise 
samples with variance E{|ni|

2
} = σn

2
 for all i. The power spectrum density (PSD) over each 

spectrum sub-band is independent for two neighboring subbands. In a sensing period t–T, the 

locations and the number of active subbands keep unchanged. By using sampling rate fN over t, 

we obtain [n] = i(n/fN),  n = 1, 2, · · · ,N. 

 
                                                                                                                                 PU            

                             PSD                    PU               PU                 SH                         W 

                 (a) 

                                                                                                                          F 
                                             0   1    2    3    4      ....            b              ....               B                 

                                                                          
                                          Sensing time            Transmission time                                                                    

                 (b) 

 
                                             0                                  t                                 T                           Time           

 

Figure 1. Wideband CR spectrum sensing model (a) Frequency Frame (b) Time Frame 

 

By using sub-Nyquist sampling rate fS (fS < 2W), the compressed samples y (y ∈  Mx1
, M = τ fS 

<< N) can be written as:  

                          y = φ                                                                        (5) 
 

where φ is an M × N sensing matrix and y is the measurement vector of m measurements. Based 

on the CS theory, efficiency of signal acquisition depends on the sparse representation of the 

signal. Signal  ϵ  N
 can be expressed in a sparsifying basis  = [1,2,…N follows: 

 

 =                                                                                (6) 

where x is the vector of inner products, xi = <,  i>. Let μ (φ, ψ) be the coherence between φ and 
ψ, C is constant, we can choose minimum number of measurements required for spectrum 

reconstruction:  
                  m  ≥  C0 · μ

2 
(φ, ψ) · S · log N                                                       (7)

  

 

From (7), it can be observed that m depends on the sparsifying basis. In this article, we compare 
the cases if the sparsifying basis is the Discrete Fourier Transform (DFT) or Discrete Cosine 

Transform (DCT) or Empirical Wavelet Transform (EWT). An estimate    of sparse vector can be 

obtained by solving the CS reconstruction problem:  
 

                       = arg min||x||1                  s. t. y = φ ψ x                                                                  (8) 

 

Above problem can be solved efficiently using Greedy algorithms, Tony Cai and Lie Wang at al. 
[39] explains OMP algorithm, which is suitable to deal with noisy signal. 
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After spectrum reconstruction SUs sense the channel in order to find the spectrum holes (SHs), 

which can be described as the hypothesis testing problem, mathematically: 

 

              0 :     i = zi ,             i = 1, 2, . . .,N                                                 (9) 

              1 :     i = si + zi ,      i = 1, 2, . . .,N                                               (10) 
 

For large values of N, it can be approximated:        
                                     

                  =   
 
   

                                                                   (11) 

 

as a Gaussian random variable by using the Central Limit Theorem, It can be verified that the 

mean and variance of  are given by, respectively: 
 

          E{} =  
     

                            

     
      

                 

                                                        (12) 

Var{}  =  
  
                                           

            
     

    
                

                          (13) 

 

An energy detector can be used to accumulate the energy E =          ∈           received in sub-
band b. The SU decides the spectrum availability by: 

 

                     (b) =   
            
           

                                                        (14) 

 

The threshold λ is a design parameter for the CR receiver system. The choice of λ provides a 

trade-off between maximizing SU throughput and minimizing interference to the PU. Two 
probabilities of interest are defined as follows 

 

Probability of false alarm:              Pf = Pr { ≥ λ| 0}                                                                   (15) 

      Probability of detection:                 Pd = Pr { < λ| 1}                                              (16) 
 

After spectrum sensing, CR adopts NC-OFDM technique that decomposes wideband into 

orthogonal sub-channels. In NC-OFDM based CR systems, as shown in Figure 2, the sub-
channels are activated when the spectrum is idle and when it is not available corresponding sub-

channels are deactivated (set to zero). The data stream is only assigned to active sub-carriers and 

pilot design is performed accordingly.  
 

In wide-band wireless communication systems, the actual bandwidth of the system is usually 

larger than the coherence bandwidth and the channel is usually frequency selective fading 
channel. The vector is S-sparse, Discrete Fourier Transform (DFT) size is N, active sub-carriers 

are Q and pilot sub carriers (cp) are P (P  Q). The cyclic prefix (CP) length is greater than the 
maximum possible path delay. OFDM symbol data X(n) contains mapping signals and pilot 

signals. After removing CP, DFT is applied to the received signal yn for n ϵ [0, N−1] to obtain k ϵ 

[0, N − 1]. The received signal is N×1 sample vector. The discrete-time channel model is: 
 

h(n) =             
                                                             (17) 

 

where the impulse response vector of the channel h = [h0, h1,…, hl-1]
T 

remains unchanged in 

multiple OFDM
 
symbol period of time reflects the slow time variation of the channel.  
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Figure 2. NC-OFDM based CR system 

 
where the impulse response vector of the channel h = [h0, h1,…, hl-1]

T 
remains unchanged in 

multiple OFDM
 
symbol period of time reflects the slow time variation of the channel. The 

relation between the transmitted pilots and received pilots can be written as:    

 
 

          

         

 
          

          =           

 
 
 
 
         

 
 

 
 

 
 

          
 
 
 
 ·         

    
    
 

    

       +       

    
    
 

    

        (18)                                                             

 
 

where Z is additive White Gaussian Noise (AWGN) and is FK×L   is a DFT sub matrix given by:  

 

          FK×L =   
 

  
 

 
 
 
                 

 
 

 
 

          

 

                
 
 
 

                                             (19) 

 

where w
nl 

=    
    

 
  
.  Let A= XFK×L. Then (18) can be written as:  

 

            y = Ah + Z                                                                    (20) 

R×N matrix S selects the location of P pilot from the N subcarriers. N×N matrix S selects R rows 
corresponds to the pilot position from the unit matrix. The pilot signal received is: 

 

                yp = Xp Hp + Zp  = Xp Wp h + Zp                                                    (21) 
 

where R × 1 matrix yp = Sy , R × R matrix Xp = SXS’ , R × L matrix Wp = SW , R × 1 matrix nP = 

S. In (21) yp, Xp and Wp are known. We can re-obtain system channel relation obtained in (20) 

by:  
 

Hlk=               
  

 
 
  
 
    

   
   
                                               (22) 
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where                                       

 

                                                         F[m,i]=Xh(m,i)        
 (m,i/Nr)                                          (23) 

 

with the cross ambiguity function [40] Aγ,g(m,ε)=             
         . The purpose of 

channel estimation is to find the channel frequency response H. Since the channel delay spread is 
much larger than sampling period, particularly for OFDM systems with over sampling, most 

components of h are either zero or very close to zero, which implies that h is sparse. With this a 

priori condition, CS algorithm can be applied to estimate h.  

 

6. COMPRESSED SPECTRUM SENSING 
 

Consistent with the theory of CS discussed in Section 4, an N point signal x, or its S sparse 

representations can be reconstructed from only m measurements. According to equation (1) and 

(2):  

                    y = φ   =  φ ψs x = φ ψs F
-1

 X                                                                                 (24) 
 

where F
-1

X is the inverse Fourier transform of x. From (7), the minimum number of 

measurements depends on the sparsifying basis ψs. We apply method, empirical wavelet 

transform scheme to find sparse representations of the spectrum in the context of compressive 
sensing. The discrete signal x is not known prior to sensing so first we calculate an estimated 

version of the signal    using an appropriate conventional sparsifying matrix. Next, we apply 

empirical wavelet scheme. Jerome Gilles [43] proposed a method is to build a family of wavelets 
adapted to the processed signal. The process is equivalent to building a set of band pass filters. 

Filters’ support depends on where information in the spectrum of analyzed signal is located. 

Consider a spectrum [0,  ] as shown in Figure 2, which is segmented into I segments; ωi is the 

limit between each segment Λi. i is the transition phase of width 2τi.  
 

 

  
                                        2τ1                   22τ2  2τi                        2τi+1             τI 

 

 

          

                                        0    ω1      ω2             ωi        ωi+1                        
Figure 3. Spectrum segmentation 

 

The empirical wavelets are defined as band pass filters on each segment. Empirical scaling 

function and empirical wavelets are defined by expressions, (25) and (26) respectively 
 

Φi (ω)  =  

                                   

                              
                                                      

                                                       

                             (25) 
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Ψi (ω) = 

 
 
 
 

 
 
 

                                         

          
 

    
                 

                                              

          
 

    
                 

                                             
                                              

                             (26) 

 

The function    is an arbitrary C
k 
([0,1]) function [44] such that 

 

         β(x) =       

                                                        

                              

                                                           

                               (27) 

 

Using equation (24) problem reconstruction of    can be converted into the problem of 

reconstruction of   : 

                          = arg min||    ||0        s.t.  y = (φ F
-1
)                                      (28) 

 

It can be seen that (28) is a non-convex problem as there can be many optimal solutions. Equation 
(28) has a unique solution when: 

 

                        = arg min||  ||1         s.t.  y = (φ F
-1

)                                      (29) 
 

To deal with the signals with noise components, some variants of LASSO algorithm can be 

developed by minimizing the usual sum of squared errors [41, 42]: 
 

                       = arg min||  ||0           s.t. || φ F
-1

    – y ||2 ≤ ε                          (30) 

 
where ε is recovery error threshold. The EWT-CSS problem can be solved with a two-step 

scheme: First, use compressed measurements y to estimate the sparse sequence and second, 

reconstruct signal      according to ψs.  
 

ℓ2 norm approach is used to terminate the signal acquisition automatically at CR receiver. As 

discussed in Section 3 time frame is divided into sensing interval (0 – t) and transmitting interval 
(t - T), if we decrease the sensing time, we can increase the time interval to transmit data. First, 

we divide complete sensing time interval t into I mini time slots. Ri is training subset, Ti is testing 

subset and Vi is the verification parameter, for best spectrum recovery: 

 

                    Vi =          – ψi F
-1   i

    
                                                                                

(31)
        

                 

 

Using equation (2) and (10), Ri and Ti can be written as correspondingly 
 

                     Ri = φi xi + n = φi F
-1     i + ni                                             (32) 

                     Ti = ψi xi + n = ψi F
-1     i + ni                                             (33) 

 

where φi is a ri × N measurement matrix, ψi is a ti × N testing matrix, and n denotes the noise in 

measurements.  
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Algorithm 1      Fast and Efficient Compressive Sensing 

 Initialize: Recovery threshold criterion ε  ≥  Vi / Ti –    
 

 

While the spectrum recovery threshold criterion is not true and i ≤ I,  

Step 1. Samples at sub Nyquist rate for time slot i to get compressed samples’ set yi. 

Step 2. Devide yi into two complementary subsets Ri and Ti. 
Step 3. Estimate the spectrum by recovery equation (30), leading to spectral estimate 

Xi. 

Step 4. By using (31) and testing subset, calculate Vi. 
 If     the recovery threshold criterion is satisfied  

         End 

 Else i = i + 1  
                 repeat Step 1 

 

Repeating this procedure, a sequence of spectrum estimates, i.e.,    ,            will be obtained, 

and by increasing measurements mi,  we can get a a better estimate of the spectrum with 

minimum spectrum recovery error           . Terminating the signal acquisition automatically 

and by using the remaining slots for transmission, leads to fast and efficient spectrum sensing and 

improved system throughput.  
 

7. SPARSE CHANNEL ESTIMATION 

 
In the CS model discussed in Section 3, the signal x is not directly measured, but projected onto 

the observation matrix ξ = [ξ1, ξ2,…ξM], and then the sampling vector y is obtained. The matrix 
form is 

                             y = ξx                                                                        (34) 

 

where x is an N × 1 vector, ξ is an M × N matrix, and y is an M × 1 sampling vector. If signal x is 
sparse in the transform basis ψ

T
 = [ ψ1, ψ2,.. ψN] , it can be expressed as follows: 

 

                           x =      
 
     = ψα                                                            (35)             

 

where α is an N ×1 vector, ψ is an N × N sparse vector. (8) is substituted into (7): 

 
y = ξx = ξψα = Θα                                                           (36) 

 

where M × N matrix ξ=ψΘ. The observation dimension M is far less than the signal dimension N, 
so the signal x can’t be solved with M sampling values of y. As α is sparse, with the sparse 

decomposition algorithm based on the theory of sparse decomposition, α can be solved by the 

inverse problem of solving (36), and be substituted into (35) to obtain the signal x. Consider the 
baseband channel model of (4). 

 

Due to the channel fading and noise, to determine the length of training sequence Θ is important 

in terms of both spectrum efficiency and estimation robustness. Therefore, the length N of Θ must 
satisfy  

                       N ≥ C· S· (log L)
4
   
                                                        (37) 

 

where C is a constant and μx=   maxi,j|Xi,j| which is known as the maximum coherence between 

the ith column and jth column of Θ. 
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OMP algorithms suggests the reconstruction under the conditions of a given iteration number, as 

the iterative process is forced to stop, OMP algorithm needs a lot of linear measurement to ensure 

accurate reconstruction. The basic idea of the OMP algorithm is to select the columns of Θ with 
greedy iterative algorithm, make sure the correlative value between the columns selected in each 

iteration and the current redundant vector is maximum, and then subtract the correlative value 

from the sampling vector and repeat iteration until the number of iterations achieves the sparse 
degree S. Here, Θ is sensing matrix, y is sampling vector, S is sparse degree, r is residual and Λ is 

the index set . Output of the OMP algorithm is the S-sparse approximation    of α. 

 

 Algorithm 2        OMP-CS  

 
Input: Θ, y, S;  

Output:      

Initialization:  r0=y , Λ0=N=1;  
Step 1. find the maximum value of the inner product of r and the column of 

sensing matrix yj the corresponding foot mark is λ, λt =  argj=1..N max  |           | 

Step 2. renew the index set Λt = Λt-1 U{λt} , the sensing matrix Θt = [ Θt-1,    ] 

Step 3. solve   t = arg min || y- Θt,     ||2 by least-square method; 

Step 4. renew the residual rt= y- Θt   t t= t+1    
Step 5. if N > S stop the iteration,  

             else repeat step 1. 

 

OMP algorithm selects an atom in each iteration to update the atom collection, which will 
certainly pay a large time for reconstruction. The number of iterations is closely related to sparse 

degree S and the number of samples M, with their increase, time consumption will also increase 

significantly. 
 

Problem with Algorithm 2 is that it is not adaptive, pre-estimate of the sparse degree of the sparse 

signal is needed and the reconstruction accuracy is not satisfactory. In reality, the sparse degree of 

the sparse channel is usually unknown. Nam Naguyen et al. [30] proposed extended OMP-CS 
algorithm in order to improve the accuracy of reconstruction, and make the algorithm adaptive. In 

the ExtOMP-CS algorithm, one key issue is how to choose the step size. Unlike the OMP-CS 

algorithm, the iteration times of ExtOMP-CS algorithm is not certain and is related to step size 
and computational complexity and computational time are higher in the ExtOMP-CS algorithm 

than OMP-CS algorithm. 

 
An extension to OMP algorithms is the Compressed Sampling Matching Pursuit (CoSaMP) 

algorithm [45]. The basis of the algorithm is OMP but CoSaMP can be shown to have tighter 

bounds on its convergence and performance. 

 

 

Algorithm 3    Compressed Sampling Matching Pursuit Algorithm 

 

Input:  S, y,  

 1. x(0) 0 

 2. v y 

 3. k0 
 4. while Halting condition false do 

 5. kk + 1 

 6. z 
T 

v   : signal proxy 

 7. Ωz
2S

   : find the largest 2S components of the signal proxy (Identification) 
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 8. Ω supp (x
(k-1)

)    : merge the support of the signal proxy with the support of the 
solution from the previous iteration (Support Merge) 

 9.   arg min||(x-y)||2  : estimate a solution via least squares with the constraint that the 
solution   lies on a particular support  (Estimation) 

10. x
k
x

s
     : takes the solution estimate and compresses it to the required support (Pruning) 

11. vy-x     : update the sample, namely the residual in F-space (Sample Update) 
12. end 

13. while   x(k) 

Output:         : such that it is S-sparse and y = x 

 

If N-length training sequence X satisfies the RIP and δ2S≤  -1, for any 2S-sparse channel vector 

h, it produces the channel estimator    that satisfies 

 

           ||h-ĥ||2   ≤  C max{ε, 1/    ||h-ĥ2S||1 + ||z||2}                                   (38) 

 

8.  PERFORMANCE ANALYSIS AND SIMULATION RESULT 

 
In NC-OFDM the power spectral density (PSD) of P

th
 subcarrier signal is characterized of the 

form  

k(f) = K · sinc
2
((f – fP)TS)                                                      (39) 

 

where K is the signal level, fk is the sub-carrier center frequency, and TS is the OFDM symbol 

duration and TG is guard interval. Assuming independent symbols in different subcarriers, the 

PSD of an NC-OFDM signal is obtained as 
 

     (f) =                                                                     (40)  
 

where index P is the number of active subcarriers. In this paper we are considering a spectrum (0-

500MHz) with four sub-bands located at 30MHz – 70MHz, 120MHz – 180MHz, 300MHz – 
340MHz, 420MHz – 460MHz and their corresponding power spectral density (PSD) levels are in 

the range of 0.0277 - 0.1126, 0.0157 - 0.0988, 0.0588 - 0.1294, and 0.0381 - 0.1201, as shown in 

Fig. 3.  The sub-band b is in the frequency range [fb – Bb/2, fb + Bb/2], where Bb = 10–30 MHz 
and fb is in [Bb/2, W – Bb/2]. Each time frame has length T = 10 μs and t is 5 μs, which is divided 

into I = 20 mini time slots. Instead of using the Nyquist sampling rate fN = 1 GHz, we are 

sampling at the sub-Nyquist rate fS = 250MHz. The number of compressed samples in 

conventional CS system is M = fs t = 1250, whereas N = fN t = 10,000. Calculating     and Ti after 
each time slot we calculate the verification parameter using (31). Vi becomes very close to 2σ

2 
at 

time slot L = 9, so using the presented algorithm we can recover the spectrum at lesser time slots. 

All the simulations are carried out in the MATLAB 2014.  
 

8.1 RECOVERED PSD 

 
As can be observed from Figure 3, the wideband signal contains the PSD. Using algorithm 1 for 

fast and efficient compressed sensing, wideband spectrum can be successfully recovered, as 

shown in Figure 4 and terminate the signal acquisition at comparatively lesser time slots leading 
to a fast efficient spectrum sensing.  
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Figure 4. Wideband Spectrum       
 

 
 

Figure 5. Reconstructed Spectrum     

 

8.2 PROBABILITY OF DETECTION PERFORMANCE  

 
The energy detection scheme using (15) and (16) is used to detect spectrum hole by using the 

reconstructed spectrum. The performance of different spectrum-sensing algorithms based on DF, 

EWT and DCT, is compared by MATLAB simulation via Pd for constant Pf = 0.05.  
 

 
 

Figure 6.  Performance comparison of DFT CSS, DCT CSS and proposed EWT CSS spectrum-sensing 

algorithms 
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8.3 ESTIMATION ERROR 
 
 

The MSE performance of the proposed estimation method will be evaluated by simulations and 

compared with the MSE performance of LS. It is obvious that smaller MSE means more accurate 

channel estimation and vice versa. MSE is defined as     

 

MSE = 1/M         
  

                                                  (41) 

 

Figure 7 depicts the MSE versus SNR. It can be seen from the figure, that the CS-based scheme 

significantly outperforms the least-squares method. Compared with the least square scheme with 
1024 pilots, CS based scheme with 511 pilots shows only a small performance degradation.  

 

 
 

 
Figure 7. Performance of the channel estimate MSE for different SNRs 

 

8.4 BER PERFORMANCE 
 

We are considering an OFDM-based CR system with M = 1024 subcarriers, after spectrum 

sensing without any false alarm or missing detection  and deactivating those subcarriers occupied 
by PUs, we assume that there are 512 remaining OFDM subcarriers for SUs, including three non-

contiguous subcarrier blocks, i.e., {1, 2, . . . , 256}, {513, 514, . . . , 640} and {897, 898, . . . , 

1024}, with the number of subcarriers in each block being 256, 128, and 128, respectively. A 

sparse multipath channel h is considered with L=60 taps where 5 non-zero taps are placed 
randomly. We now evaluate the channel estimation performance using the designed pilot patterns.  

 
Figure 8. Comparison of BER Performances 
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Figure 8 shows BER performance of two schemes- proposed CS channel estimation and channel 

estimation scheme based on LS. Improved BER performance of the proposed CS based scheme 
can be seen from the above figure, over the conventional LS based scheme. 

 

9. CONCLUSION 

 
CS is a very promising technique in wireless communication networks. However, the studies on 

the applications of CS are just in fewer areas. Even in these areas, a lot of problems are still not 
been fully settled, limiting the performance of CS. In CR network systems, if the number of 

channels, is not large enough, the requirement of sparsity cannot be guaranteed, which limits the 

advantages of CS. In this article, we demonstrated the application of CS in CR networks and 
based on the advantages of the proposed scheme, the problem of designing a high-performance 

CR receiver indicates that the approach should work both for spectrum sensing and channel 

estimation. On future work, we will consider an adaptive CS algorithm which senses the 
sparseness of the signal, random noise and other unexpected interferences and can differentiate 

between primary user and secondary user signals.  
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