
International Journal of Computer Science & Engineering Survey (IJCSES) Vol.3, No.1, February 2012

DOI : 10.5121/ijcses.2012.3108 81

FAULT BASED TECHNIQUES FOR TESTING

BOOLEAN EXPRESSIONS: A SURVEY

1
Usha Badhera
2
Purohit G.N
3
S.Taruna

Computer Science Department, Banasthali University, India

1
ushas133@yahoo.com,

2
gn_purohitjaipur@yahoo.co.in

3,
staruna71@yahoo.com

ABSTRACT

 Boolean expressions are major focus of specifications and they are very much prone to introduction of

faults, this survey presents various fault based testing techniques. It identifies that the techniques differ in

their fault detection capabilities and generation of test suite. The various techniques like Cause effect

graph, meaningful impact strategy, Branch Operator Strategy (BOR), BOR+MI, MUMCUT, Modified

Condition/ Decision Coverage (MCDC) has been considered. This survey describes the basic algorithms

and fault categories used by these strategies for evaluating their performance. Finally, it contains short

summaries of the papers that use Boolean expressions used to specify the requirements for detecting

faults. These techniques have been empirically evaluated by various researchers on a simplified safety

related real time control system.

KEYWORDS: -

 Boolean expressions, Branch Operator Strategy (BOR), Meaningful Impact (MI), BOR+MI, Modified

Condition/ Decision Coverage (MCDC), MUMCUT, fault detection.

1 INTRODUCTION

Software size and complexity is increasing that has made software testing a challenging

exercise. The objective of testing is to determine error, which requires dynamic execution of test

cases that consumes significant amount of time so it is important to investigate ways of

increasing the efficiency and effectiveness of test cases.

Test case designing is one of the important factors that influence cost and coverage of testing.

The cost depends on size of test suit and coverage on fault detection capabilities. Much research

has been aimed at achieving high efficacy and reduced cost of testing by selecting appropriate

test cases. Boolean expressions can be used to specify the requirements of safety-critical

software like avionics, medical and other control software. These expressions can describe

certain conditions of specifications, to model predicates and logical expressions. Test cases are

generated on Boolean expressions which are capable of revealing faults in programs that are

developed based on such specifications.

Many testing techniques have been proposed by various researchers to select test cases based on

Boolean specifications; moreover test case generated by these methodologies can guarantee to

detect certain type of faults. A literature search has revealed different Boolean specification

testing techniques described through various research papers published from 1973 to 2011. This

survey aims at presenting such techniques at one place and form a basis for comparison among

these techniques.

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.3, No.1, February 2012

82

Table1: A chronological overview of various Fault Based testing techniques.

Boolean expressions are found in logical predicates inside programs and specifications which

model complex conditions. Boolean predicate p with n variables requires 2n test cases in order

to distinguish from any other predicate not equivalent to p. In practice, n can be quite large,

there are examples of Boolean expressions with 30 or more conditions in an electronic flight

implementation system, thus even for a rigid and simple formal specification exhaustive testing

is not feasible as it becomes very expensive. In this paper, various approaches has been

surveyed in which test cases are generated from Boolean expressions that target specific fault

classes and test suites is reduced with respect to exhaustive testing. In this article, it is

assumed that readers are familiar with notations and terminologies of Boolean

expressions.

2. BOOLEAN SPECIFICATIONS BASED TESTING STRATEGIES- METHODS

A formal specifications of traffic collision avoidance system, TCAS II [7] uses AND/OR table,

representation of Boolean expressions, to describe it. Logical expressions such as predicates in

program source code modelled as Boolean expressions has been discussed in [6, 23],various

methodologies have been proposed to select test cases based on Boolean expressions. Test cases

generated by these methodologies guarantee to detect certain faults.

2.1 Experimental steps in empirical analysis of various testing techniques based on

Boolean expressions

1. Boolean specification are selected and converted to Boolean expressions

2. For evaluating the performance of various techniques fault based approach is used. All

faulty decisions are generated by mutation.

3. The test cases generated by specific strategy distinguish between original

Boolean expression and the faulty one.
4. Effectiveness of test set is analysed by running test cases on the mutated Boolean

expression and identifying what type of fault is captured.

2.2 Boolean specification testing techniques

2.2.1 Cause effect graphing

The cause effect graph was developed for system specification and test generation [4, 18]. It

focuses on modelling dependency relationships among program input conditions known as

causes, and output conditions known as, effects. The relationship is expressed visually in terms

of cause-effect graph. The graph is a visual representation of logical relationship among inputs

and outputs that can be expressed as a Boolean expression. One approach to test generation was

to consider all possible combinations of causes of the CEG, which is exhaustive in nature but

impractical as the test cases generated are exponential function of number of causes in the CEG.

A practical test generation algorithm for CEGs was described by [18] which is referred to as

algorithm CEG_Myers. Myers approach strengths and weaknesses has been investigated in[21]

Myers process of creating decision table is inconsistent and ambiguous, other researchers [30,

S.no Authors Method

1. W. R. Elmendrof Cause effect graph

2. Myers Algorithm CEG_Myers

3. Weuker et al. Basic Meaningful Impact Strategy

4. Tai Boolean Operator Strategy

5. Chilenski and Miller MC/DC Coverage to software testing

6. Chen et al. MUMCUT

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.3, No.1, February 2012

83

31] has given algorithm for creating decision table from cause effect graph for generation of test

cases.

Algorithm for test generation by CEG_Myers

The nodes N in graph are visited from effect to cause nodes.

1. If N is an OR node with “true” output value all combinations of inputs leading to a “t”

output and having only one input being “t” are selected.

2. If N is an OR node with “false” output value all combinations of inputs leading to a “f”

output are selected.

3. If N is an AND node with “true” output value all combinations of inputs leading to a “t”

output are selected.

4. If N is an AND node with “false’ output value all combinations of inputs leading to a “f”

output are selected. However,

• For the combination of all inputs being “f” only one test is selected for N and

• For any combination with at least one input being “f” only one test is selected for each

input being “t”

Figure1: A cause Effect Graph

Seven test cases selected for N7 by applying CEG_Myers

approach{(t,f,t,t)(f,t,t,t)(f,f,t,t)(t,f,t,f)(t,f,f,t)(t,f,f,f)(f,f,f,f)} on figure1

2.2.3 Boolean Operator testing Strategy

BOR is a technique suitable for test generation for singular Boolean expression. It guarantees

the detection of Boolean operator faults, including incorrect AND/OR operators and missing or

extra Not operators.[23,24,25,26,27] showed that a BOR test set for a Boolean expression is

effective in detecting various types of Boolean expression faults, including Boolean operator

faults, incorrect Boolean variables and parentheses and their combinations.

However BOR strategy is not suitable for non singular expressions. When two tests are merged

into one, if they contain conflicting values for the same variable, then the merge operation does

not produce a test. This situation reduces the number of test cases generated, but also reduces

fault-detection capability.

BOR strategy has excellent results when used with singular expressions, but needs to be

modified when used with non singular expressions.

Algorithm for test generation by BOR

A test set S (E) is said to be a BOR test set for E if S (E) satisfies the BOR testing strategy for E.

If E is a simple Boolean expression then the minimum BOR test set for E is given by {(t),(f)}. If

E is a compound Boolean expression, then E can be represented as E1 op E2, where op could be

either. or +, and E1, E2 are either simple or compound Boolean expressions. The following

three rules show how to generate a BOR test set for E recursively. Assume that S (E1) and S

(E2) are minimum BOR test sets for E1 and E2 respectively.

N7

AND

N8

OR

N5

OR

N6

AND

N4 N3 N2
N1

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.3, No.1, February 2012

84

1. If E = E1.E2; then a minimum BOR set
S (E) is constructed as follows:

St (E) = St (E1) % St (E2)

Sf (E) = (Sf (E1) × {tE2}) U ({tE1} × Sf (E2))

Where tE1 ∈ St (E1), tE2 ∈ St (E2), and

(tE1, tE2) ∈St (E)

2. If E = E1+E2; then a minimum BOR set

S (E) is constructed as follows:
Sf (E) = Sf (E1) % Sf (E2)

St (E) = (St (E1) × {fE2}) U ({fE1} ×St (E2))

Where f1 ∈ Sf (E1), fE2 ∈ Sf (E2), and

(fE1; fE2) ∈ Sf (E)

3. If E =¬E1, then a minimum BOR set S (E)

Is constructed as follows:

Sf (E) = St (E1)

St (E) = Sf (E1):

Example: Two minimum test sets generated for node N7 of figure 1 by applying BOR

strategy
St (N7)={(t,f,t,t)(f,t,t,t)}

Sf(N7)={(f,f,t,t)(t,f,t,f) or {f,f,t,t)(f,t,t,f)(f,t,f,t)}

2.2.4 Basic Meaningful Impact (MI) testing strategy

MI for Boolean expressions was reported in [34]. It can be applied to singular or non-singular

expressions. The strategy is based on detection of missing and/or extra negation operators on

individual variables. The author reported good detection rates for different types of faults but

the test case generation methodology requires that the Boolean expressions be in DNF

Disjunctive Normal Form.

Once the expression is in the required format, the strategy first generates, for each term in the

DNF, test cases that make the term true. (That makes the whole expression true) The test set for

each term then contain only those test case that make other terms in the DNF false. In the

second step of the strategy, each variable in each term is negated one at a time and test cases

that make only this modified term true are considered. This set represents the test cases that

make the original term false. But some of these test cases might still make the overall

expression true because of other unmodified terms from the expression, such test cases are

removed, and only those test cases that make the overall expression false are retained. This

procedure is carried out for each variable in each term.

In the MI-Basic strategy for a Boolean expression, one test case from the set of unique true test

cases for each term in the DNF is chosen to be part of St (E) for the expression. For the Sf (E),

one test case from a false set of test cases for each term is selected. But Sf (E) may contain test

cases that are in the false set for two or more terms. In the MI-MIN strategy, the test cases for

making up St (E) are chosen as in the basic strategy, but a minimum set of test cases that satisfy

the meaning impact strategy for the false outcome is chosen for Sf (E).

The results reported [34] of an empirical study done on twenty specifications written as Boolean

expressions. The number of test cases generated using the MI-MIN strategy is a fraction of the

exhaustive test cases that would be required. But the paper did not report the worst case size

bounds in terms of number of operators. Fault detection rates for various fault types were also

reported. The results showed good results which are comparable to those obtained using Foster's

strategy, but with fewer test cases. Even though the strategy focuses on missing and extra NOT

operators, it cannot guarantee detection of all such faults in the original expression. This is

because the strategy works with DNF representation of the expression. Also, the study reported

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.3, No.1, February 2012

85

results only on single faults. Another problem with the MI-MIN strategy is that it sometimes

generates extra test cases.

Algorithm for Basic Meaningful Impact (MI) testing strategy
A Boolean expression E=e1+e2+…en in minimal DNF containing n terms .Terms ei , 1<=i<=n

contains l j literals.

1. For each term ei , 1<=i<=n, construct Tei as the set of constraints that make ei true.

2. Let TSei=Tei-U
n

j=1,i≠ j Tej.For i≠ j, TSei ∩ TSej=φ

3. Construct St
E by including one constraint from each TSei,1<=i<=n

4. Let e
j
i denote complimented term obtained by complementing j

th
 literal in term ei,for

1<=i<=n and 1<=j<=lj. Construct Fe
j
i as the set of constraints that make e

j
i true.

5. Let FS ej
i = Fe

j
i -U

n
k=1Tekz

6. Construct S
f
E that is minimal and covers each FS e

j
i at least once

7. Construct the desired constraint set for E as SE= S
t
E U S

f
E

Example
Let E=a(bc+¬bd) the generated test cases by MI are

 S
t
E ={(t,t,t,f)(t,f,f,t)}

S
f
E ={(f,t,t,f)(t,f,t,f)(t,t,f,t)(f,f,t,t)}

2.2.5 BOR+MI

The technique [20, 21], combines the BOR and MI. This hybrid algorithm partitions an input

Boolean expression in to components such that BOR strategy can be applied to some and MI

strategy to remaining components. The test constraints for individual components are combined

using BOR strategy. Analytical and empirical results indicate that the BOR+MI algorithm

usually produces a smaller test constraint set for Boolean expression then does the MI strategy.

The BOR+MI strategy and MI strategy have comparable fault detection capability.
Algorithm for BOR+MI

1. Partition Boolean expression E into mutually singular components.

2. Generate test cases using BOR for each singular component.

3. Generate test cases using MI for non singular components.

4. Combine the constraints generated above.

Example
Let E=a(bc+¬bd) the generated test cases by BOR+MI are

 S
t
E ={(t,t,t,f)(t,f,t,t)

S
f
E ={(f,t,t,f)(t,f,t,f)(t,t,f,t)

2.2.6 Modified Condition/Decision Coverage (MCDC)

“Every point of entry and exit in the program has been invoked at least once, every condition in

a decision in the program has taken on all possible outcomes at least once, and each condition

has been shown to independently affect the decision’s outcome”. MCDC pair for a condition is

one that changes the output on varying the input from “f” to “t” while keeping the other

conditions fixed. At least one pair for each condition is required to form the test suite. A

condition is the occurrence of a variable in the Boolean expression.

The MC/DC coverage became popular after it was adopted as standard a standard requirement

for airborne software. Chilenski and Miller have described applicability of MC/DC coverage to

software testing Kapoor and Bowen has reported variations in the fault detection effectiveness

of decision coverage (DC), full predicate coverage (FPC) and MC/DC coverage. They found

that while average effectiveness of DC and FPC criteria decreases with the increase in the

number of conditions in the program under test, it remains constant for MC/DC.

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.3, No.1, February 2012

86

Algorithm for Modified Condition/Decision Coverage (MC/DC)
A test set T for program P

1. Cover each block in P

2. Each simple condition in P has taken both true and false values

3. Each decision in P has taken all possible outcomes

4. Each simple condition within a compound condition C in P independently effect the

outcome of C.

Example:
Let E=(ab) + c

Set of test cases generated using MC/DC (t,f,t,t)(t,f,f,f)(t,t,f,t)(f,t,f,t)

2.2.7 MUMCUT strategy

MUMCUT strategy [10, 15, 35] integrates the Multiple Unique True Point (MUTP), Multiple

Near False Point (MNFP) and Corresponding Unique True Point and Near False Point Pair

(CUTPNFP). Boolean specifications need to be in irredundant disjunctive normal form.

MUTP strategy: Select test points in Unique True Point UTP(i) such that every truth value of

every missing variable is covered.

MNFP strategy: Select test points in Near False Point NFP (i,j) such that every truth value of

every missing variable is covered.

CUTPNFP strategy: Select a unique true point in UTP(i) and a near false point in NFP(i,j) such

that the two points differ only at the j
th
 literal of the i

th
 term

Example:
Let E=ab+cd

Set of test cases generated using MUMCUT

By applying MUTP strategy{(t,t,f,t)(t,t,t,f)(f,t,t,t)(t,f,t,t)

By applying MNFP strategy{(f,t,f,t)(f,t,t,f)(t,f,f,t)(t,f,t,f)

By applying CUTPNFP strategy {(t,t,f,t)(f,t,f,t)(t,f,f,t)(f,t,t,t)(f,t,f,t)(f,,t,t,f)}

2.3 Fault based approach

The effectiveness of above mentioned strategies is mostly assessed in terms of their ability in

identifying mutations. In this paper classical fault classes have been used. Fault based analysis

of Boolean specification and its software implementation has been explored both empirically [7,

21, 24, 36] and formally [9, 26, 28].

The various kinds of faults which can effect any Boolean expression are classified into the

following categories.

Operator Faults Operand Faults

ORF ENF VNF ASF MVF VRF CCF CDF SA0 SA1

Figure 2: Classical 10 fault classes in to two categories, operator and operand faults.

2.3.1 Faults Categories

Operator Faults

• Operator Reference Fault (ORF): In this class of fault, a binary logical operator ‘.’ is

replaced by ‘+’ or vice versa.

• Expression Negation Fault (ENF): A sub-expression in the statement is replaced by its

negation (¬).

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.3, No.1, February 2012

87

• Variable Negation Fault (VNF): An atomic Boolean literal is replaced by its negation

(¬).

• Associative Shift Fault (ASF): This fault occurs when an association among conditions

is incorrectly implemented due to misunderstanding about operator evaluation

properties.

o Parenthesis omission fault (POF): A pair of parentheses has been incorrectly

omitted from the Boolean expression.

o Parenthesis insertion fault (PIF): A pair of parentheses has been incorrectly

inserted from the Boolean expression

Operand Faults

• Missing Variable Fault (MVF): A condition in the expression is missing with respect to

original expression.

• Variable Reference Fault (VRF): A condition is replaced by another input which exists

in the statement.

• Clause Conjunction Fault (CCF): A condition a in expression is replaced by a.b, where

b is a variable in the expression.

• Clause Disjunction Fault (CDF): A condition a in expression is replaced with a+b,

where b is a variable in the expression.

• Stuck at 0: A condition a is replaced with 0 in the function.

• Stuck at 1: A condition a is replaced with 1 in the function.

Fault Type Mutant example
ORF (ab)(¬a+c)

ENF ¬ (a+b)(¬a+c)

VNF (¬a+b)(¬a+c)

ASF (a+(b¬a)+c)

MVF b(¬a+c)

VRF (a+a)(¬a+c)

CCF (a¬a+b)(¬a+c)

CDF (a+c+b)(¬a+c)

SA0 (for a=0) 0

SA1 (for a=0) bc

Table2: Faults with their explanation for Boolean expression (a+b) (¬a+c)

2.3.2 Fault Hierarchy

A hierarchy among fault classes helps in generating tests; if test suite detects fault classes at the

top of hierarchy, then all other faults in hierarchy will be detected by the same test suite.

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.3, No.1, February 2012

88

Figure 3: Hierarchy among fault classes: arrows among fault classes shows subsumption

relations, dotted arrows represent subsumption relations which were initially established [7] but

were later proved not to hold [33]

3 COMPARING BOOLEAN SPECIFICATION TESTING STRATEGIES

This section contains comparison of Boolean specification testing strategies with respect to fault

detection ability and size of generated test suite.

3.1 Fault classes

Empirical evaluation of testing technique for Boolean specifications were studied in [8, 9, 11,

13] it has explored the relationship between various fault types. It is shown that ENF are

weakest faults in the sense that any technique which catches stronger faults are likely to find

ENF’s.[28] improved the results, however the results are applicable only for associated faulty

decisions.

 3.2 Size of generated test suite

As exhaustive testing is not feasible, various techniques result in minimization of test suite,

various papers have identified the impact of minimization of test set size on their fault detection

effectiveness.

4 CONCLUSIONS

Much of the published research in fault class analysis was based on empirical evidences, an

empirical evaluation of the BOR, Elmendorf’s Strategy, MCDC using fault based approach has

been performed [11]. Boolean expressions from literature ranging from 3 variables to 12

variables used for assessing the, performance and effectiveness of the various testing techniques

based on mutation analysis. Mutated expressions were generated from the given Boolean

expressions by making syntactic change based on particular type of fault. The results were in

favour of Elmendorf Method for detection of all fault classes, but the size of test suite is large.

BOR technique has been originally designed for the detection of missing/extra negation

operators; therefore, it does not guarantee the detection of other faults. The other limitation of

BOR technique is that it is suitable only for the singular expression and performs poorly in the

cases where the expression has coupling effect. Performance of MCDC is much better than

BOR for all kinds of Faults. The size of the test suite is also comparable to BOR. Reported [8]

that average effectiveness of MC/DC remains constant even with increase in number of

ORF

ASF

MVF

CCF

CDF

VNF ENF

SA0

VRF

SA1

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.3, No.1, February 2012

89

conditions. MI and MUMCUT does not any restriction on number of variable and number

of occurrences of the variables It has been shown [35] that MUMCUT detects all faults detected

by MI and the test generated is a subset of test sets generated by MI and the size of test suit is

much smaller. One approach to overcome the weakness of these is to combine these techniques.

References

1) B. Beizer. Software Testing Techniques. Van Nostrand Reinhold, Inc. New York, 2nd edition,

1990.

2) J. J. Chilenski. An Investigation of Three Forms of the Modified Condition Decision Coverage

(MCDC) Criterion. Technical Report DOT/FAA/AR 01/18, U.S. Department of Transportation,

Federal Aviation Administration, April 2001.

3) J.J. Chilenski and S. Miller. Applicability of Modified Condition/ Decision Coverage to

Software Testing. Software Engineering Journal, 9(5):193 200, September 1994.

4) W. R. Elmendorf. Cause-Effect Graphs on Functional Testing, TR-00.2487, IBM Systems

Development Division, Poughkeepsie, NY(1973)

5) P. G. Frankl and E. Weyuker. A Formal Analysis of the Fault- Detecting Ability of Testing

Methods. IEEE Transactions on Software Engineering, 19(3):202–213, March 1993.

6) J. A. Jones and M. J. Harrold. Test-Suite Reduction and Prioritization for Modified

Condition/Decision Coverage. In International Conference on Software Maintenance (ICSM),

pages 92–101. IEEE, November 2001.

7) K. Kapoor and J. P. Bowen. Tconditions for fault classes in Boolean Specifications. ACM

Transactions on software engineering and methodology; 2007

8) K. Kapoor and J. P. Bowen. Experimental Evaluation of the Variation in Effectiveness for DC,

FPC, MC/DC Test Criteria. In International Symposium on Empirical Software Engineering

(ISESE), pages 185–194, September 2003.

9) D.R. Kuhn. Fault classes and error detection capability of specification based testing technique.

ACM Transactions on Software engineering and methodology, 8(4), 411-424, 1999

10) M.F Lau, Y. Liu and Y. T. Yu. An extended fault class hierarchy for specification based testing,

ACM transactions on Software engineering and methodology, 14(3), 247-276, 2005

11) R.K. Singh, P. Chandra, Y. Singh. An Evaluation of Boolean Expression Testing Techniques,

ACM transactions on Software engineering and methodology, 2006

12) M. Grindal, J. Offutt, S.F. Andler, Combination Testing Strategies: A survey, GMU Technical

report ISE- TR-04-05, July 2004

13) A. Gargantini, G. Fraser, Generating Minimal Fault detecting Test suites for General Boolean

Specifications, 2011

14) A. Paradkar, A New Solution to Test Generation for Boolean Expressions; 1995

15) T.Y. Chen, M.F lau, K.Y. Sim. C.A. Sun, On detecting faults for Boolean expressions, Software

quality journal, 2008

16) K. A. Foster. ,Sensitive Test Data for Logic Expressions ". ACM SIGSOFT Software

Eng.Notes, Vol. 9, No. 2, pages 120-26, April 1984

17) N. G. Leveson, M. P. E. Heimdahl, H. Hildreth,J. D. Reese. Requirements Specification for

Process-control Systems". TR 92-106, Dept. of Inform. and Comp. Sci., Univ. of Cal., Irvine,

Nov1992.

18) G. Myers. The Art of Software Testing. Wiley-Interscience, 1979.

19) A.F. Offutt. Investigations of the Software Testing Coupling Effect, ACM Transactions on

Software Engineering and Methodology, Vol 1(1), pp 5-20, January 1992

20) A. Paradkar and K.C. Tai. Test-Generation for Boolean Expressions. In Sixth International

Symposium on Software Reliability Engineering (ISSRE), pages 106–115, 1995.

21) A. Paradkar, K. C. Tai, and M. A. Vouk. Automatic Test-Generation for Predicates. IEEE

Transactions on Reliability, 45(4):515–530, December 1996.

22) K.C. Tai. Theory of Fault-based Predicate Testing for Computer Programs. IEEE Transactions

on Software Engineering, 22(8):552–562, August 1996.

23) K.C. Tai. Theory of Fault Based Predicate Testing for Computer Programs, IEEE Transactions

of Software Engineering, vol 22, no 8, pp 552-562, 1996

24) K.C Tai. M.A Vouk., A. Paradkar., Lu P. , "Predicate Based Testing," IBM Systems Journal, Vol

33 (3), p 445, 1994

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.3, No.1, February 2012

90

25) M. A. Vouk, K. C. Tai, and A. Paradkar. Empirical Studies of Predicate-based Software Testing.

In 5th International Symposium on Software Reliability Engineering, pages 55–64. IEEE, 1994.

26) K. C. Tai. Predicate-Based Test Generation For Computer Programs ". Proceedings of

International Conference on Software Engineering, pages 267-276, May 1993.

27) K. C. Tai, M. A. Vouk, Amit Paradkar, P.Lu. Evaluation of a Predicate-Based Software Testing

Strategy". IBM Systems Journal, Vol.33, No.3, pages 445{457, October 1994.

28) T. Tsuchiya and T. Kikuno. On Fault Classes and Error Detection Capability of Specification-

based Testing. ACM Transactions on Software Engineering and Methodology, 11(1):58–62,

January 2002.

29) S. A. Vilkomir, K. Kapoor, and J. P. Bowen. Tolerance of Control- Flow Testing Criteria. In

27th International Computer Software and Applications Conference (COMPSAC), pages 182–

187. IEEE Computer Society, November 2003.

30) Praveen Ranjan Srivastava, Prashad Patel, Siddharth hatrola; Cause Effect Graph to Decision

Table generation, ACM SIGSOFT Software Eng.Notes, Vol. 34, No. 2,2009

31) A. P Matur, “Software testing”, 1
st
 edition, Pearson Publication, 2008

32) K. Nursimulu,R.L Probert, “Cause effect Graphing Analysis and validation requirements”

33) Z. Chen, and B. Xu. A revisit of fault class hierarchies in general Boolean specifications. ACM

Transactions on Software Engineering and Methodology, 2010.

34) E. Weyuker, T. Gorodia, and A. Singh. Automatically Generating Test Data from a Boolean

Specification. IEEE Transactions on Software Engineering, 20(5):353–363, May 1994.

35) T. Y. Chen & M.F. Lau. Test case selection strategies based on Boolean Specifications. Software

Testing, Verification and Reliability, 2001

Authors

Usha Badhera is an active researcher in the filed of software testing, currently working as

Assistant Professor in Department of Computer Science at Banasthali University (Rajasthan), India.

She has done MCA from Rajasthan University and her PhD is in progress from Banasthali

University (Rajasthan), India.

Prof. G. N. Purohit is a Professor in Department of Mathematics & Statistics at Banasthali

University (Rajasthan). Before joining Banasthali University, he was Professor and Head of

the Department of Mathematics, University of Rajasthan, Jaipur. He had been Chief-editor of

a research journal and regular reviewer of many journals. His present interest is in O.R.,

Discrete Mathematics and Communication networks. He has published around 40 research

papers in various journals.

S.Taruna is an active researcher in the filed of communication and mobile network, currently

working as Assistant Professor in Department of Computer Science at Banasthali University

 (Rajasthan), India. She has done M.Sc from Rajasthan University and her PhD is in progress from

Banasthali University(Rajasthan) , India.

