
International Journal of Computer Science & Engineering Survey (IJCSES) Vol.3, No.1, February 2012

DOI : 10.5121/ijcses.2012.3111 113

SECURE KEY AGREEMENT AND AUTHENTICATION

PROTOCOLS

B.Maheshwari, Assistant Professor, Dept. of Informatics,

Alluri Institute of Management Sciences,

Hunter Road, Warangal.

madhavigangapuram@gmail.com

ABSTRACT

We consider several distributed collaborative key agreement and authentication protocols for dynamic

peer groups. There are several important characteristics which make this problem different from

traditional secure group communication. They are:

1) Distributed nature in which there is no centralized key server;

2) Collaborative nature in which the group key is contributory (i.e., each group member will

collaboratively contribute its part to the global group key); and

3) Dynamic nature in which existing members may leave the group while new members may join.

Instead of performing individual rekeying operations, i.e. recomputing the group key after every

join or leave request, we discuss an interval-based approach of rekeying. We consider three interval-

based distributed rekeying algorithms, or interval-based algorithms for short, for updating the group key:

1) the Rebuild algorithm; 2) the Batch algorithm; and 3) the Queue-batch algorithm. Performance of

these three interval-based algorithms under different settings, such as different join and leave

probabilities, is analyzed. We show that the interval-based algorithms significantly outperform the

individual rekeying approach and that the Queue-batch algorithm performs the best among the three

interval-based algorithms. More importantly, the Queue-batch algorithm can substantially reduce the

computation and communication workload in a highly dynamic environment. We further enhance the

interval-based algorithms in two aspects: authentication and implementation. Authentication focuses on

the security improvement, while implementation realizes the interval-based algorithms in real network

settings. Our work provides a fundamental understanding about establishing a group key via a distributed

and collaborative approach for a dynamic peer group.

KEY WORDS

 Authentication, dynamic peer groups, group key agreement, rekeying, secure group

communication, security.

1. INTRODUCTION

As a result of the increased popularity of group-Oriented applications and protocols,

group communication occurs in many different settings: from network layer multicasting to

application layer tele-and video- conferencing. Regardless of the underlying environment,

security services are necessary to provide communication Authentication, Privacy and Integrity.

Secure group communication is not a simple extension of secure two-party

communication. Two-party communication can be viewed as a discrete phenomenon because it

starts, lasts for a while and ends. Group communication is more complicated because it starts,

and the group mutates (members leave and join) and there might not be a well defined end2.

This results in necessity of providing security services for group communication among which KEY

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.3, No.1, February 2012

114

AGREEMENT is the most important. The term key agreement means both the communicating

persons and groups agree upon one common key called as secret key for secure communication

between them.

The main aim of the paper is

To collaboratively generate a common key for peer to peer group communication.

1. To dynamically perform re-keying operation after batch of joins or leaves using Queue

Batch algorithm and

2. To share resources using the generated group key.

With this main aim the system will provide the members of a group with secure

common group key. This group key is generated collaboratively where in each node becomes a

part of the key generation. The distributive nature avoids the usage of a centralized key server.

The dynamic nature allows the members to leave and join the group and instead of performing

individual rekeying operations the system uses Queue-batch algorithm for re-keying. The

algorithm can substantially reduce the computation and communication workload in a highly
dynamic environment. The group key is used for future communication among the members of

the group.

1.2. Centralized Key server

For a secure group communication the System adopts a centralized approach, where

there is a central coordinator who is responsible for the group key computation. So the

centralized system completely depends upon the single coordinator for the group
communication and rekeying is also performed for individual join and leave operations. The

system mainly involves the Centralized Key server where in the entire systems depends on

centralized key server for

� Key Generation

� Key Distribution and

� Rekeying.

One way to achieve secure group communications is to have a symmetric key, called

group key, and shared only by group members (also called users). The group key is distributed

by a key server which provides group key management service. Messages sent by a member to

the group are encrypted with the group key, so that only members of the group can decrypt and

read the messages. If a user wants to join the group, the user sends a join request to the key

server. The user and key server mutually authenticate each other using some protocol. If

authenticated and accepted into the group, the user shares with the key server a symmetric key,
called the user’s individual key.

For a group of N users’, initially distributing the group key to all users requires N

messages each encrypted with an individual key (the computation and communication costs are

proportional to group size N). To prevent a new user from reading past communications (called

backward access control) and a departed user from reading future communications (called

forward access control), the key server may rekey (change the group key) whenever group

membership changes. For large groups, join and leave requests can happen frequently. Thus, a

group key management service should be scalable with respect to frequent key changes.

Key Distribution Centre

The centralized key server is also called as Key Distribution Centre KDC in some

contexts. To support group communication each KDC maintains information of users like every

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.3, No.1, February 2012

115

user’s individual key which the user shares with the KDC. In this centralized approach if any 2

users say A & B wish to communicate then both have to share their respective individual keys

with KDC which will help for the purpose of Authentication in further communication. If user
A wants to send any message to user B then user A has to first contact the KDC. The KDC then

authenticates the user with his Individual key and the generates a Session Key and sends back to

user A. This Session Key will be used by user A to communicate with user B.

Communication using Centralized Key Server

In the centralized approach we make use of a “Trusted Third Party” which is also called

as “Key Server” or “KDC – Key Distribution Centre”. Each user of the group has to establish a

secret key called the users individual key with the Key Server.

This scenario can be shown as below for a group of 6 users

A secret key is established between the KDC and each member of the group. The secret

key of Alice with the KDC is referred to as KAlice and similarly the other keys like KBob ,

KGeorge and so on. Now if Alice wants to send a confidential message to Bob then the process

will be

1. Alice sends a request to the KDC stating that she needs to communicate with bob and

send some confidential data

2. The KDC informs to Bob about Alice’s request

3. If Bob agrees then a Session Key is created between Alice and Bob for the purpose of

communication.

KAlice

KAnn

KTed

KBob

KGeorge

KBesty

ALICE

ANN

TED

BOB

GEORGE

BESTY

KDC

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.3, No.1, February 2012

116

Session key Generation by the KDC (or Key Server)

The process of Session Key generation between Alice and Bob can be shown as follows

KA - Secret Key of Alice

KB - Secret Key of Bob

KAB - Session Key

Limitations of the KDC:

In this approach when number of users are less the job of KDC to maintain

1. All the users individual keys

2. Generation of session keys for communication

3. Distribution of session keys

are considerably possible with no problem. But as the number of users increase then it becomes

an overload for the KDC to maintain the data as well as generation and distribution of session

keys. This arises the problem of Single Point Failure

1.2. Rekeying

When the communication is between static groups then the Group key generated once
can be used through out the communication. But when we have dynamic groups where

members of the group join or leave the group frequently then the group key generated once will

not serve the purpose. This is because to support

� backward access control i.e. to prevent a new user from reading past communications ,

and

� forward access control i.e. to prevent a departed user from reading future
communications

The group key must be newly generated when ever any new user joins the group or any

existing user leaves the group. This method is called as Individual Rekeying

The key graph approach has been proposed for scalable rekeying. In this approach, besides

the group key and its individual key, each user is given several auxiliary keys (or intermediate

ALICE
BOB

 KDC

1 ALICE, BOB

2 KA(KB(ALICE,B

3 KB(ALICE, BOB, KAB)

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.3, No.1, February 2012

117

keys). These auxiliary keys are used to facilitate rekeying. Key graph is a data structure that

models user-key and key-key relationships. Key tree is an important type of key graph where

key-key relationships are modeled as a tree. All the users of the group who are part of
communication are arranged in a form of a Tree with the leaves representing the actual group

members holding their individual keys. The intermediate non leaf nodes can be called the

Auxiliary keys or sub keys or intermediate keys. The key at the root node will be the actual

Group key which the group members use for their communication.

Limitations of rekeying

It is easier to rekey after a join than a leave. After a join, the new group key can be sent

via unicast to the new member (encrypted with its individual key) and via multicast to existing

members (encrypted with the previous group key). After a leave, however, since the previous

group key cannot be used, the new group key may be securely distributed by encrypting it with

individual keys. This straightforward approach, however, is not scalable. In particular, rekeying

costs 2 encryptions for a join and N-1 encryptions for a leave, where N is current group size.
Individual rekeying, however, has two problems.

• First, it is relatively inefficient.

• Second, there is an out-of-sync problem between keys and data.

Hence the major drawbacks of the centralized key server system can be listed as below:

� Key information depends on centralized key server.

� All users must agree upon the key generated by the Key Server only without any

choice

� This will be a problem if the Key Server (the trusted third party) itself is not trust

worthy.

� Since key information depends on centralized key server there are more chances for

problem of single point failure

� Computational and Communication cost is more.

� Individual re-keying is done. Whenever a member joins or leaves.

� More resources are used for re-keying because it is done for each join or leave

operations.

2. DISTRIBUTIVE COLLABORATIVE DYNAMIC SYSTEM

• Distributive nature means there is no centralized key server

• Collaborative nature means in which the group key is contributory (i.e., each group

member will collaboratively contribute its part to the global group key).

• Dynamic nature in which existing members may leave the group while new

members may join
To provide privacy in group communication, it is important that members of the group

can establish a common secret key for encrypting group communication data. To illustrate the

utility of this type of applications, consider a group of people in a peer-to-peer network having a

closed and confidential meeting. Since they do not have a previously agreed upon common

secret key, communication between group members is susceptible to eavesdropping. To solve

the problem, we need a secure distributed group key agreement and authentication protocol so

that people can establish and authenticate a common group key for secure and private

communication. Note that this type of key agreement protocols is both distributed and

contributory in nature: each member of the group contributes its part to the overall group key 5.

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.3, No.1, February 2012

118

2.1. Group Key Generation in a Contributory Approach

 In the centralized system we had only one key being used by each user which is called
his individual key. This system can be called as the Symmetric key cryptosystem. This approach

makes use of the Public Key Cryptosystem also called as the Asymmetric key cryptosystem.

Here each user has a set of keys , one key is called as the Public Key which is made public to

all the other users and the other key is called as the Private key which will be the secret key of

the user which only the user holds.

Diffie-Hellman Key Exchange Algorithm

In the special case of a communication group having only two members, these members

can generate a group key using the Diffie–Hellman key exchange protocol. This is a public key

cryptographic system which means every user will have sets of keys one called the Private Key

and the other called as the Public Key or Blinded Key. The process can be explained as:

� all users agree on global parameters:

-- Large prime integer or polynomial P
-- An integer α that is a primitive root of P

� α is called as the primitive root of P if power’s of α modulo P generate all integers

from 1 to P – 1 i.e. α mod P , α
2
 mod P , α

3
 mod P , ………. , α

p-1
 mod P are all

distinct and consist of all integers from 1 to P – 1.

� each user U perform the following operations:

 Chooses a Private Key (number): XU < p

 Computes Public Key as: YU = α
XU

 mod p

 YU is send to the other communicating party.

� Every user computes a common secret key using his own private key and the opposite

users shared public key which provides authentication for the communication.

� When the secret key generated by both the users is same then they both authenticate

one another and starts communication.

2.2. Tree Based Group Diffie-Hellman Protocol

 To efficiently maintain the group key in a dynamic peer group with more than two

members, we use the tree-based group Diffie–Hellman (TGDH) protocol .Each member
maintains a set of keys, which are arranged in a hierarchical binary tree. We assign a node id V

to every tree node. For a given node, V we associate a secret (or private) key Kv and a blinded

(or public) key BKv. All arithmetic operations are performed in a cyclic group of prime order

with the generator.

Therefore, the blinded key of node can be generated by

 BKv = α
Kv

 mod p

Where p is any large prime number and α is a primitive root of p.

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.3, No.1, February 2012

119

Each leaf node in the tree corresponds to the individual secret and blinded keys of a

group member Mi. Every member holds all the secret keys along its key path starting from its

associated leaf node up to the root node. Therefore, the secret key held by the root node is
shared by all the members and is regarded as the group key.

The figure below illustrates a possible key tree with six members M1 to M6. For example,

member M1 holds the keys at nodes 7, 3, 1, and 0. The secret key at node 0 is the group key of

this peer group.

The node ID of the root node is set to 0. Each nonleaf node consists of two child nodes whose
node ID’s are given by 2v+1 and 2v+2 . Based on the Diffie–Hellman protocol, the secret key of

a nonleaf node can be generated by the secret key of one child node of v and the blinded key of

another child node of v. Mathematically, we have

 KV = (BK2V+1)
K2V+2

 mod P

 = (BK2V+2)
K2V+1

 mod P

 = α
K2V+1 K2V+2

 mod P

Unlike the keys at nonleaf nodes, the secret key at a leaf node is selected by its corresponding

group member through a secure pseudo random number generator. Since the blinded keys are

publicly known, every member can compute the keys along its key path to the root node based

on its individual secret key.

Example:

To illustrate, consider the key tree in above figure. Every member Mi generates its own

secret key and all the secret keys along the path to the root node. For example, member M1

generates the secret key K7 and it can request the blinded key BK8 from M2, BK4 from M3, and

BK2 from either M4 , M5,or M6.

• Given M1’s secret key K7 and the blinded key BK8, M1 can generate the secret key

K3 according to the above given formula as:

0

1
2

6
4 3

8 7

M1 M2

M3

5

12 11

M4 M5

M6

Figure 2.2A: A Key Tree with 6 members

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.3, No.1, February 2012

120

Let the values of global public parameters be

 P = 5 and α = 2

Let K7 = 3 and BK8 = 2

Then K3 = (BK8)
K

7 mod P = 2
3
 mod 5 = 8mod5 = 3

We have K3 = 3 and let BK4 = 6

Then K1 = (BK4)
K

3 mod P = 6
3
mod 5= 216mod5 = 1

We have K1 = 1 and let BK2= 7

Then K0 = (BK2)
K

1 mod P = 7
1
 mod 5 = 7mod5 = 2

• Given the blinded key BK4 and the newly generated secret key K3 , M1 can generate the

secret key K1 based on given formula as:

Given the secret key K1 and the blinded key BK2 , M1 can generate the secret key K0 at the root.

• From that point onwards, any communication in the group can be encrypted based

on the secret key (or group key) K0.

To provide both backward confidentiality (i.e., joined members cannot access previous

communication data) and forward confidentiality (i.e., left members cannot access future
communication data), rekeying, which means renewing the keys associated with the nodes of

the key tree, is performed when-ever there is any group membership change including any new

member joining or any existing member leaving the group.

Let us first consider individual rekeying, meaning that rekeying is performed after every

single join or leave event. Before the group membership is changed, a special member called the

Sponsor is elected to be responsible for updating the keys held by the new member (in the join

case) or departed member (in the leave case). We use the convention that the rightmost member

under the sub tree rooted at the sibling of the join and leave nodes will take the sponsor role.

Note that the existence of a sponsor does not violate the decentralized requirement of the group

key generation since the sponsor does not add extra contribution to the group key.

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.3, No.1, February 2012

121

Consider the Tree of 6 users as shown above in figure 7

Following figures depicts a MEMBER LEAVE EVENT

 M5 LEAVES

• M4 becomes the Sponsor. It rekeys the secret keys K2 and K0 and broadcasts the blinded

key BK2.

• M1, M2 and M3 compute K0 given BK2.

• M6 and M7 compute K2 and then K0 given BK5

Following figures depicts a MEMBER JOIN EVENT
M8 JOINS

• M8 broadcasts its individual blinded key BK12 on joining.

• M4 becomes the sponsor again. It rekeys K5, K2 and K0 and broadcasts the blinded

keys BK5 and BK2.

• Now everyone can compute the new group key.

M

M

4 6

7

1

3

8

M

M

1
3

1
4

M

2

0

5

M4(S

Figure 2.2B: Member LEAVE Operation on a Key Tree

M8

12
2

11
1

M4(S) M1 M2

4 6

7

1

3

8

M3

M6

13
3

14
4

M7

5

2

0

Figure 2.2C: Member JOIN Operation on a Key Tree

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.3, No.1, February 2012

122

2.3. Interval Based Rekeying or Batch Rekeying

To address the two problems of individual rekeying as explained in section 2.4, we

propose the use of periodic batch rekeying or Interval Based Rekeying. In batch rekeying, the

key server waits for a period of time, called a rekey interval, collects the entire join and leave

requests during the interval, generates new keys, constructs a rekey message and multicasts the

rekey message. This Batch Rekeying can over come the problems of individual rekeying

We consider three interval-based distributed rekeying algorithms (or interval-based algorithms

for short) called as the

• Rebuild algorithm

• Batch algorithm, and

• Queue-batch algorithm.

The first 2 approaches of Rebuild and Batch algorithm perform all rekeying steps at the

beginning of every rekeying interval. This results in high processing load during the update

instance and there by delays the start of the secure group communication. Thus, more effective

algorithm is proposed which we call the Queue-batch algorithm

This approach uses distributed environment and has its own main advantages over

centralized method.

1. The system does not depend upon a single coordinator to find the group key. So the single
point failure will not cause serious damage to the whole system.

2. Each member in the group is autonomous in nature; hence the Group key is arrived from the

contribution of all the legitimate members in the group.

3. since the system does not depends upon a single coordinator and hence the level of Security

has been increased.

4. More over the system performs rekeying on a batch or group of join and leave operations.

This will overcome the problems faced by the individual rekeying method

2.3.1. The Rebuild Algorithm

The motivation of the Rebuild algorithm is to minimize the resulting tree height so that
the rekeying operations for each group member can be reduced. At the beginning of every

rekeying interval, we reconstruct the whole key tree with all existing members that remain in the

communication group, together with the newly joining members. The resulting tree is a left-

complete tree, in which the depths of the leaf nodes differ by at most one and those deeper leaf

nodes are located at the leftmost positions.

The Pseudo code of the Rebuild Algorithm can be given as
Rebuild (T, M

j,
 J, M

 l
, L)

1. Obtain all members from T and store in M’

2. Remove the L leaving members in Ml
j
 from M’

3. Add the J new members in M
 l
 to M’

4. create a new binary tree T’ based on members in M’ and set T = T’

5. Elect all members to be sponsors

6. Rekey renewed nodes and broadcast new blinded keys in T

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.3, No.1, February 2012

123

Let us consider the following key tree with 7 members to understand the interval based rekeying

algorithms

Applying the Rebuild algorithm the resulting key tree will be

 M2, M5, M7 leave

 M8 joins

The key tree consists of five members and has all non leaf nodes renewed. Besides, the

sponsors include all the five members. Rebuild is suitable for some cases, such as when the

membership events are so frequent that we can directly reconstruct the whole key tree for

simplicity, or when some members lose the rekeying information and the simplest way of

recovery is to rebuild the key tree.

2.3.2. The Batch Algorithm

The Batch algorithm is based on the centralized approach which is now applied to a

distributed system without a centralized key server. The pseudo-code of the Batch algorithm is

given as follows

BATCH(T , M

j
 , J , M

l
 , L)

0

M1

M2

2

4 6

7

1

5 3

8 1 1

M3

M4 M5

M6

2 2

M7

0

M1

M3

2

4 6

7

1

5 3

8

M4

M6

M8

0

1

3

Key Tree after applying REBUILD Algorithm

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.3, No.1, February 2012

124

1. if (L = = 0) /* Pure Join Case * /

2. { create a new Tree T’ based on new members in M
j
;

3. either add T’ to the shallowest node of T such that the merge will not increase the height of the result

tree , or add T’ to the root node of T if the merge to any node of T will increase the tree height ;

4.} else /* L > 0 */

5.{ sort M
l
 in the ascending order of the associated node IDs of the members and store the results in M

l,S

= { M1
l,S

 , M2
l,S

 , …………… , ML
l,S

 };

6. if (L > J)

7. if (J > 0) {

8. replace the departed nodes of { M1
l,S , M2

l,S , …………… , ML
l,S } with J

joined nodes

9. }

10 remove remaining L – J leaving leaf nodes and promote their siblings ;

11 . } else / * J >= L */

12. { divide M
j
 in to L subgroups G = < G1, G2 , …… , GL > such that the first J mod L subgroups

contain [J/L]+1 new members and the rest contain [J/L] new members ;

13. create L sub trees < T’1 , T’2 , …… , T’L > for the sub groups G ;

14.replace the departed nodes of { M1
l,S

 , M2
l,S

 , …………… , MJ mod L
l,S

 }with the roots of < T’1 , T’2 ,

…… , T’J mod L > and the remaining departed nodes with the roots of remaining sub trees ;

15.}

16.}

17. elect the members to be sponsors if they are new members , or the rightmost members of the sub trees

rooted at the siblings of the departed nodes or the replaced nodes in T;

18. if (Sponsor) / * responsibility of the sponsor */

19. rekey the renewed nodes and broadcast the new blinded keys ;

2.3.3. The Queue - Batch Algorithm

The Queue-batch algorithm is divided into two phases, namely the Queue-sub tree

phase and the Queue-merge phase.

The first phase occurs whenever a new member joins the communication group during

the idle rekeying interval. In this case, we append this new member in a temporary key tree.

The second phase occurs at the beginning of every rekeying interval and we merge the
temporary tree (which contains all newly joining members) to the existing key tree. The pseudo-

codes of the Queue-sub tree phase and the Queue-merge phase are illustrated as follows.

QUEUE – SUBTREE (T’)

1. if(a new member joins) {

2. if (T’ = = NULL) /* no new member in T’ */

3. create a new tree T’ with the only new member;

4. else { /* there are new members in T’ */

5. find the insertion node ;

6. add the new member to T’ ;

7. elect the right most member under the sub tree rooted at the sibling of the

 joining node to be the sponsor ;

8. if(sponsor) /* sponsors responsibility */

9. rekey renewed nodes and broadcast new blinded keys ;

10. }

11. }

QUEUE – MERGE(T , T’ , M
l
 , L)

1. if(L = = 0) { /* there is no leave */

2. add T’ to either the shallowest node of T’ such that the merge will not increase

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.3, No.1, February 2012

125

the resulting tree height , or the root node of T if the merge to any locations will increase the

resulting height ;

3. } else { /* there are laves */

4. add T’ to the highest leave position of the key tree T ;

5. remove remaining L – 1 leaving leaf nodes and promote their siblings

6. }

7. elect members to be sponsors if they are the right most members of the sub tree rooted at the

sibling nodes of the departed leaf nodes in T , or they are the rightmost member of T’ ;

8. if(sponsors) /* sponsors responsibility */

9. rekey renewed nodes and broadcast new blinded keys ;

3. CONCLUSION

We consider several distributed collaborative key agreement protocols for dynamic peer
groups. The key agreement setting is performed in which there is no centralized key server to

maintain or distribute the group key. We show that one can use the TGDH protocol to achieve

such distributive and collaborative key agreement. Rekeying is performed when ever any new

user joins the Group or any existing user leaves the group. This is done to achieve Forward

Confidentiality i.e. a user who left the group cannot access the data any more and Backward

Confidentiality which means a user newly joining the group will not know the previously

accessed data.

To reduce the rekeying complexity, we propose to use an interval-based approach to

carry out rekeying for multiple join and leave requests at the same time, with a tradeoff between

security and performance. In particular, we show that the Queue-batch algorithm can

significantly reduce both computation and communication costs when there exist highly

frequent membership events. We also address both authentication and implementation for the

interval-based key agreement algorithms. As with other applications, there is certainly a scope
for improvement in this application too. New modules may be included to increase the

compatibility of the project. Once these improvements have been done, the majority of the

features that make an application more excellent can be achieved.

REFERENCES

1. M. Steiner, G. Tsudik, and M. Waidner, “Key agreement in dynamic peer groups,” IEEE Trans.

Parallel Distrib. Syst., vol. 11, no. 8, pp. 769–780, Aug. 2000.

2. W. Diffie and M. Hellman, “New directions in cryptography,” IEEE Trans. Inf. Theory, vol. 22,

no. 6, pp. 644–654, 1976.

3. “Tree-based group key agreement,” ACM Trans. Inf. Syst. Security, vol. 7, no. 1, pp. 60–96, Feb.

2004.

4. Security Services for Dynamic Peer Groups An IBM Research Paper.

5. “Batch Rekeying for Secure Group Communications” Xiaozhou Steve Li, Yang Richard Yang,

Mohamed G. Gouda, Simon S. Lam Department of Computer Sciences University of Texas at

Austin Austin, TX 78712-1188

6. Distributed Collaborative Key Agreement and Authentication Protocols for dynamic Peer

Groups Patrick P. C. Lee, John C. S. Lui, Senior Member, IEEE, and David K. Y. Yau, Member,

IEEE

7. “A block-free TGDH key agreement protocol for secure group communications” by Xukai Zou

Department of Computer and Information Sciences Indiana University - Purdue University

Indianapolis, USA , Byrav Ramamurthy Department of Computer Science and Engineering

University of Nebraska-Lincoln, USA

8. Cryptography and Network Security by Behrouz A. Forouzan . TMH chapter 15 (page 438 –

440)

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.3, No.1, February 2012

126

9. Cryptography and Network Security – Principles and Practices by WILLIAM STALLINGS

 Chapter 10: Key Management

10. S. Blake-Wilson and A. Menezes, “Authenticated Diffie-Hellman key agreement protocols,” in

Proc. 5th Annu. Workshop on Selected Areas in Cryptography (SAC’98), 1998, vol. LNCS 1556,

pp. 339–361.

11. A. Perrig, “Efficient collaborative key management protocols for secure autonomous group

communication,” in Int. Workshop on Cryptographic Techniques and E-Commerce

(CrypTEC ’99), Jul. 1999, pp. 192–202.

12. C. K.Wong, M. Gouda, and S. S. Lam, “Secure group communications using key graphs,”

IEEE/ACM Trans. Netw., vol. 8, no. 1, pp. 16–30, Feb. 2000.

AUTHOR

B Maheshwari M.Sc (CS), M.Tech (CSE), working as an assistant professor in

Alluri Institute of Management Sciences, Hunter Road, Warangal, since 2006.

