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ABSTRACT 

Dimensionality Reduction is usually achieved on the feature space by adopting any one of the prescribed 

methods that fall under the selected technique. Feature selection and Feature extraction being the two 

aforesaid techniques of reducing dimensionality, the former discards certain features that may be useful 

at a later stage whereas the latter re-constructs its features into a simpler dimension thereby preserving 

all its initial characteristics. The sole purpose of this survey is to provide an adequate comprehension of 

the different dimensionality reduction techniques that exist currently and also to introduce the 

applicability of any one of the prescribed methods depending upon the given set of parameters and 

varying conditions as described, under each algorithm’s usage statistics. This paper also presents 

guidelines where in, selection of the best possible algorithm for a specific instance can be determined 

with ease when a condition arises where in two or more algorithms may be suitable for executing the 

aforementioned task. 

KEYWORDS  

Feature selection, Feature extraction & Dimensionality Reduction  

1. INTRODUCTION 

The objective of data mining is to process, classify and select useful data from a given dataset. 

The information gathered for data mining procedures may consist of erroneous data where in 

certain quantities may display missing values or even may convey inappropriate information 

that misleads the user because of the alterations that have been made due to irrelevant inputs. 

Data pre-processing is an approach where these irregularities are detected, analyzed and 

rectified by applying certain behavioral predictions and modifications to alter the inapplicability 

present in the data set. Dimensionality reduction being one of the predominant techniques of 

data pre-processing is necessitated in order to incorporate a systematized structure into the 

information set, before it is being sent into the mining processor. It is also an efficacious 

approach towards downsizing of data which can abet in effective storage and retrieval of data. 

Some of its applications include its efficient usage in the areas of text mining, pattern matching, 

image processing, micro-array data analysis and image retrieval. Dimensionality reduction can 
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be implemented using various algorithms like SVD, SVM, ICA, PCA etc. A descriptive analysis 

of eight algorithms used for this process has been provided and some are being compared with 

one another to judge its strengths or weaknesses with respect to its equivalent. Data pre-

processing also acts as one of the pivotal procedures in various machine learning projects. 

2. ALGORITHMS 

2.1. Singular Value Decomposition (SVD) 

Singular Value Decomposition (SVD) is a gene selection procedure performed to decrease 

dimensionality of data. SVD is a matrix factorization method, and comes under linear vector 

algebra. In data analysis applied on gene expressions, the primary objectives of applying SVD 

are identification and extraction of the structural constitution within the data and also relating to 

significant associations involving gene expressions [1]. 

The key method of SVD is to calculate the eigenvalues and eigenvectors of the covariance 

matrix from the complete sample-gene matrix. The eigenvalues or singular values will help 

deduce variation in the corresponding eigenvectors; If the singular value is greater, the 

respective eigenvector will contain a higher variability. Generally some of the initially 

appearing eigenvectors that illustrate higher unpredictability are chosen as prime Principal 

Components (PCs) in order to reduce the data into a smaller quantity of dimensions. Since the 

remaining feature elements are removed, information is lost while the original data is recovered. 

This loss of data is utilized to obtain the feature genes [2]. 

A tool known as clustering is generally used to analyse the data. Groups of genes that show 

comparable expression profiles are discovered by Clustering. There are two categories that 

come under the well-known clustering methods and are known as the Model-free and Model-

based methods [3]. In the model-free clustering methods, there is no probabilistic model 

prescribed for the data, and clusters are prepared either by iteratively dividing genes to form a 

tree or optimizing a certain target function. The model-based clustering methods build clusters 

assuming that the data follows a mixture dependent distribution.  Among the model based 

methods, the mixture-Gaussian distribution method is comparably simpler in terms of 

computation. The SVD method is applied hereon.  

In gene expression data, SVD is known to overcome two difficulties. The primary one is about 

parameter estimation, which becomes challenging when the size of a cluster is small or 

dimension of the data, is high. The secondary reason depends upon the normality assumption on 

gene expression levels, which is rarely satisfied by real data. First SVD is applied on the data, 

and then a technique known as probit transformation is done. Certain results have shown that 

the transformation using SVD can normally be applied on both types of data sets, with or 

without scattered genes and can be found useful. And after application of probit transformation, 

there is an improvement in the working of the model-free clustering methods seen in the data 

sets which contain scattered genes. 

2.2. Principal Components Analysis (PCA) 

The PCA is a statistical data analysis method that transforms the initial set of variables into an 

assorted set of linear combinations, known as the principal components (PC), with specific 

properties with respect to variances. This condenses the dimensionality of the system while 

maintaining information on the variable connections [4]. The analysis is done on a data set by 

calculating and analysing the data covariance matrix, its eigenvalues along with its respective 

eigenvectors systematized in descending order. Dimensionality Reduction is a process used in 

Data Mining where the numbers of random variables under consideration are reduced. 

Dimensionality Reduction is broadly categorized as Feature Selection where a subgroup of all 

the features is selected and Feature Extraction where the existing features are combined and a 
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new subset of the combinations is created. Principal Components Analysis (PCA) is one of the 

common techniques used under Feature Extraction. PCA uses a signal based representation 

criterion where the purpose of feature extraction is to represent the samples accurately in a 

lower dimensional space whereas the alternate technique, Linear Discriminant Analysis (LDA) 

deploys a classification based approach. PCA performs dimensionality reduction whilst 

maintaining maximum feasible arbitrariness in the high-dimensional space. It can be seen as a 

data visualization method since high dimensional datasets can be condensed to a lower 

dimension (2D OR 3D) and then plotted using graphs or visualized using charts. 

In a case of dimensionality reduction of two highly dimensional picture databases, Simple 

Principal Components Analysis (SPCA) underwent testing and assessment with other 

techniques. SPCA depicted a quick convergence rate and stability to the reorganization of the 

samples compared with other methods [5]. 

Simple PCA (SPCA) method produced estimated solutions without the requirement of 

calculating a variance-covariance matrix followed by its diagonalization. It is independent of 

training parameters like neural networks. Predominantly, for highly dimensional datasets, SPCA 

is much quicker than other existent procedures. 

The principal methods used for PCA are the Matrix method and the Data method. In the Matrix 

method, all of the data contained in the datasets are employed to calculate the variance-

covariance structure and express it in the form of a matrix. The matrix is further disintegrated 

and a diagonalization technique is applied. Data methods on the other hand, work directly with 

the data. In SPCA, the data oriented approach is taken so there is no issue of computing the 

matrix and also, no learning parameters are required. 

PCA is also used to lower the dimensionality of the data set before clustering happens. Using 

PCA before cluster analysis could abet in an improved drawing out of the cluster organization in 

the data set. Given that Principal Components (PCs) are ordered yet not varying together and, 

the first few PCs that consist of maximum variations in the data are typically used in cluster 

analysis. PCA is used to examine how well the genes that were extracted depict the normal 

variance between the data, thereby getting rid of the variance due to any other sources to the 

highest potential degree. Finally, PCA can furthermore be used as a platform to contrast 

between the performances of various different methods used to establish normal variance [6]. 

The major drawback observed in PCA is that it gives no consideration to class separability 

because it does not account for the class label of the feature vector [7]. PCA just performs a 

coordinate rotation that aligns the coordinate axes transformed earlier, along the directions of 

maximum variance. There is no assurance that the directions of maximum variance will 

comprise of features worthy enough for discrimination. 

2.3. Support Vector Machines (SVM) 

SVM is a recently developed technique used for classification suggested by Vapnik, which was 

consecutively applied to several domains. SVM is applied to microarray cancer data which 

comprises of several gene expressions. SVM is applied after many steps after analysis to finally 

classify cancer tissues as part of an integrated algorithm. The main aim of SVM is to obtain an 

optimal separating hyper-plane with the maximum margin (w) and a real value for organization 

of data. Practically, the data may not be linearly separable, and few deviations on classification 

are permitted on the learning data sets [8]. 

SVM method is one of the most imminent tools used for analysis of gene expression data from 

DNA microarrays. This is mainly possible since the SVM method is specifically appropriate for 

certain specific data sets where the number of samples is much smaller in comparison to the 

number of features (genes). Moreover, the SVM Technique can also be used for gene selection. 
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The advantages of using the SVM model are its Optimality and it results in a distinctive 

solution. SVM used along with a form of cross-validation, which gives unique assessment of 

generalization capability, formulates a procedure of features (genes) selection known as 

recursive feature replacement (RFR) [1]. 

SVM and SVD are basically used to analyse gene expression data even though they are 

associated with a separate category of computational techniques: the SVM technique is an 

illustration of a supervised method while the SVD technique belongs to a class of unsupervised 

methods. The scope of application of these methods for various functions namely: clustering, 

classification, feature selection and modelling of dynamics of gene expression is considered and 

examined. By using the weights of a classifier to produce a feature ranking, the SVM technique 

is presently one of the best-known classification methods with computational advantages over 

the other existing ones [9]. 

A gene selection algorithm was proposed by Guyon et al employing an SVM method that 

deploys a Recursive Feature Elimination (RFE). The SVM-RFE method, starts with the gene set 

consisting of the complete gene set, and eliminates iteratively the gene that is least significant to 

the classifier from the gene set. Gene ranking score is selected as a criterion to measure the 

significance of the gene for classification and it is defined by the sum square of the weight 

vector of the SVMs, and is calculated separately [10].  The gene expression profiles between 

early and late stage primary CRCs (colorectal cancer) were compared, as well as the gene 

expression profiles between metastatic CRCs and late stage primary CRCs. Highest 

classification accuracy (100%) was achieved with smaller gene subsets, by using the SVM-T-

RFE method. Results proved to illustrate an improvement than that of previous studies. 

2.4. Independent Component Analysis (ICA) 

Independent component analysis (ICA) is a computational technique used for splitting an 

assorted signal into its reduced subcomponents. A simple practice of ICA is the "cocktail party 

problem", wherein the fundamental speech signals are divided from a sample data comprising of 

individuals conversing together within a room. Usually this predicament is interpreted by 

considering the absence of time delays or echoes. An imperative note that is to be taken into 

consideration is that if N sources are present, at least N estimations (e.g. microphones) are 

required to mine the primal signals. 

This methodology can be approached with an alternative technique known as the Regularized 

Whitening method to decrease the dimension to a limited set of independent sources or dormant 

variables, which later can be used in downstream analysis. Unlike PCA, which only analyses 

covariance, the ICA algorithm is capable of employing higher order statistics which may 

contain substantial complementary data. This is predominantly valued when the dispatch of data 

differs significantly from its prevalent parameters, which for at least two reasons is typically the 

situation when dealt with microarray expression data. Most ICA algorithms require “whitened" 

data, by means of an identity covariance matrix. This is more than a statistical prerequisite, 

where in the algorithm tries to disintegrate the data beyond its first two moments which is the 

ultimate goal of PCA and its associated methods [11]. 

ICA can also be used as an augmented version of the PCA based method. With the regularized 

whitening technique, dimension was reduced to a smaller set of independent sources or latent 

variables, which then can be used in subsequent discriminant analysis. The components of the 

collaborating matrix can themselves be examined to gather more thoughts from a larger 

perspective, about the genetic keystones of the procedure that generated the data required for 

further processing [11]. 

A different method is to acquire the benefits of Mother Nature that are arbitrarily brought about 

through the usage of random initial projection vectors in the ICA. As an outcome to these 

procedural parameters, three algorithms were devised for the ICA-DR (Independent Component 
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Analysis – Dimensionality Reduction) procedure. The first being ICA-DR1, is developed by 

using the VD (virtual dimensionality) parameter along with a principle for component 

prioritization and selection. The second one, called ICA-DR2 executes the ICA as an 

unsystematic algorithm with randomness characterized by random initial projection vectors. As 

a result, the ICA-DR2 spontaneously determines a desired set of ICs for DR without 

consideration of criteria. The last algorithm is called ICA-DR3 which incorporates the use of a 

characteristically designed initialization algorithm in association with the VD to produce an 

applicable group of initial projection vectors to substitute the random projection vectors used by 

the ICA to generate each of the ICs [12]. 

A diverse scenario has been experienced, in the instance of dimensionality reduction of hyper 

spectral data where the physical sources do not occur. Here, the ICA is only used to discover the 

projection where all the anticipated components are “the most independent” with respect to 

negentropy. Independent Component Analysis is strongly associated to Projection Pursuit (PP), 

a statistical data analysis tool designed to decrease the dimensionality of multivariate data sets 

by recognizing “interesting projections” in accordance to a projection directory. PP has lately 

been recommended for analysing hyper spectral images both for supervised classification and 

for unsupervised data analysis. The key dissimilarity is that ICA concurrently checks all the 

modules and predicts the directions where all the projected components are “the most 

independent” in the sense of a degree to independence. On a conflicting note, regular PP 

consecutively searches for a projection. When a direction is established, data are projected 

against the subspace orthogonal to the latter and this is carried on. The selection of the two 

methods should be overseen by the application [13]. 

2.5. Canonical Correlation Analysis (CCA) 

In statistics, Canonical Correlation Analysis, as presented by Harold Hoteling, is a method of 

creating sense out of cross-covariance matrices. If we take into consideration, two groups of 

variables and their correlations amongst the variables, then canonical correlation analysis will 

facilitate us to discover linear combinations of the variables and those variables which have the 

highest correlation with each other. CCA can also be used to create a model equation which 

relates two sets of variables, for instance a set of performance measures and a set of descriptive 

variables, or a set of outputs and a set of inputs.  

CCA could accomplish class prediction with a certain primal set of samples belonging to 

standard classes (such as AML and ALL) to categorize new, anonymous samples. Their initial 

leukaemia dataset comprised of 38 bone marrow samples (27 ALL, 11 AML) acquired from 

acute leukaemia patients at the time of diagnosis. The primary concern was to establish if there 

were genes whose expression form was intensely associated with the class distinction to be 

predicted. To establish whether the perceived correlations were stronger than those projected, a 

technique called neighbourhood analysis was developed. The second problem was on how to 

make use of an assorted set of common samples to construct a “class predictor” proficient of 

allocating a fresh sample to one out of two classes. A system which applies a permanent subset 

of “informative genes” (selected based on their connection with the class distinction) and 

creates an estimation based upon the expression level of these genes in a fresh sample was 

developed [14].  

Canonical Correlation Analysis (CCA) and its regularized version, (RCCA), are techniques for 

blending two modalities. CCA has been used to discover linear relationships between the pixel 

values of images and the text committed between these images. RCCA has been used to study 

expressions of genes measured in liver cells and associate them with concentrations of hepatic 

fatty acids in mice. CCA is a simple procedure but it suffers from over fitting when the 

modalities have large quantities of dimensions. RCCA is an amendment to CCA that prevents 

over fitting but this procedure is computationally very expensive. CCA lacks regularization and 

thus the conforming covariance matrices have defective inverses. For this purpose, the 
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embedding modules are not orthogonal but are extremely correlated to each other and yield the 

same information. RCCA overcomes this regularization problem but still does not create an 

equivalent level of refinement between patient classes [15]. 

CCA is an approach of determining the linear affiliation involving two multidimensional 

variables. It selects two bases, one for each variable, that are ideal with regard to correlations 

and, simultaneously, it establishes the corresponding correlations. Essentially, it finds the two 

bases in which the correlation matrix between the variables is diagonal and the correlations on 

the diagonal are maximized. This is the most significant dissimilarity between CCA and 

ordinary correlation analysis which greatly rely on the principle in which the variables are 

defined [16]. 

DNA microarrays assess expression of numerous thousands of genes. In several organisms, the 

consequences of drugs on gene expression could be probed by using Microarray classification. 

As contrasted to sequencing, the microarrays for gene expression analysis are economical in 

terms of computation. An optimal subgroup of features from the feature set can be discovered 

by deploying certain feature selection procedures. Using these procedures an optimal subset of 

features (S) needs to be determined from a general set of N features, resulting in the highest 

classification accuracy. This condensed optimal feature subset can be named as the predictor 

set, |S| and generally as much lower dimension in comparison to the overall set (S << N). 

CCA/CFA (Cross Modal Factor) features can be used to mine the optimal predictor set that 

takes into matter, feature enslavements among different genes. These procedures look for the 

similarities in data sources or statistical associations between various genes [17]. 

2.6. Locally Linear Embedding (LLE) 

Non-linear dimensionality reduction methods are largely categorized into two groups such as 

the ones that offer a mapping from the high dimensional space to a lower dimensional 

embedding or vice versa, and the others that just provide a visualization in terms of graphs or 

charts in lower dimensionalities. In the perspective of machine learning, mapping approaches 

may be regarded like an initial feature extraction step, which is followed by pattern recognition 

algorithms. 

At present, several existing data dimension reduction techniques are either supervised, which is 

the case where data requires to be labelled. Here the recommended technique was to practice a 

reviewed LLE method, which is solely unsupervised and quick as the feature extraction scheme 

for the analysis of microarray data. Three widely accessible microarray datasets are used to 

assess the aforementioned technique. The efficaciousness of LLE is assessed by the 

classification precision unit of an SVM classifier. LLE is initially performed on the expression 

data to condense the dimensionality from a several thousands to a relatively smaller number. 

Then SVM classifier is applied, and then the Leave-one-out classifier criterion is used to assess 

the usefulness of the feature reduction’s operation [18]. 

LLE levels well with the intrinsic abundant dimensionality constant, d, and does not involve a 

precise gridding of the embedding space. As more and more dimensions are supplemented to 

the embedding space, the prevailing ones remain unvarying; therefore LLE need not be repeated 

to compute advanced dimensional embedding. LLE is not bounded to practice manifolds of 

tremendously low dimensionality or co-dimensionality unlike methods like principal curves and 

surfaces or additive component models. The intrinsic value of d can alone be projected by 

analysing a reciprocal cost function, in which restoring weights derived from the embedding 

vectors YWi are applied to the data points XWi [19].  

The local linear embedding algorithm (LLE) is a non-linear dimension-reducing method that is 

extensively used for its computational plainness and impulsive approach. Primarily, LLE 

linearly restructures each and every input point from its nearest neighbours and then preserves 

these neighbourhood relationships in a lower dimensional space [20]. 
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LLE feature extraction procedure is purely unsupervised, and it does not require the presence of 

class labels. This feature extraction design is a basic linear algebra problem, and it does not 

contain any training or reiteration process, such that the procedure can be exceptionally quick. 

The feature reduction on leukaemia and colon datasets evidently outpaces this on lymphoma, 

and this can mean that LLE feature extraction is more suitable for binary-class feature reduction 

techniques when compared to multiple (greater than 2) class predicaments [18]. 

2.7. Linear Discriminant Analysis (LDA) 

Linear Discriminant Analysis (LDA) is a procedure used to overcome dimensionality reduction. 

It is used mainly in the Small Sample Size (SSS) problem. This issue can in a large set of data. 

In controlled experiments, the amount of existing cases is relatively rise in medical data sets 

where there are great amounts of dimensions or features less and the occurrence of features or 

variables is generally significantly larger than the size  of the samples [21].At this point, the 

small sample size problem (SSS problem) arises. 

The data involved in the process can be analysed by two methods namely Feature Selection and 

Feature Transformation where in, Feature transformation processes generate a new group of 

features as a result of combining or transforming the existing ones. The various procedures used 

here are PCA, LDA, and PLS, etc.  

A drawback of the original LDA is that at least one non-singular scatter matrix is required for 

computation. When there are insufficient numbers of samples in the data set, this condition fails, 

i.e. the data dimension generally exceeds the number of available data values. To overcome the 

non-singularity restriction, (LDA/GSVD) has been introduced which is basically LDA built on 

the generalized singular value decomposition. Two-stage approaches have been proposed for 

dimensionality reduction to decrease computational complexity with no non-singularity 

constraint that comes with FDA. Also, nowadays GLDA algorithms are being applied to 

dimensionality reduction techniques [22]. 

In the Direct Linear Discriminant Analysis method, the dimensionality reduction is carried out 

in two stages. Firstly, a transformation matrix is calculated to transform the training samples to 

a specific range space. Then, the dimensionality of these transformed samples is further reduced 

using certain specific regulating matrices. 

This enhanced DLDA method surpassed DLDA and certain other related techniques such as 

PCA + LDA technique and the OLDA technique [23]. The experimentation was tested and 

implemented on eight DNA microarray gene expression datasets and its enhanced DLDA 

technique showed an average classification accuracy of 91.1% which proved to be quite 

superior compared to the average accuracy of the DLDA technique (79.6%). Additionally, PCA 

transformations are not needed by LDA to reduce dimensionality like other methods such as 

PCA + LDA and it has a higher accuracy percentage (above 90%). Some of the drawbacks of 

the LDA method are that the null space of SB (range space) is ignored in the first stage. Since 

the inverse of the eigenvalues of SB are made use of in its computation, the eigenvectors related 

to larger eigenvalues of SB are de-stressed that are further constructive in discriminant analysis. 

In LDA based multiclass classification techniques where the dimension reducing transformation 

matrix is directly applied for multiclass classification. 

A form of LDA known as Null space based linear discriminant analysis (NS-LDA) is used to 

extract data in cancer classification. NSLDA initially extracts the first order derivative 

information of the mass spectrometry profiles. Based on the null-space strategy, NSLDA next 

reduces the data dimension and obtains the discriminant features at the same time. 

Fisher’s linear discriminant analysis (LDA) in combination with a genetic algorithm is used to 

study the spatial system of gene subsets [24]. To test the effectiveness of the proposed LDA-

based GA, widespread experiments were carried out on seven public datasets and the final 
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results were compared with seven other prominent algorithms. High prediction accuracy (96% - 

100%) was achieved with a minor quantity of informative (test) genes (usually < 20). 

2.8. Partial Least Squares Regression (PLS REGRESSION) 

Partial least squares regression (PLS regression) is a mathematical approach that allows certain 

relation to principal components regression, instead defining hyper-planes of high variance 

amongst the response and independent variables, PLS discovers a linear regression model by 

predicting the estimated variables and the perceivable variables to an alternate space. Since both 

the X and Y data are projected to fresh spaces, the PLS family of techniques are commonly 

known as bilinear factor models.  

An alternative meaning for PLS is projection to latent assemblies, but the term partial least 

squares continues to be used in several domains. Despite the inventive purposes were in the 

social sciences, PLS regression continues to be extensively used in chemo-metrics and 

associated fields to this day. It is furthermore used in fields such as bioinformatics, 

sensometrics, neuroscience and anthropology. In a distinct manner, PLS path modelling is 

regularly applied in the fields of econometrics, marketing, social sciences and strategic 

management. 

PLS regression has been lately known as a means to simplify and pool characteristics from 

principal component analysis (PCA) and multiple regressions. It is predominantly functional 

when we want to forecast a group of dependent variables from a (very) large set of independent 

variables (i.e., predictors). The aim of PLS regression is to estimate Y variables from X 

variables and to explicate their collective assortment. If the collection of predictors is enormous 

in comparison to the number of observations, X becomes singular hence the regression method 

is not achievable. One tactic is to disregard some predictors or also, a method called principal 

component regression is performed to execute a principal component analysis (PCA) of the X 

matrix and then use the principal components of X as regressors on Y. The problem here is to 

choose an optimal feature subset. One probable scheme is to retain only the first few 

components. But these are selected to explain X reasonably than Y, and therefore, nothing will 

assure the principal components, which “explain” X, that are relevant for Y [25]. 

Typical statistical policies in different classification methods do not execute properly when the 

dimension, p, is larger compared to the gene sample size, N. Dimension reduction of the higher 

(p) dimensional space by PCA is realized by fabricating principal components (PCs), which are 

the linear combinations of the novel p predictor/ explanatory variables. In PCA, dimension 

reduction is accomplished by creating linear combinations that make best use of the variance-

based objective function, namely variable (Xw).Similarly PLS works well with an independent 

function based purely on covariance. [26]. 

In PCA, the individual weights are collected independent of the response variable; thus, the 

assortment of subcomponents with large variance may not essentially be analytical of the 

response. Thus, for estimation of survival times using gene expression data, a method 

recommended was PLS dimension reduction, which takes advantage of a covariance criterion. 

Dimension reduction using PCA totally disregards the response data and its corresponding 

censoring statistics. PLS integrates the response variable during the dimensionality reduction 

procedure [27]. 

In particular, PLS surpasses PCA in the case of microarray gene expression data. Although, 

PCA can be fairly competent if one selects the predictors (genes) which can be predicted from 

the response classes before pre-deploying PCA. PLS only consists of indicating the amount of 

gene components whereas PCA necessitates choosing the K gene components [28]. 
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3. CONCLUSIONS 

The sole purpose of this survey was to provide a vivid analysis on different popular and 

predominant algorithmic approaches that are used to execute dimensionality reduction. The 

Singular Value Decomposition (SVD) method emphasizes on a gene selection technique 

whereas the Principal Component Analysis (PCA) method focuses on converting the values into 

a set of linear combinations. The Support Vector Machines (SVM) (supervised) is compared to 

the Singular Value Decomposition method (unsupervised) and thus their efficiencies are 

discussed within their applicable expanses.  

PCA and Linear Discriminant Analysis (LDA) also fall under a peculiar category of feature 

transformation where in the former uses a statistical signal criterion whereas the latter uses a 

classification model. The Partial Least Squares (PLS) method can also be categorized under the 

same roof of transformation and is compared to PCA where in the former uses a linear 

regression model whereas the latter stresses on the use of maximum variance calculated. The 

Locally Linear Embedding (LLE) technique is a manifold learning methodology and thus falls 

under the non-linear practices of dimensionality reduction.  

The Canonical Correlation Analysis (CCA) technique abets in discovering linear combinations 

from two sets of variables and thereby approximates correlations amongst these variables. The 

Independent Component Analysis (ICA) method works on the principle of additive 

subcomponents and separation of singular units from a large multivariate source. Thus 

dimensionality reduction algorithms can be executed onto a specific dataset with a particular 

problem, depending upon their usage statistics and parameters under which their applicable 

conditions are satisfied. 
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