
�

����������	�
��	��
����	������	�	�	����	�	�����������������
������������������� ����	����!�!�

� ���

���������������	��
�����	��
���
�

��	�������
�

�

Achraf MAKNI and Rafik BOUAZIZ

Faculté des Sciences Economiques et de Gestion de Sfax
BP 1088, 3018 Sfax, Tunisia

Tunisia
{Achraf.makni, Raf.bouaziz}@ fsegs.rnu.tn

ABSTRACT

Several database (DB) applications are temporal of nature and require a special treatment. In particular, in
the field of concurrency control (CC) which takes new dimensions when applied to temporal DB (TDB). The
CC algorithms proposed for TDB have tried to find solutions for the CC to improve their performances.
Especially, they have tried, by benefiting from the characteristics of the TDB, to decrease the degree of
conflict, and this by the use of à priori knowledge or the reduction of the granule sizes. But these algorithms
have not reached the fixed objectives. To contribute to the edification of a CC component suitable for TDB,
we propose in this paper a complete study of access concurrency control in TDB. We have chosen to build
our algorithms according to the optimistic methods, which are, in our opinion, more suitable for TDB than
the pessimistic methods. Indeed, our optimistic algorithms can exploit the temporal specifications to reduce
the granule size and then to minimize the conflict degree. Moreover, they can detect, as soon as possible, all
the conflict cases. By using the end of transaction marker technique, they have the merit to reduce to the
maximum the period during which resources are locked in the validation phase. To be sure that our
algorithms operate correctly, we have carried out a formal verification, based first on the serialization theory
and next on the SPIN model checker. Then, we have made a performance evaluation vis-à-vis of other well-
known concurrency control algorithms based on optimistic and pessimistic approaches, to show that our
propositions ameliorate the performances in the large majority of the cases.

KEY WORDS

Temporal DB, Concurrency Control, Formal Verification, SPIN Model Checker, Performance Evaluation.

1. INTRODUCTION

Several applications need to manage simultaneous access to data. They must avoid inconsistency in
the shortest possible time. This is one of the most important challenges for a database management
system (DBMS) when many transactions can have simultaneous access to the same data. The access
concurrency controller is an essential component of a DBMS. It must ensure the database (DB)
consistency, i.e. the guarantee that any simultaneous execution of transactions produces the same
results as some sequential execution [11].

The concurrency control (CC) takes new dimensions when applied to temporal DB (TDB), which
allow the management of data history. We can find in the literature some CC algorithms based on
the pessimistic approach [10] [7] [8]. These algorithms have tried to find solutions for the CC
within the framework of the TDB, while improving the performances. In particular, they have tried,
by benefiting from the characteristics of the TDB, to decrease the degree of conflict, and this by the
use of à priori knowledge or the reduction of the granule sizes. But these algorithms have not
reached the objectives desired within the framework of the TDB.

�

����������	�
��	��
����	������	�	�	����	�	�����������������
������������������� ����	����!�!�

� ���

The goal of this paper is to present a complete study of the CC for TDB using an optimistic
approach. Knowing that the pessimistic approach of CC presents some disadvantages [8], on the
one hand, and the optimistic approach has improved the parallelism degree in some evolved
environments [1], on the other hand, so we have proposed optimistic algorithms suitable for TDB
[5] [17] [18] [19] [20]. Our propositions were formally checked using both the serialization theory
[2], which is a theoretical formalism used to check the CC algorithms, and the SPIN tool [13],
which is one of the most powerful model checkers. SPIN is an appropriate tool for analyzing the
logical consistency of concurrent systems. It is largely used, not only in the research areas, since it
is freeware, but also in industrial ones [7] [6] [3].

Moreover, we have proceeded to a performance evaluation of our algorithms and of other
pessimistic and optimistic ones. The goal of this work is to compare these algorithms and to choose
the ones ensuring the best performance at a minimum cost for the TDB environment. We note that
there has been a great deal of interest in the performance of CC algorithms in the literature in recent
years. Most of these studies have been proposed for real-time systems [22] [16] [24].

This paper is organized as follows. In the next section, we present structure of TDB. We discuss
after that, in section 3, related work and our contribution. In section 4, we present required elements
of the concurrency control before starting the performance evaluation: the choice of granule size,
the scheduling tasks of the algorithms, the conflict detection and the formal verification. We
present, in section 5, the performance studies and, in section 6, the simulation results. Section 7
concludes our paper.

2. STRUCTURE OF TDB

Data item of a TDB can be stamped by their transaction-time and/or their valid-time. We use the
acronyms TTR (transaction time relations), VTR (valid time relations) and BTR (bitemporal
relations) to design relations where data are stamped with their transaction-time, their valid-time
and both times, respectively.

TTR store data versions by stamping them using the transaction time start (TTS) and the transaction
time end (TTE) which are generated by the DBMS [14]. In a VTR, data versions are stamped using
the valid time start (VTS) and the valid time end (VTE). The time interval formed by VTS and VTE
refers to the validity interval during which the data item exists in the real world. It is called valid-
time lifespan [14] and supplied by the user.

To ensure a complete history, we must use BTR which reassemble the characteristics of both TTR
and VTR. Indeed, data versions are stamped using the VTS, the VTE, the TTS and the TTE. It
would be then possible to record the retroactive and postactive updates, on the one hand, and to
view the state of the DB at any moment of past, and particularly the incoherent states, which are not
destroyed.

Let us take the following example of the Salary_Emp BTR:
Emp_num Salary VTS VTE TTS TTE

V1 10 1000 06/10/1 08/3/31 06/9/2:8:8:3 06/11/9:9:3:5
V2 10 1200 06/10/1 08/3/31 06/11/9:9:3:5 08/3/31:23:59:59
V3 10 1300 08/4/1 09/10/31 08/2/2:3:6:8 !
V4 10 1450 09/11/1 10/9/30 08/5/1:2:8:6 !
The error concerning the salary value in the first tuple V1 was corrected at the moment
"06/11/9:9:3:5". So, the corrective tuple V2 was introduced with the same validity interval. TTE of
V1 and TTS of V2 have taken the same value corresponding to the update moment. V2 has ceased

�

����������	�
��	��
����	������	�	�	����	�	�����������������
������������������� ����	����!�!�

� ���

to be the current tuple when the current time has reached its VTE value. The tuple V3 was inserted
in advance (TTSv3<VTSv3). Now, it is the current version. Like the tuple V3, the future tuple V4
was inserted in advance (TTSv4<VTSv4). The graphic representation according to the validity time
and transaction time is shown in figure 3.

Transaction time

Current time

08/5/1:2:8:6

08/3/31:23:59:59

V3

<10, 1300>

V4

<10, 1450>

06/11/9:9:3:5

V2
<10, 1200>

06/9/2:8:8:3 V1 <10, 1000>

Validity

time

06/10/1 08/4/1 Current time 09/11/1 10/9/30

Figure 3. Graphic representation of the Salary_Emp BTR

We note that only the valid versions (V2, V3 and V4 in our example) are concerned by
modifications and so by the concurrency controller.

In our framework [4], we indicate by:
�� Generic Key (GK), the set of attributes which form the relation key without temporal
consideration. In our example, the GK is Emp_num attribute.
�� Generic Tuple (GT), each set of tuples which has the same value of generic key. In our example
of the BTR relation, V1, V2, V3 and V4 belong to the same GT.

We describe, in the following, the semantics of modification operations of any transaction Ti, for a
VTR and a BTR. These operations can be implemented by any temporal language.

�� Read (Rel, select_cond[, ts[, te]]): Ti asks to read values of tuples of the relation Rel satisfying
the selection condition (select_cond) during the time period [ts, te]. The concurrency controller
receives the read message "Read message (Ti, Rel, gk, vts, vte)" for each selected valid tuple having
"gk" as value of its GK. [vts, vte] define the time interval equal to the intersection of the time
period specified in the read operation and the validity interval of this tuple.
�� Insert (Rel, gk, vts[, vte] [, attribute-name: data-value]*): Ti asks to insert in the relation Rel
a new version having a GK equal to "gk". [vts, vte] is the validity interval of the new version. The
concurrency controller receives the insert message "Insert message (Ti, Rel, gk, vts, vte)".
�� Delete (Rel, select_cond[, ts, te]): Ti asks to delete from the relation Rel data satisfying
select_cond and valid during the time period [ts, te]. The concurrency controller must receive the
delete message "Delete message (Ti, Rel, gk, vts, vte)" for each deleted generic tuple.
�� Update (Rel, select_cond [,ts, te], attribute-name: data-value [,attribute-name: data-
value]*): Ti asks to update data value satisfying select_cond and valid during the time period [ts, te].
The concurrency controller receives the update message "update message (Ti, Rel, gk, vts, vte)" for
each updated generic tuple.

3. RELATED WORK AND CONTRIBUTION

3.1. Related work

The two categories of CC methods, pessimistic and optimistic, differ in two aspects: the time when
they detect conflicts and the way that they resolve conflicts. Each one of these two categories has
some disadvantages.

�

����������	�
��	��
����	������	�	�	����	�	�����������������
������������������� ����	����!�!�

� ���

Earlier works concerning the CC methods proposed in the context of TDB are based on the
pessimistic approach ([10] [7] [8]). The algorithm proposed in [7] is distinguished by the fact that it
takes into account timeslice queries to avoid false conflict detection and then to ameliorate the time
execution. Indeed, it considers that each transaction operates on a time interval and then the
conflicts are detected according to this time interval. So, when two transactions operate in the same
time interval, each one will be decomposed in two sub-transactions: Tvalidable and Tconflict. Then, only
the latter must be serialized with the other conflict sub-transaction. At the validation moment of
each transaction, [7] proposed to use the 2PC (2 phases commit) technique in order to ensure that
each sub-transaction is ready to be validated. Using this proposition, the transaction atomicity is
revised [7].

The main contribution of the algorithms proposed in [10] and [8] for TTR is the maintaining of the
strong consistency of the DB [23] to have consistent views of the DB [9] [15]. They stamp the
transactions through their arrival moments and synchronize them according to this order. In order to
reduce the time execution, the algorithm proposed in [8] and the improved version of the MO-2PL
algorithm proposed in [10] need resource knowledge, which is difficult to implement.

3.2. A new approach is needed

There is a major limitation with the pessimistic approach, as well as an important aspect which was
not well studied concerning the timeslice query in the case of VTR and BTR.

The main disadvantage of the pessimistic approach is the use of the transaction blocking technique
in order to avoid inconsistency. This technique decreases the degree of parallelism, on the one hand,
and can cause the appearance of the deadlock problem, on the other hand. These two disadvantages
are avoided with the optimistic approach. Indeed, the contribution of the optimistic approach is
appreciated in some evolved environments, like the real-time systems, where the degree of
parallelism is improved ([12] [1]).

Moreover, as we have seen for delete and update operations in the case of VTR and BTR (as seen in
§2.3), only valid data during the validity interval which corresponds to the intersection of the time
period specified in the delete or update operation and the validity interval of the manipulated tuple,
is modified. So, only this interval must be considered by the concurrency controller. This leads us to
consider a granule as a time interval rather than a tuple. We think that this proposition is more
suitable for VTR and BTR, since a query can be defined according to some portion of time. We also
think that this proposal is more adequate for the optimistic approach than the pessimistic one. For
this latter, the granule to be locked must be a priori known; as a tuple for example. It is more
difficult to ensure this condition when the granule is defined as a temporal interval. In addition, this
leads to decompose each transaction in two sub-transactions as proposed by [7] and to revise the
concept of transaction atomicity.

The optimistic approach can also have disadvantages: high degree of transaction abortion and high
length of the period during which resources are locked in the validation phase. However, we show
in the next sub-section how we can avoid these disadvantages successfully.

3.3. Our contribution

To build our algorithms of CC, our contribution consists in:

�� Adopting the optimistic approach since it can be considered as the most suitable in the context
of TDB. We have started from the validation strategy of broadcast optimistic method with critical
section [21], in order to detect conflicts as soon as possible.

�

����������	�
��	��
����	������	�	�	����	�	�����������������
������������������� ����	����!�!�

� ���

�� Using the end of transaction (EOT) marker technique to reduce, to the maximum, the period
during which resources are locked in the validation phase.
�� Considering the granule as a time interval for a GT rather than a tuple in order to avoid the risk
of false conflict detection, and then to reduce the abortion degree. This proposal has the advantage
of reducing the granule size to the minimum, without a need to decompose transactions. This can
constitute an interesting track and leads us to consider the optimistic approach as the most suitable
in the context of TDB.

Moreover, our contribution consists in proposing two kinds of optimistic algorithms: the first allows
maintaining the strong consistency, used when the final results must be the same as the sequential
execution in the strict order of transaction arrivals; the second is limited to ensure the consistency.
Indeed, many applications require just ensuring that the simultaneous execution of transactions
produces the same results as any sequential execution. This allows avoiding the wait for
transactions arriving to their validation phase and then reducing the execution time.

In addition, our two optimistic algorithms are addressed to any type of temporal relation by carrying
out the necessary treatment in each case. Indeed, they consider the suitable granule according to the
type of relation.

4. DESCRIPTION OF THE CONCURRENCY CONTROL ALGORITHM

4.1. Choice of the granule size

For TTR, the smallest element which will be modifed when executing a modification operation is
the tuple. Then we consider the granule as a tuple and not as a GT [5]. Since modification of past
version is not authorized in TTR, only the current version is taken into account by the concurrency
controller.
Definition: In the case of TTR, the CC granule is defined as follows:

Granule = (Rel, gk), with:
Rel: Relation name,
gk: generic key value.

But for VTR, the modifications of data item states are achieved in accordance with some portions of
time. So, we have proposed to define a new type of granule, as the temporal interval in which a
tuple is valid, rather than this tuple. This allows avoiding the risk of false conflict detections ([18]
[19]). Indeed, the temporal interval in which a tuple is valid is always lower or equal to the whole
validity interval of the tuple.

We can consider, for BTR, the same granule definition proposed for VTR. Indeed, the
modifications of data item states of a BTR are achieved in accordance with some portions of time,
on the one hand, and the same valid timeslice operation defined for VTR are applied for BTR in the
same manner, on the other hand.

Let us consider the example of figure 3. After executing the update operation Update (Salary_Emp,
"Emp_num=10", 10/3/1, 10/9/30, salary: 1500), only valid data during [10/3/1, 10/9/30] are
modified. So, only the validity interval [10/3/1, 10/9/30] must be considered by the concurrency
controller. Our new granule, defined as a time interval, is then shorter than a tuple. In the worst
cases, we consider that it is equal to the tuple. In the case where the validity interval of the updated
operation overlaps many version validity intervals, it can be necessary to use many granules and not
only one for this operation.
Definition: In the case of VTR and BTR, the CC granule is defined as follows:

Granule = (Rel, gk, ti), with:

�

����������	�
��	��
����	������	�	�	����	�	�����������������
������������������� ����	����!�!�

� ���

Rel: Relation name,
gk: generic key value,
ti: time interval.

4.2. Tasks scheduling of the concurrency controller

An optimistic concurrency controller maintains for snapshot relations two sets for each transaction:
a read set (RS) and a write set (WS). In the case of temporal relations, we continue to use one read
set, but we propose to define three different write sets rather than one ([18] [19]), for the reasons
given in §4.3.

Proposition: In order to avoid false conflict detection, the concurrency controller must maintain for
each transaction Ti four sets:

RSi (Read Set), the set of objects read by Ti,
ISi (Insert Set), the set of objects inserted by Ti,
USi (Update Set), the set of objects updated by Ti,
DSi (Delete Set), the set of objects deleted by Ti.

To build our algorithms of CC, we start from the validation strategy of broadcast optimistic method
with critical section [21]. Based on this strategy, a transaction Te consists of three phases:

�� A read phase during which the required objects are read from the DB and the write operation
are performed on a local copy of the transaction, imperceptible for the other transactions.
�� A validation phase during which the checking of conflicts is performed. This phase starts at the
execution of the Te commit order.
�� A write phase during which the objects modified are written in the DB.

The validation and write phases form the critical section, during which manipulated objects are
locked and thus can not be acceded by another transaction.

For each transaction Te which wants to execute its commit order, the concurrency controller must
validate Te vis-à-vis of each concurrent transaction Tk which is not yet validated. If there is a
conflict between Te and Tk, the transaction having the lowest priority is aborted.

Let us keep in mind that, in the algorithms proposed in [5] and [18], the priority order is attributed
according to the arrival order. So, the transactions are stamped by the moments of their arrivals and
then the last coming one has the lowest priority. In order to ensure a validation order according to
these stamps, we propose to add a certification phase which precedes the validation one of each
transaction. In the certification phase, the concurrency controller must check, before starting the
validation phase, that Te has the highest priority regards to transactions which are not yet validated.
If it is the case, the concurrency controller passes Te to its validation phase. Otherwise, Te is put in a
waiting list to be certified later on. Then, the definition of a certification phase ensures the strong
consistency. This algorithm is named OCCA_SC/TDB as an optimistic CC algorithm ensuring the
strong consistency for TDB.

But if only the consistency is needed, it is sufficient to synchronize transactions by the moments of
their validations [19]. This allows having an order of coherent states which corresponds to the order
of validation of transactions. Thus, a transaction Te which reaches its validation phase is considered
as the transaction having the highest priority and will be automatically validated. If a conflict is
detected with another concurrent transaction Tk, then Tk is aborted. This algorithm is named
OCCA/TDB as an optimistic CC algorithm for TDB.

�

����������	�
��	��
����	������	�	�	����	�	�����������������
������������������� ����	����!�!�

� ���

In addition, we propose an important amelioration for our optimistic algorithms [5] [18] [19]; this
amelioration consists in reducing the period of the critical section during which all the manipulated
granules in writing by Te must be locked. This period extends normally during the two writing and
validation phases of Te. Based on the fact that the writing phase must be carried out during the
critical section, we propose to place the validation phase out of the critical section and to integrate
the "EOT marker" technique for a correct definition of the conflicts. Indeed, this period is
considerably much shorter than the whole validation phase as shown by the experiment result in
section 6. So, when a transaction Te passes the certification test, the concurrency controller marks
its end in the RSk of each transaction Tk not yet validated. To check the absence of conflicts
between Te and each transaction Tk, it uses the RSk(Te) which is the set RSk limited to the objects
read from the beginning to the end of transaction mark of Te.

After receiving a read, insert, delete or update message from any transaction Ti, the concurrency
controller adds to RSi, ISi, DSi or USi the corresponding granule.

After receiving a rollback or a commit message from any transaction Ti, the concurrency controller
proceeds as follows:

�� For a Rollback message (Ti, Rollback), it eliminates RSi, ISi, USi and DSi.
�� For a Commit message (Ti, Commit), it checks if there is a conflict between Ti, the transaction
to be validated, and the transactions which are not yet validated.

4.3. Conflict detection and proof

To prove our propositions, we will use the serialization theory [2] that we introduce as following.
Suppose that a transaction Tr performs an operation set Or which can contain data operations over a
granule x (read: Rr[x], insert: Ir[x], delete: Dr[x], update: Ur[x]) and terminating operations (commit:
Cr, rollback: Rr). Tr is formalised as a partial order (Tr, <r) where:

1. Tr ��Or;
2. Rr ��Tr iff Cr ��Tr;
3. If tor is Cr or Rr (whichever is in Tr), for any other operation or ��Tr, or <r tor; and
4. If o1r [x], o2r [x] ��Tr, then o1r [x] <r o2r [x] or o2r [x] <r o1r [x].

Condition 1 defines the kinds of operations in the transaction Tr, which represents the set of its
executed operations. Condition 2 says that this set contains a Commit or a Rollback, but not both.
Condition 3 says that the Commit or Rollback must follow all other executed operations. Condition
4 requires that <r specify the order of execution of Read and Write operations on a common data
item.

If T = {T1, T2,… Tn} is a set of transactions, a complete history H over T is a partial order with
ordering relation <H where:

1. H = Un
i=1 Ti;

2. <H ��U
n

i=1 <i; and
3. For any two conflicting operations p, q ��H, either p <H q or q <H p.

Condition 1 says that the execution represented by H involves precisely the operations executed by
the transactions T1,...., Tn. Condition 2 says that all operation orderings specified within each
transaction is conserved in H. Condition 3 says that the ordering of every pair of conflicting
operations is determined by <H.

�

����������	�
��	��
����	������	�	�	����	�	�����������������
������������������� ����	����!�!�

� �	�

To show how we can detect conflicts between two transactions To and Tf, for each kind of
operations, we suppose that To and Tf operate simultaneously, and To is the transaction having the
highest priority (o < f).

The different order combinations of data operations of To and Tf are represented in the following
matrix:

To\Tf Rf If Df Uf
Ro Ro\Rf Ro\If Ro\Df Ro\Uf
Io Io\Rf Io\If Io\Df Io\Uf
Do Do\Rf Do\If Do\Df Do\Uf
Uo Uo\Rf Uo\If Uo\Df Uo\Uf

The cases of Ro\Rf, Ro\If, Ro\Df and Ro\Uf do not constitute conflict situations because Ro read the
old state of the granule, since To is the first to be validated. Also, there is no conflict risk for Uo\If,
since If is always rejected, for Uo\Df and Do\Df, since the considered tuple is always deleted, and for
Uo\Uf since the final result is the one produced by Tf. So, only the cases Do\Rf, Do\Uf, Uo\Rf and
Io\If, can constitute conflict situations, and the cases Io\Rf, Io\Uf, Io\Df and Do\If can produce
operation failures.

These cases of conflict situations and operation failures are the same for TTR, VTR and BTR. We
present, hereafter, some examples when the considered relation is the BTR. For TTR, the
modification operations are defined without valid time interval and the granule is considered as a
tuple.

Case of no conflict situation: Let us consider that To and Tf operate on the GT of the state of figure
3. Each one of these two transactions contains the following delete operation:
delete(Salary_Emp,"Emp_num=10",10/1/1,10/12/31)

Before the validation of To and Tf, the two delete operations are executed, and the concurrency
controller receives from To the delete message (To, Salary_Emp, 10, 10/1/1, 10/9/30), and from Tf

the delete message (Tf, Salary_Emp, 10, 10/1/1, 10/9/30). Then the delete sets maintained for To and
Tf becomes as follows:
DSo ={(Salary_Emp,100,[10/1/1,10/9/30])}
DSf ={(Salary_Emp,100,[10/1/1,10/9/30])}

Suppose that To is the first to be validated. So, the delete operation is effectively done before the
validation of Tf.

When Tf reaches its validation phase, the effect of its delete operation must not be reverberated in
the DB, since the data to delete was deleted by To. However, there is no inconsistency, and so no
effective conflict between these two operations.

Case of conflict situation: Let us consider that To and Tf operate on the GT of the state of figure 3:
To with a delete operation and Tf with an update operation.

To: delete(Salary_Emp,"Emp_num=10",10/1/1,10/12/31)
Tf: update(Salary_Emp,"Emp_num=10",10/1/1,10/9/30, salary: 1500)

When the delete operation is executed, the concurrency controller receives from To the delete
message (To, Salary_Emp, 10, 10/1/1, 10/9/30). [10/1/1, 10/9/30] is the intersection of the validity
interval of the delete operation and the validity interval of V4. Then the delete set maintained for To

becomes as follows:
DSo ={(Salary_Emp,100,[10/1/1,10/9/30])}

�

����������	�
��	��
����	������	�	�	����	�	�����������������
������������������� ����	����!�!�

� �
�

When the update operation is executed, the concurrency controller receives from Tk the update
message (Tf, Salary_Emp, 10, 10/1/1, 10/9/30). Then the update set maintained for Tf becomes as
follows:
USf ={(Salary_Emp,100,[10/1/1,10/9/30])}

Suppose that To is the first to be validated and Tf has executed its update operation before the To

validation. So, the delete operation of To is effectively done, before the validation of Tf, as shown in
figure 4, by the insertion of V5.

When Tf reaches its validation phase, the effect of its update operation must not be reverberated in
the DB by data manager, since the data value to update was deleted by To. We can detect and
declare this conflict by checking the intersection DSo ��USf. When re-executed, Tf will not find
data value to update; so there is no problem.

Proposition: In order to guarantee the TDB coherence, when the concurrency controller receives a
commit message of a transaction Te, it must check the intersection of DSe and the update set of each
transaction Tk not yet validated. Tk must be aborted if the intersection DSe ��USk is not empty.

Transaction time

V5
Current time

08/5/1:2:8:6 V4

08/3/31:23:59:59
V3

<10, 1300>

<10, 1450>

06/11/9:9:3:5

V2
<10, 1200>

06/9/2:8:8:3 V1 <10, 1000>

Validity

time

06/10/1 08/4/1 Current time 09/ 09/
11/ 12/

10/
9/

1 31 30

Figure 4. state of the Salary_Emp BTR after deletion

Proof: Let Te be a transaction to be validated and Tk a transaction not yet validated, such that DSe ��

USk ��	. A complete history Hs for Te and Tk is serial iff all operations of Te appear before all
operations of Tk. A history H is serializable if the committed projection of H, denoted C(H), is
equivalent to Hs (C(H) is obtained by omitting from H all operations of transactions that are not yet
committed in H).

Suppose that Tk is not aborted. So, for each conflict between pe ��Te and qk ��Tk, if pe <H qk then pe

<C(H) qk. In our case, since the delete operation of Te (De) and the update operation of Tk (Uk) are in
conflict and Te is the first transaction to be validated, we must have De <C(H) Uk.

This means that the update operation of Tk is executed before the delete operation of Te. So we have
Uk <C(H) De. This implies that this execution is not serializable and data operations of Te and Tk are
not correctly performed.

Remark: If Tk is the first to be validated, the two transactions are not in conflict. Indeed, after
validation of Tk, Te can execute its delete operation since there are valid data during [10/1/1,
10/9/30]. Then, valid data deleted are those updated by Tk. So, this final result is equivalent to the

�

����������	�
��	��
����	������	�	�	����	�	�����������������
������������������� ����	����!�!�

� ���

serializable one. Thus, to avoid false conflict detection, the concurrency controller must not check
the intersection USk ��DSe at the validation of Tk.

So, we must distinguish between the time period during which data values are deleted and the time
period during which data values are updated. Indeed, if we merge the two sets DS and US in the
same set, a false conflict is declared. This is equivalent to checking the intersections DSe ��USk and
USe ��DSk. The other conflict cases De\Rk, Ue\Rk and Ie\Ik, are treated in the same manner as the
Delete/update conflict.

Proposition: In order to guarantee the TDB coherence, when the concurrency controller receives a
commit message of a transaction Te, it must check the intersections DSe ��RSk, DSe ��USk, USe ��

RSk and ISe ��ISk ([18][19]).

4.4. Operation failure detection and proof

An operation fails if it does not find valid data to manipulate. In the case of a read, update or delete
operation failure of a transaction Tf, there is a risk of a conflict with a transaction To, having the
highest priority. Such a conflict occurs when operations of To insert new tuples which must be
manipulated by Tf, and Tf executes its operations before the To validation. Then, the result produced
by Tf is erroneous; Tf must read, update or delete data values inserted by To.

There is also a risk of an erroneous failure if Tf has to insert a tuple and To has to delete previous
tuples, in a way that Tf will be able to execute its insert operation. But, Tf executes this operation
before the To validation. Since this insert operation can not be executed, Tf must be aborted.

Proposition: For each failure of a read, update, delete or insert operation, the concurrency
controller must add the granule to the read set of the transaction Tk in order to guarantee the TDB
coherence. In addition, it must check, at the validation moment of any transaction Te, the
intersections DSe ��RSk and ISe ��RSk for each transaction Tk not yet validated. Tk must be aborted
if these intersections are not empty ([18][19]).

Proof: Let Te be a transaction with an insert operation Ie to be validated. Suppose that there is a
transaction Tk not yet validated, containing an update (or a delete) operation Uk of the tuple inserted
by Ie. So, we must have Ie <C(H) Uk. Suppose now that Tk is not aborted (ISe ��USk is not checked in
order to avoid false conflict detection [18], as shown hereafter). This means that the update
operation of Tk is executed before the insert operation of Te. So, it failed since there are no data to
update, and we have Uk <C(H) Ie. This implies that this execution is not serializable: Tk must be
aborted in order to have Ie <C(H) Uk. To do that, we must add this granule to RSk and then check ISe

��RSk.

4.5. Structure of the algorithms

We present hereafter the main procedure of the concurrency controller. According to the received
message, the concurrency controller carries out the appropriate treatment.

CC ()
Begin

While there is a message for the CC Do
Receive_message
Case message of

1: Read_M (Ti, Granule)
Notify_READ (Ti, Granule)

2: Insert_M (Ti, Granule)
Notify_INSERT (Ti, Granule)

�

����������	�
��	��
����	������	�	�	����	�	�����������������
������������������� ����	����!�!�

� ���

3: Delete_M (Ti, Granule)
Notify_DELETE (Ti, Granule)

4: Update_M (Ti, Granule)
Notify_UPDATE (Ti, Granule)

5: Rollback_M (Ti)
TREAT_ROLLBACK (Ti)

6: Commit_M (Ti)
TREAT_COMMIT (Ti)

EndCase
EndWhile

End.

The procedures Notify_READ, Notify_INSERT, Notify_DELETE and Notify_UPDATE, for a
transaction Ti, add a granule to RSi, ISi, DSi and USi, respectively. Treat_ROLLBACK(Ti) drop all
Ti sets. Finally, Treat_COMMIT(Ti) procedure deals with the validation request of Ti. The
TREAT_COMMIT procedure is defined as follows:

TREAT_COMMIT (Ti)
Begin

If the strong consistency is needed then
TREAT_COMMIT_SC (Ti)

Else
TREAT_COMMIT_C (Ti)

EndIf
End.

When the CC algorithm is limited to ensure the BD consistency, the TREAT_COMMIT_C
procedure is as follows:

TREAT_COMMIT_C (Ti)
Begin

VALIDATION (Ti)
Change the Ti state from "execution" to "end"

End.

When the CC algorithm must ensure the strong consistency, the TREAT_COMMIT_SC procedure
is as follows:

TREAT_COMMIT_SC (Ti)
Begin

V := CERTIFICATION (Ti)
If (v = 0) Then

Put Ti in the list of transactions waiting for certification.
Else

VALIDATION (Ti)
awaking ()
Change the Ti state from "execution" to "end"

EndIf
End.

The certification function ensures that Ti is the transaction having the highest priority. In this case,
Ti can be validated. In the other cases, Ti must be put on waiting for certification. The validation
procedure is defined as follows:

VALIDATION (Ti)
Begin

< /* BEGIN OF THE CRITICAL SECTION */

�

����������	�
��	��
����	������	�	�	����	�	�����������������
������������������� ����	����!�!�

� ���

Send "Ok to reverberate the writings on the DB" to the transaction
manager which will begin the critical section of Ti.
j := stamp of the first transaction which just arrived after Ti.
While j <> "!" Do
Add the EOTi element to RSj, USj and ISj.
j := stamp of the first transaction which arrived just after Tj.
EndWhile
Send an authorization message, for the transaction manager, to put an
end to the critical section of Ti when all Ti writings on the DB are
achieved.

> /* END OF THE CRITICAL SECTION */
j := stamp of the first transaction which arrived just after Ti.
While j <> "!" Do

If (CONFLIT (Ti, Tj) = 1) Then
Delete all elements from RSj, ISj, DSj and USj
Give an order to abort and re-execute Tj to the transaction manager.

EndIf
j := stamp of the first transaction which arrived just after Tj.

EndWhile
End.

Finally, the CONFLICT procedure called to check if there is a conflict between two transactions is
defined as follows:

CONFLICT (Ti, Tj): integer
Begin

r := 0
/* XSj(Ti) is the objects manipulated by Tj until EOTi */

If DSi � RSj(Ti)� 	�or DSi � USj(Ti)� 	�or
USi � RSj(Ti)� 	�or ISi � ISj(Ti)� 	�or
ISi � RSj(Ti)� 	�

Then r := 1
EndIf
Return (r)

End.

4.6. Formal verification using SPIN

The SPIN tool [13] is one of the most powerful model checkers. It is an appropriate tool for
analyzing the logical consistency of concurrent systems. The systems analyzed by SPIN are
described with the PROMELA language (PROcess MEta LAnguage), which is a specification
language for finite state systems. Under PROMELA, a system is represented by a set of parallel
processes which communicate via global variables and/or communication channels. PROMELA
also allows checking properties which are specified in linear temporal logic (LTL).

SPIN proceeds in two steps. In the first one, "deadlock" or "unreachable code" errors are detected.
In the second step, the validity of the system’s quality properties is checked through the application
of appropriate LTL formulae. For each detected error, SPIN gives the shortest way which leads to
this error.

For the specification of our system, we have used different transactions which operate
simultaneously. Each transaction is dealt with a process. Thus, our system is composed of the init
process, the concurrent processes and the concurrency controller process.

�

����������	�
��	��
����	������	�	�	����	�	�����������������
������������������� ����	����!�!�

� ���

Knowing that each process communicates with the concurrency controller, we then declared a
message channel of the type "rendez-vous" (represented by a size equal to zero):

chan trans_inst = [0] of {byte,byte};

This declaration allows avoiding the risk of the non detection of conflicts which can occur if we use
the "buffer" type. Indeed, a given transaction can finish the execution of its statements, but its
operation messages still remain in this channel [17].

To declare our system’s objects, we have used the typedef declaration which allows declaring a user
defined type of data. Thus, the following transaction type gathers the transaction characteristics.

typedef transaction
{
byte nom;
byte order; /* Represents the arrival order of the transaction. */
byte ordre_validation; /* Indicates a transaction validation order */
byte state; /*Represents the transaction state*/
byte rs[size]; /* Represents the read set */
byte us[size]; /* Represents the update set */
byte ds[size]; /* Represents the delete set */
byte is[size]; /* Represents the insert set */
bit restart; /* takes the value "true" when the transaction is
aborted. */
...
};

The list of transactions is maintained in the list_tr array:
transaction list_tr[nb_tr];

In the first step of validation, SPIN allowed us to detect and to correct a blocking error for the CC
algorithm ensuring the strong consistency [17]. This blocking situation is due to the attribution of
the value "finished" to the element "state", defined in the "transaction" type, at the end of the
process execution (after the awakening of the concurrent transaction). This problem is avoided by
placing the statement of attribution of the value "finished" to the element "state" before calling the
awakening procedure. After having corrected this error, SPIN display a valid result: zero error
(errors: 0) and zero unreached state (unreached in proctype pi) in all the processes ([17], [18], [19]).

In the second step of validation, we define LTL formulae in order to guarantee that safety properties
are conserved.

We check that the strong consistency, in the case of a CC algorithm which must ensure this
requirement, is guaranteed. We use for this formula the two elements: "order" and
"order_validation" defined in the "transaction" type. To make sure that our system guarantees the
strong consistency, we must verify, at the end of the execution of any transaction T, that its order is
equal to its validation order. We define the following property, called p:
#define p

(list_tr[0].order == list_tr[0].order_validation)

The LTL Formula which we applied is as follows: "<>[]p" which means that there is at least a state
from which we will have the property "p" true forever. No error is detected in this checking phase
when applying the formula <>[]p.

In the next LTL formulae, we check that in case of a conflict, the transaction having the lowest
priority was aborted. Our formulae are then based on the values which can be taken by data item.
We suppose that each transaction, when updating a data value, gives it a specific value: data item

�

����������	�
��	��
����	������	�	�	����	�	�����������������
������������������� ����	����!�!�

� ���

value updated by T1 takes the value tr1 (element "salary"). At the end of the execution, the final
value of the element "salary" must be equal to that assigned by the transaction having the lowest
priority. If it is not the case, it means that there is a non solved conflict between two transactions on
this granule (the transaction having the lowest priority was not aborted).

The LTL formula when the strong consistency is required:
[]((<>(a&&b)-><>c)&&(<>(!a&&d)-><>e))

a, b, c, d and e properties are defined as follows:
#define a (list_tr[0].order<list_tr[1].order)
#define b (list_tr[0].state==finished)
#define c (valid_version[0].salary==tr2)
#define d (list_tr[1].state==finished)
#define e (valid_version[0].salary==tr1)

This LTL formula treats the two possible cases between T1 and T2 according to their priority orders.

Case 1: if T1 > T2 (a = true) and if T1 is finished (b = true) Æ we must be sure to have:
c = true in a future state (element "salary" = "tr2").

Case 2: if T1 < T2 (a != true) and if T2 is finished (d = true) Æ we must be sure to have :
e = true in a future state (element "salary" = "tr1").

The application of this formula gives a valid result ([17][18]).

The LTL formula when only the consistency is required:
[]((<>a -><> b) && (<>!a-><> c))

a, b, c, d and e properties are defined as follows:
#define a (list_tr[0].order_validation < list_tr[1].order_validation)
#define b (valid_version[0].salary==tr2)
#define c (valid_version[0].salary==tr1)

This LTL formula treats the two possible cases between T1 and T2 according to their priority orders.

Case 1: if T1 is the first validated (a = true) Æ we must be sure to have:
b = true in a future state (element "salary" = "tr2").

Case 2: if T1 is not the first validated (a != true) Æ we must be sure to have :
c = true in a future state (element "salary" = "tr1").

The application of this formula gives a valid result [19].

5. BASIC ELEMENTS OF THE PERFORMANCE EVALUATION

For the performance study, we have decided to examine two CC algorithms, a pessimistic one and
an optimistic one, vis-à-vis of each one of our two optimistic algorithms: OCCA/TDB and
OCCA_SC/TDB.

The decision to take a pessimistic algorithm is based on the fact that the CC methods are classified
in two main categories: pessimistic methods and optimistic ones. These two categories differ in two
aspects: the time when they detect conflicts and the way that they resolve conflicts (the conflict
resolution policy). So, it would be interesting to carry out this study between these two categories.

In other respects, we have decided to consider an optimistic algorithm in order to compare our
optimistic algorithm vis-à-vis of another of the same category.

�

����������	�
��	��
����	������	�	�	����	�	�����������������
������������������� ����	����!�!�

� ���

5.1. The algorithms ensuring consistency

To evaluate our optimistic algorithm OCCA/TDB, we have chosen to compare its performance vis-
à-vis of the 2PL algorithm, on the one hand, and the Broadcast Optimistic Method (BOM) [21], on
the other hand.

The choice of the 2PL pessimistic algorithm rather than the algorithm proposed in [7] is based on
the fact that applying the algorithm of [7] leads to revise the transaction atomicity. In other respects,
the 2PL pessimistic algorithm is the most popular one, used in many DBMS.

The choice of the BOM algorithm is based on the fact that it validates each finished transaction vis-
à-vis of each concurrent transaction not yet validated. This strategy allows detecting conflicts as
soon as possible.

5.2. The algorithms ensuring strong consistency

For this study, we have chosen to examine vis-à-vis of the OCCA_SC/TDB, the pessimistic
algorithm called 2PL-MO [10] and the optimistic one called BOM_SC. Since the BOM algorithm
[21] ensures only the consistency, we have added the stamping of transactions by their arrival
moments and a certification phase to ensure that the validation order between transactions is in
accordance with their arrival order. Thus, the BOM algorithm now ensures the strong consistency
and it is called BOM_SC.

In other respects, to our knowledge, there is no algorithm proposed to study the strong consistency
problem for TDB according to the optimistic approach. Thus, we have decided to compare our
optimistic algorithm vis-à-vis of the BOM_SC algorithm that we have enhanced to ensure the
strong consistency. In addition, let us recall that we have started from the validation strategy of
broadcast optimistic method with critical section. Then, we have integrated the "EOT marker"
technique. Thus, the main difference between our algorithm and the BOM_SC algorithm, in the
case of TTR, is the use of this technique. So, evaluating our algorithm vis-à-vis of the BOM_SC
algorithm allows us to check the importance of the "EOT marker" technique integration.

5.3. Model Parameters

The following table summarizes the parameters and the values used in our experiments.

Arrival rate 20trans/sec to 50trans/sec
Database size 800 items

Database location In the memory .. On disc
Transaction size 5 to 6 operations

Rsize 3 to 80
Wsize 1 to 60

R/W ratio 0.2 to 0.5

The database size determines the number of data items in the database. Note that the database can
be located not only on disc, but also in the memory. Indeed, the technology of the DB in memory is
a technology in continuous growth to be able to reach high performances.

The number of operations defined in a transaction is given by the transaction size parameter; there
are two types of transactions. For the first one, the R/W ratio is 0.5, which means that each write
operation is being preceded by a corresponding read operation on the same data item. For the
second type, each transaction consists of four read and one write operations, i.e. the R/W ratio is

�

����������	�
��	��
����	������	�	�	����	�	�����������������
������������������� ����	����!�!�

� ���

 Arrival rate Rsize Wsize
Scenarios1 20/sec 15 to 20 5 to 15
Scenarios2 50/sec 15 to 20 5 to 15
Scenarios3 50/sec 30 to 40 10 to 30
Scenarios4 50/sec 60 to 80 20 to 60

0.2. In addition, we denote by Rsize and Wsize the number of data items that a transaction reads and
writes, respectively.

We present, hereafter, the various scenarios used for the comparative evaluation of the performance
of our algorithms. We describe the parameter settings used in our model for the two cases: when
database is located in the memory and when database is located on the disc. The performance
metric used is the time execution of transactions. Note that each simulation result is determined
after a series of trial runs until the obtained results are stable.

Also note that the number of scenarios and the MPL (MultiProgramming Level) maximum value
are not à priori now. Our idea is to start from the first scenario and then we increase the number of
data items manipulated in order to increase the conflict degree. When the result of the performance
evaluation becomes clear, we stop the definition of new scenario.

We use the same strategy to define the MPL maximum value. We start from a minimum value of
MPL into a scenario and then we increase the number of transactions launched simultaneously.
Then, we stop the incrementing of the MPL when the result of the performance evaluation becomes
clear.

Database on disk. In this experiment (table1), we simultaneously launched transactions of the first
type, i.e. the R/W ratio parameter is equal to 0.5. In addition, the arrival rate is 50trans/sec, which
corresponds to an inter arrival time equal to 2ms. So, only Rsize and Wsize parameters are varied.
We stop the experiment with three scenarios, knowing that the conflict degree is increased from
scenarios1 to scenarios3.

Database in the memory. In this experiment (table2), we have varied the arrival rate and the
number of data items that a transaction reads and writes. We stop the experiment with four
scenarios, knowing that the conflict degree is increased from scenarios1 to scenarios4. We apply
two types of transactions. A transaction of the first type reads and writes 15 data items, whereas a
transaction of the second type reads 20 data items and writes 5 data items.

Table1: Scenarios when DB on disc Table2: Scenarios when DB in the memory

 Arrival rate Rsize Wsize
Scenarios1 50/sec 3 3
Scenarios2 50/sec 6 6
Scenarios3 50/sec 12 12

6. SIMULATION RESULTS AND DISCUSSIONS

We present in this section just some examples of the comparative tables. In all ways, the other
tables confirm the results announced in each case.

6.1. Evaluation result when the DB is in the memory

We have made the performance evaluation of our algorithms from scenarios1 to scenarios4. We
present, hereafter, the experiment results of OCCA_SC/TDB in the case of VTR and BTR
according to scenarios4. We have the same results in the case of TTR.

Evaluation of OCCA_SC/TDB: case of VTR and BTR
As shown in figures 4, the performances of all compared algorithms are identical when the number
of transactions in the system is small. But when the multiprogramming level in the system
increases, the superiority of our optimistic algorithm OCCA_SC/TDB becomes evident.

�

����������	�
��	��
����	������	�	�	����	�	�����������������
������������������� ����	����!�!�

� ��

The reason that our optimistic algorithms outperform the pessimistic ones can be attributed to the
fact that an optimistic algorithm uses the transaction abortion technique in order to avoid
inconsistency, whereas a pessimistic algorithm uses locking techniques. Indeed, the locking
technique is more expensive than the transaction abortion technique when database is located in the
memory. Thus, when the multiprogramming level increases, the conflict degree also increases and
the blocking time becomes larger and larger. So, as shown in figure 4, which corresponds to
scenarios4, the time execution when applying the 2PL-MO algorithm reaches the value of 28 000,
whereas the time execution when applying the OCCA_SC/TDB algorithm does not exceed the
value of 600.
Compared to the BOM_SC algorithm, the superiority of our algorithm is considerably lower than
the pessimistic algorithms. Indeed, OCCA_SC/TDB and BOM_SC use the same technique to avoid
inconsistency.

Execution Time
3000

BOM_SC

Execution Time
50000

BOM_SC

2500

2000

1500

1000

500

0

OCCA_SC/TDB

2PL-MO

0 2 4 6 8 10

Multiprogramming Level (MPL)

40000 OCCA_SC/TDB

2PL-MO
30000

20000

10000

0 2 4 6 8 10 12 14
Multiprogramming Level (MPL)

Figure 4. Execution time according to
scenarios4

6.2. Evaluation result when the DB is on disk

Figure 5. Execution time according to
scenarios3

For this evaluation, we have made the performance evaluation of our optimistic algorithms from
scenarios1 to scenarios3. We present, hereafter, the experiment results of OCCA_SC/TDB and
OCCA/TDB for two cases: the case of TTR and the case of VTR and BTR.

Evaluation of OCCA_SC/TDB: case of TTR
Figure 5 shows that the performances of all algorithms are also identical when the number of
transactions in the system is small. But, when the multiprogramming level in the system becomes
higher than 4, applying the 2PL-MO or the OCCA_SC/TDB algorithm is better in time execution
than applying the BOM_SC algorithm. The superiority of the 2PL-MO algorithm becomes evident
with regards to the OCCA_SC/TDB algorithm when the multiprogramming level in the system
becomes higher than 10. Also note that the difference in the execution time between these two later
algorithms is clearly smaller than the difference vis-à-vis of the BOM_SC algorithm [20].

The reason that 2PL-MO outperforms OCCA_SC/TDB can be attributed to the fact that the
transaction abortion technique is more expensive than the locking technique when database is
located on disc. So, when the multiprogramming level increases, the conflict degree also increases
and the execution time of transactions becomes larger and larger. In addition, ensuring the strong
consistency according to the optimistic approach, leads to the fact that any transaction can finish its

�

����������	�
��	��
����	������	�	�	����	�	�����������������
������������������� ����	����!�!�

� �	�

operations and then remains on standby until it becomes the transaction having the highest priority.
After that, it can be aborted. This leads to increasing the time execution.

Compared to the BOM_SC, the superiority of the OCCA_SC/TDB algorithm is considerably more
evident than the case when database is located in the memory.

Evaluation of OCCA/TDB: case of TTR
We show in figure 6 that when the multiprogramming level in the system becomes higher than 6,
applying the 2PL or the OCCA/TDB algorithm is better in time execution than applying the BOM
algorithm. But contrary to the experimental result for algorithms ensuring the strong consistency,
we have now the OCCA/TDB algorithm which outperforms the 2PL algorithm. This means that
ensuring the strong consistency according to the optimistic approach is more expensive than
ensuring it according to the pessimistic approach. So, as shown in figure 6, which corresponds to
scenarios3, the time execution when applying the 2PL algorithm reaches the value of 1 500,
whereas the time execution when applying the OCCA/TDB algorithm does not exceed the value of
1 000.

Execution Time
50000

40000

BOM

OCCA/TDB

Execution Time

50000

40000

BOM_SC

30000

20000

2PL
30000

20000

 OCCA_SC/TDB

 2PL-MO

10000 10000

0

0 2 4 6 8 10 12 14
Multiprogramming Level (MPL)

0
0 2 4 6 8 10 12 14

Multiprogramming Level (MPL)

Figure 6. Execution time according to
scenarios3

Figure 7. Execution time according to

scenarios3

Evaluation of OCCA_SC/TDB: case of VTR and BTR
In figure 7, which corresponds to scenarios3, we always have a high execution time when applying
the BOM_SC algorithm. But contrary to the case of TTR, and despite the high cost of the
transaction abortion technique and the maintaining of the strong consistency according to the
optimistic approach, OCCA_SC/TDB now outperforms the 2PL-MO algorithm. Indeed, this is due
to the consideration of the new granule which allows reducing the conflict degree and then the
abortion degree. So, as shown in figure 7, the difference between OCCA_SC/TDB and 2PL-MO
becomes more and more evident. The time execution of OCCA_SC/TDB is almost sixteen times
smaller. The experiment results of OCCA/TDB in the case of VTR and BTR, show that we have the
same result as the OCCA_SC/TDB algorithm.

7. CONCLUSION

We have proposed in this paper new optimistic concurrency control algorithms for temporal
databases which can ensure the consistency or the strong consistency. Our propositions are based on
the broadcast strategy and integrate EOT marker technique to detect conflicts as soon as possible,

�

����������	�
��	��
����	������	�	�	����	�	�����������������
������������������� ����	����!�!�

� �
�

and to reduce, to the maximum, the period during which the resources are locked in the validation
phase, respectively. In addition, in the case of temporal relation supporting valid time, we have
proposed a new type of granule defined as a temporal interval during which some tuples of a GT are
valid, to avoid false conflict detection.

Through the study of the various conflict cases and the failed operations, we have defined rigorous
CC algorithms, which detect all conflict situations, without false ones. These algorithms are
formally verified using the serialization theory and the SPIN model checker.

After checking that our algorithms operate correctly, we have made a performance evaluation to
check if our proposition ameliorates the performances, vis-à-vis of other concurrency control
algorithms based on optimistic and pessimistic approaches.

Compared to the optimistic algorithms, the obtained result shows that we have a better result when
applying our algorithms.

Compared to the pessimistic algorithms, our algorithms have not better results only when the strong
consistency is needed for a transaction time relation maintained on disc. But for the other cases, our
algorithms outperform the pessimistic ones, especially for relations supporting valid time. Indeed,
this is due to the consideration of the new granule which allows reducing the conflict degree and
then the abortion degree.

8. REFERENCES

[1] L. Amanton, B. Sadeg, and J. Haubert, (2003) “Tradding Precision for Timeliness in Distributed
Real-Time Databases”, Proc. of 5th Conference on Enterprise Information Systems, Angers, France,
Angers, France, Vol. 1, pp. 558-561.

[2] P. A. Bernstein, V. Hadzilacos, and N. Goodman, (1987) “Concurrency control and recovery in
BDS”, ADDISON-WESLEY Edition.

[3] J. Berstel, S. C. Reghizzi, G. Roussel, and P. S. Pietro, (2005) “A Scalable Formal Method for
Design and Automatic Checking of User Interfaces”, International ACM Journal of Transactions on
Software Engineering and Methodology, Vol. 14(2), pp. 124-167.

[4] R. Bouaziz, M. Moalla, and C. Rolland, (1992) “Approche globale pour la gestion de l’historisation
dans les bases de données temporelles”, Proc. of the Conference on Informatique des organisations
et systèmes d’information et de décision, Clermont-Ferrand, France, pp. 167-185,.

[5] R. Bouaziz, and A. Makni, (2005) “ACCO_CF/RTT: Un algorithme de contrôle de concurrence
optimiste pour les relations temporelles de transaction”, International Journal of Information
Sciences for Decision Making, n°19, paper n°236.

[6] E. Brinksma, A. Mader, and A. Fehnker, (2002) “Verification and Optimization of a PLC Control
Schedule”, International Journal on Software Tools for Technology Transfer, Vol. 4(1), pp. 21-33.

[7] C. De Castro, (1998) “On concurrency management in temporal relational databases”, Proc. of the
Symposium on SEBD, pp. 189-202.

[8] S. D. Elloumi, R. Bouaziz, and M. Moalla, (1998) “Contrôle de concurrence multiversion dans les
bases de données temporelles”, Proc. of the "Bases de Données Avancées" Conference, Hammamet,
Tunisie, pp. 135-155.

[9] M. Finger, and P. McBrien, (1996) “On the semantic of ‘current time’ in temporal databases”, Proc.
of the Symposium on Databases, Sao Carlos, Brasil, pp. 324-337.

�

����������	�
��	��
����	������	�	�	����	�	�����������������
������������������� ����	����!�!�

� ���

[10] M. Finger, and P. McBrien, (1997) “Concurrency Control for Perceivedly Instantaneous
Transactions in Valid-Time Databases”, Proc. Of the Conference on Temporal Representation and
Reasoning, pp. 112-118,.

[11] G. Gardarin, (1988) “Bases de données : Les systèmes et leurs langages”, EYROLLES Edition.

[12] J. Harista, M. Carey, and M. Livny, (1992) “Data Access Scheduling in Firm Real-Time Database
Systems”, Real-Time Systems Journal, 4(3), 203-241.

[13] G. J. Holzmann, (1997) “The model cheker SPIN”, International Journal of Transactions on
Software Engineering, 23(5), pp. 279-295.

[14] C. S. Jensen, & al., (1998) “The Consensus Glossary of Temporal Database Concepts”––February
1998 Version, O.Etzion, S.Jajodia, S.Sripada, (Eds.), Temporal Databases––Research and Practice,
Lecture Notes in Computer Science, Vol. 1399, Springer-Verlag, Berlin, pp. 367–405.

[15] C. S. Jensen, and D. B. Lomet, (2001) “Transaction timestamping in (temporal) databases”, Proc. Of
the Conference on Very Large Databases, Roma, Italy, pp. 441-450.

[16] N. Kim, S. Moon and Y. Sohn, (2004) “Secure one snapshot protocol for concurrency control in real-
time stock trading systems”, Journal of Systems and Software, Vol. 73, Issue 3, pp. 441-454.

[17] A. Makni, R. Bouaziz, and F. Gargouri, (2006) “Formal Verification of an Optimistic Concurrency
Control Algorithm using SPIN”, Proc. Of the Symposium on Temporal Representation and
Reasoning, Budapest, Hungary, June 15 - 17, pp. 160-167, Published by IEEE Computer Society.

[18] A. Makni, R. Bouaziz, and F. Gargouri, (2006) “A New Optimistic Concurrency Control Algorithm
for Valid-Time Relations”, Proc. of the 10th IASTED International Conference on Software
Engineering and Applications, November 13-15, Dallas, TX, USA, pp. 117-126. Published by
ACTA Press, Paper n° 514-143, 2006.

[19] A. Makni, R. Bouaziz, et F. Gargouri, (2007) “Formal Verification of a new Optimistic Concurrency
Control Algorithm for Temporal Databases”, Proc. of the 16th ISCA International Conference on
Software Engineering and Data Engineering, Las Vegas, Nevada, USA, July 9-11, pp. 235-242.
ISBN 978-1-880843-63-5.

[20] A. Makni, R. Bouaziz, et F. Gargouri, (2007) “Performance Evaluation of an Optimistic
Concurrency Control Algorithm Ensuring Strong Consistency for Transaction Time Relations”,
Proc. of the International Conference on Enterprise Information Systems and Web Technologies,
Orlando, FL, USA, July 9 - 12, pp. 258-265.

[21] D. Menasce, and T. Nakanishi, (1982) “Optimistic vs Pessimistic control mechanism in database
management systems”, International Journal of Information Systems, Vol. 7(1).

[22] C. Park and S. Park, (2003) “The Freeze algorithms for concurrency control in secure real-time
database systems”, Data & Knowledge Engineering, Vol. 45, Issue 1, pp. 101-125.

[23] M. Rahgozar, (1987) “Contrôle de concurrence par gestion des événements”, PhD thesis, Paris VI
University – MASI.

[24] X. Yingyuan, L. Yunsheng and C. Xiangyang, (2006) “An efficient secure real-time concurrency
control protocol”, Journal of Natural Sciences, Vol. 11, Number 6.

