
������������	
������	
�

��������
����������
�������
�
�����
�
�
��	���
�����
���
����

10.5121/ijdms.2010.2208 116

����������	
���

��������	
��	
���������

�����
��������	
����������

Raddad Al King, Abdelkader Hameurlain, Franck Morvan

Institut de Recherche en Informatique de Toulouse (IRIT), Université Paul Sabatier
118, route de Narbonne, F-31062 Toulouse Cedex 9, France

E-mail: {alking, hameur, morvan}@irit.fr

ABSTRACT
Sharing musical files via the Internet was the essential motivation of early P2P systems. Despite of the

great success of the P2P file sharing systems, these systems support only "simple" queries. The focus in such
systems is how to carry out an efficient query routing in order to find the nodes storing a desired file. Recently,
several research works have been made to extend P2P systems to be able to share data having a fine granularity
(i.e. atomic attribute) and to process queries written with a highly expressive language (i.e. SQL). These works
have led to the emergence of P2P data sharing systems that represent a new generation of P2P systems and, on
the other hand, a next stage in a long period of the database research area. �

The characteristics of P2P systems (e.g. large-scale, node autonomy and instability) make impractical
to have a global catalog that represents often an essential component in traditional database systems. Usually,
such a catalog stores information about data, schemas and data sources. Query routing and processing are two
problems affected by the absence of a global catalog. Locating relevant data sources and generating a close to
optimal execution plan become more difficult. In this paper, we concentrate our study on proposed solutions for
the both problems. Furthermore, selected case studies of main P2P data sharing systems are analyzed and
compared.

KEYWORDS��

P2P Databases, Query Routing, Schema Matching, Query Processing and Optimization.

1. INTRODUCTION
Nowadays, Peer-to-Peer (hereafter P2P) systems become very popular. This popularity can be

seen as a result of the features of these systems such as: scalability, node autonomy, self-configuration
and decentralized control. P2P systems offer a good opportunity to overcome the limitations of the
Client/Server based systems. By avoiding bottlenecks and being fault tolerant, P2P systems are
suitable for large-scale distributed environments in which nodes (interchangeably called peers) can
share their resources (e.g. computing power, storage capacity, network bandwidth) in an autonomously
and decentralized manner. The more the resources are available in a P2P system, the more the
computing power and the storage capacity have important values. This advantage enables P2P systems
to perform complex tasks with relatively low cost without any need to powerful servers. In the next
section, we highlight the notion of "P2P Systems".

1.1. P2P Systems
There is no agreement about what are P2P systems. Through our reading, we find several

definitions of these systems [40, 52, 57]. The definition of [52] represents the systems having one or
more servers while the definition of [49] ignores this type of systems. Thus, we agree with the
definition of Milojicic et al. [52] as "The term "peer-to-peer" (P2P) refers to a class of systems and
applications that employ distributed resources to perform a function in a decentralized manner. The
resources encompass computing power, data (storage and content), network bandwidth, and presence
(computers, human, and other resources). The critical function can be distributed computing,
data/content sharing, communication and collaboration, or platform services. Decentralized may
apply to algorithms, data, and metadata or to all of them". Even if there is no standard definition of

������������	
������	
�

��������
����������
�������
�
�����
�
�
��	���
�����
���
����

 117

P2P systems, most researchers characterize them by: (i) scalability in terms of the node number and
the resource number; (ii) node autonomy; (iii) dynamicity, (iv) resource heterogeneity, (v)
decentralized control and (vi) self-configuration. In such systems, each node can act as: (i) a server
when it offers its resources to be used by other nodes, (ii) client when it uses the resources of other
nodes, (iii) a router when it propagates coming queries and messages to other nodes and (iv) data
source1 when it shares its own data with the system nodes. The researches on P2P systems become
more and more numerous and the contexts in which we use these systems become also too much
numerous. In this paper, we focus our study on the P2P database context.

1.2. P2P Systems and Database Systems
P2P systems are successfully used in several domains such as: file sharing, computing power

sharing and instant message exchange. Due to their "good" features, new domains aim to take
advantage of these systems. In the public health domain, for instance, we can cite some examples: (i) a
doctor in a hospital may want to share most of his own data with other colleagues and to hide a portion
of his data for personal reasons (e.g. data of an experience concerning a new drug for Alzheimer's
disease); (ii) a doctor treating ill person may want to access the databases of the family doctor and the
pharmacy of his patient in order to know his medical history and (iii) several researchers around the
world are working on a drug for Alzheimer's disease want to share data stored in their databases during
an experience.

Traditional database systems are not able to answer the requirements of the previous examples.
Distributed database systems (DDBS) are utilized when data is fragmented on many sites, known a
priori, and the administration is centred on one control site. DDBS can mange a few dozens of
databases [61]. Data warehousing systems require transporting all data available on data sources to one
control site. This approach could create a bottleneck especially when the data source number is big and
the dynamicity of the system is high. Data integration systems are largely used nowadays to integrate
virtually data stored in data sources distributed on the Internet. However, a data integration system
could manage just a few hundreds of data sources [61]. We believe that P2P data sharing systems can
play an important role in the examples cited above. A P2P data sharing system could be seen as "a
large-scale distributed system, in which, the nodes are autonomous and can join and leave the system
in a completely decentralized manner. Each node has its own database system composing of a DBMS
and one or more database(s) that it manages". However, there is no scientific consensus on how to
design and how to implement this type of systems. That is because of many issues such as architecture,
data representation, security, query processing and optimization still considered as open problems. We
next highlight the problematic addressed in this paper.

1.3. Query Routing and Processing

File sharing is the most popular application of nowadays P2P systems. In a file sharing
system, given a query, the system finds nodes storing the desired file and returns their IP
addresses to the user in order to select a node for downloading the file. Usually, the semantics
of the file name is known by the majority of the users. This knowledge is obtained via the
media (e.g. TV) or through the user social environment (e.g. university, school). The focus of
a file sharing query processing is how to route efficiently the query to relevant data sources. In
order to share data with fine granularity, P2P systems must provide more database
functionality such as schema matching and query optimization. Despite of many research
efforts that have been done in this direction, processing queries written with a highly
expressive language (i.e. SQL) is still challenging.

Due to the dynamicity and the large scale of P2P data sharing systems, it is not
practical to have a global catalog witch represents an important component of traditional
database systems. The authors of [34] cite some types of information (called metadata) stored in a

1 A data source could be a file stored site or a database site.

������������	
������	
�

��������
����������
�������
�
�����
�
�
��	���
�����
���
����

 118

global catalog: (i) Information about database schemas (e.g. table definitions, views, integrity
constraints); (ii) Information concerning partitioning schema such as "what global tables have been
partitioned and how they can be reconstructed" [34] and (iii) Physical information such as the
placement of partitioned data and the statistics that are utilized to calculate the cost function of an
execution plan. The statistics could be: (i) parameters concerning physical characteristics of data (e.g.
relation size), (ii) physical parameters about data sources (e.g. CPU load), and (iii) physical parameters
concerning the network (e.g. network bandwidth).

Locating relevant data sources and carrying out efficient query processing are two
open problems affected by the absence of a global catalog. Many solutions have been
proposed in order to adapt query types more advanced than file sharing queries. The authors
of [16] have offered solutions for processing Range Queries. In this type of queries, the user is
interested by a data whose values belonging to a précised range. The authors of [27] propose solutions
for processing Aggregation Queries. Solutions for processing Top-k Queries are proposed by the
authors of [2]. In this type of queries, the user could be satisfied by k best answers, for a given query,
found in the system. As our knowledge, we can mention that the proposed solutions focus on a
particular type of queries. There is no solution for processing all or a combination of these types of
queries.

1.4. Paper Goals and Organization

Considerable amount of surveys has been done in the P2P data sharing field. For
instance, Milojicic et al.[40] present an overview of what is "P2P computing" in general
terms. The authors of [8] distinguish between DB-centric and P2P-centric features of some
P2P and distributed database systems. In [57], P2P content distribution models are discussed
and compared while XML data management techniques for P2P environments are studied in
[33]. Search and security issues are discussed in [14]. In this paper, our objective is to give an
overview of selected projects of P2P data sharing systems and to present a qualitative
comparison between these projects, on one hand, and our solutions that have been already
published [29, 30, 31, 32] on the other hand. Due to the space limitations, we concentrate our
study on the three problems: (i) query routing, (ii) schema matching and (iii) query
optimization. We believe that these problems are more difficult in P2P data sharing systems
than traditional database systems that usually have a global catalog and accept central
administration.

The rest of this paper is organized as follows. In section 2, we study the query routing
problem while the schema matching one is addressed in section 3. We focus on query
optimization issues in section 4. Before the conclusion in section 6, we represent in section 5
some projects of P2P data sharing systems and we compare them with our proposed solutions.

2. QUERY ROUTING
In P2P environments, query routing becomes a difficult problem with the absence of a

global catalog that holds often information about data placement. The issue here is how to
route efficiently a given query to relevant data sources. Nodes in P2P environment form a
virtual network (called overlay network) located above a physical network (i.e. the Internet).
The topology of a P2P system indicates how its peers are situated on the virtual network. It
has a strong impact on the query routing efficiency in terms of the number of exchanged
messages, on one hand, and the answer quality on the other hand. Answer quality means the
ability to return all valid answers existed in the system. According to their topologies, P2P
systems are classified into three main classes:

������������	
������	
�

��������
����������
�������
�
�����
�
�
��	���
�����
���
����

 119

• Unstructured P2P systems: in this class, there are no privileged nodes and all nodes
play the same role. The node autonomy is high in the sense that nodes are not forced to be
structured according to a predefined geometric shape. Each node establishes a direct
connection with one or more nodes called neighbors. Generally, it is not require that a node be
aware about the resources available on its neighbors.

• Structured P2P Systems: in this class of P2P systems, all nodes must be structured
into a specific geometric shape (e.g. ring). They must also know some information about their
neighbors and about their contents without be able to choose these neighbors.

• Super-peer P2P systems: plying the same role by all nodes in a system could be
considered as a strong hypothesis. Practically, nodes in a system have neither the same
computing power nor the same storage capacity. So it is better to assign different roles to
nodes according to their computing and storage capabilities. For this reason, a hybrid class
based on the both paradigms P2P and Client/Server has been proposed. In this class, powerful
nodes (called super-peers) play the role of a server while the other nodes act as clients. The
super-peers can be organized into structured or unstructured topology. Having several super-
peers facilitates shared resource administration. However, the fault tolerance is decreased in
the super-peer P2P systems. When a super-peer fails, its clients become isolated from the rest
of the system.

We notice that the query routing methods depend often on the P2P classes
(unstructured, structured and super-peer). In this section, we discuss an important part of the
methods utilized in each one of these classes.

2.2. Query Routing in Unstructured P2P Systems
In order to send a query towards relevant data sources, the Peer Initiating the Query

(PIQ) sends identical messages to its neighbors. Each message contains the query, the PIQ
identifier and a value of the parameter TTL (Time To Live). This parameter represents the
maximum number of peers that a message is allowed to pass through. After having received
the message, each peer executes the query and sends the answer to the PIQ. Furthermore, it
decreases the value of TTL by 1. If the value of TTL becomes 0, this peer destroys the
message. Otherwise, the peer sends, in its turn, the message containing the new value of TTL
to its neighbors. By continuing this process, all peers situated at a distance having a value
lower than the initial value of TTL are going to receive the message. Other peers in the system
may not be able to receive the message even if they have valid answers. According to this
approach, the peers have no knowledge about the content of their neighbors. For this reason,
this approach is called Blind Routing (BR) approach. Even if the BR approach maintains a
high degree of peer autonomy, it is very costly in terms of network bandwidth consumption.
The BR approach needs a big number of messages to be exchanged during one query routing
process. Thus may lead to network flooding especially when the peers’ number is very high.

Several solutions have been proposed to improve the performance of the BR approach
by storing information about neighbor contents. An iterative method has been proposed in
[65]. According to this method instead of having one value of TTL, we choose many values
between 1 and Vmax. For each value, we repeat the BR approach. If this method finds an
acceptable number of valid answers for a value of TTL lower than Vmax, we stop repeating the
BR approach. This method improves the performance of the BR approach in terms of the
number of exchanged messages but the response time of this method is higher. In [28], the
authors propose to send the message received by a peer to only a part of its neighbors instead

������������	
������	
�

��������
����������
�������
�
�����
�
�
��	���
�����
���
����

 120

of sending the message to all neighbors. The choice of this part is randomly carried out. Then,
this solution decreases the number of exchanged messages. However, the fact of not sending
the message to all the neighbors allows ignoring a lot of valid answers. More intelligent
solution has been proposed in the same paper [28], the basic idea is to use statistics
concerning former executed queries. It is true that, according to this solution, the choice of the
neighbors is not random. But, it is true also that this new solution requires a big number of
messages to update the statistics stored in the system when one peer join/leave the system, on
one hand, and when a new query is executed on the other hand.

The authors of [51] have proposed a probability based mechanism for choosing the
neighbors that must receive the message. Each peer stores probability information about its
neighbors’ contents. In addition to the ignorance of valid answers, the probability information
must be up-to-dated regularly. This is could be expensive when the peers’ number is very high
and when the peers join and leave regularly the system. The authors of [63] and [12] have
proposed the mechanism of Local Indices according to which each peer indexes the data
stored in the peers situated on a surface having r as diameter value. This mechanism improves
relatively the response time of the BR approach. However, when a peer joins/leaves the
system, a flood of messages in a zone (having r peers as diameter) could be emerged. Another
solution has been proposed for locating data sources. The principle of this solution is that
every peer has to index all data stored in a peer that have already answered a former query.
This solution is good and practical for repetitive queries. However, one of its drawbacks is the
number of the update messages required when a peer has to leave the system.

Despite of the big efforts that have been done to improve the query routing
performance in unstructured P2P systems, the proposed solutions are still incapable to return
all valid answers existed in the system.

2.2. Query Routing in Structured P2P Systems
In the structured P2P systems, all peers are organized as a geometric shape. The

methods utilized to route a query depends on the geometric shape considered by the system.
These methods differ from each others in the way in which a peer chooses its neighbors and
shares information with them. Thereafter, we discuss some examples of the geometric shapes
(Hypercube, Ring, Cartesian space of d dimensions and Tree) according to which the peers

Path through it the query passes

Peer answering the query

Peer Initiating a Query

Virtual link between two peers

Path through it the answer passes

Physical link between two peers

Peer

TTL = 6

Figure 1. Query Routing in Unstructured P2P Systems

������������	
������	
�

��������
����������
�������
�
�����
�
�
��	���
�����
���
����

 121

can be organized. We discuss as well the impacts of these shapes on the query routing
process.

2.2.1. Hypercube

As a good example of this topology, we study HyperCup [56]. According to this
geometric shape, all peers are organized in a hypercube topology having as diameter � = logb
N [48], where b is the base of the hypercube (that means that in each dimension there are b
peers) and N is the number of all peers in the system. The diameter of a hypercube is defined
as "the shortest path between most distant nodes in terms of node hops" [56]. The number of
dimensions is (Lmax+1) where Lmax is done as N = bLmax+1. Each peer has (b-1)*(Lmax+1)
neighbors. The links between peers are labeled by numbers between 0 and b. Thus allows the
neighbors to be ordered in a symmetric way. When the link between two peers X and Y is
labeled by i, it means that X is ith neighbor of Y and verse versa. In figure 2, we present a
hypercube having b = 2 as a base. We notice that the diameter is � = log2 8 = 3 and that each
peer has (2-1)*(2+1) = 3 neighbors. The query routing in the hypercube topology is made as
follows. Firstly, the peer initiating the query broadcast messages to all its neighbors. Each
message contains the query and the label value of the link by witch the query passes. When a
peer receives a message coming from peer j, for instance, it sends the message towards the
neighbors whose links are labeled by a number bigger than j and modifies the label value
tagged with the message. For example, when peer P0 sends a message to the neighbors P4, P2
and P1, peer P4 sends the query to peers P5 and P6. Peer P1 does not send the query because
the links with its neighbors P3 and P5 are labeled by a number lower than 2 which is the label
of its link with P0. As for peer P2, it sends the query to peer P3. The third steps, peer P6 sends
the message to peer P7. This method of routing allows locating a desired data item by
performing O(logb N) hops.

2.2.2. Ring

 According to the ring geometry, all peers must be ordered on a virtual ring. Each peer
has an identifier on the ring. Several systems use this geometry as [11, 49, 54, 66]. As an
example of this topology, we study Chord protocol [54] which is largely utilized in structured
P2P systems. Chord utilizes the DHT (Distributed Hash Table) technology which requires
storing shared information in a table fully distributed on all peers. One essential role of the
DHT is to guide the query routing in order to avoid network flooding and to guarantee fining
all valid answers existed in the system. The information of a DHT is distributed on peers by
using a hash function known by all peers. Each data item is represented by a key that is
created by using the hash function of the DHT. Each peer stores the pairs (key, identifier)
concerning the keys for which it is responsible in its part of the DHT. The keys are distributed
in a balanced manner on the peers. The identifier of a peer is represented by m bits and each
key is represented also by m bits. The peer responsible for a key k, for instance, is the peer

P7 P3

P2

P5

P4 P0

P1

P6

 0

 0

 0

 0

 1

 1 1

 1

 2

2
2

2

Figure 2. Example of a Hypercube

������������	
������	
�

��������
����������
�������
�
�����
�
�
��	���
�����
���
����

 122

having the first identifier that equals or succeeds k. Each peer P maintains a routing table
having m entries and the ith entry contains the identifier of the first peer that succeeds P by at
least 2i-1 on the virtual ring.

Chord allows locating the peer responsible for a given key via O(Log N) hops where N
is the peers’ number. To illustrate the query routing algorithm utilized by Chord, we study a
case of a ring with identifiers represented by m = 3 bits. In figure 3, we suppose that peer P1
requires to lookup the key 20. It has to look in its routing table. Instead of looking for the key
20, it looks for the key 4 (because 20 mod (8) = 4). After this consultation, it sends the query
to peer P0. The peer P0 knows that the data item represented by the key 20 is stored on peer
P3. It can tell P1 of this information. If P1 has asked to obtain the data item represented by the
key 20, in this case, P0 sends the message to peer P3 which sends the data item to P1.

2.2.3. d Dimension Cartesian Space

 This topology is based on a Cartesian space of d dimensions. This space is
independent from the underlying physical network and decomposed into separate zones. Each
zone is allocated to one peer. The P2P systems using the CAN (Content Addressable
Network) virtual network [48] are based on this topology. In CAN, each peer is responsible

for a storage space (its zone). It means that each peer stores all the pairs (key, values) that

Routing Table of P1
Begin Interval Successor

2 [2,3) P3
3 [3,5) P0
5 [5,1) P0

The keys for witch P1 is responsible
Key Source

1 P0
9 P0

P0

P4

P2 P6

P5

P1

P3

P7

Routing Table of P3
Begin Interval Successor

4 [4,5) P0
5 [5,7) P0
7 [7,3) P0

The keys for witch P3 is responsible
Key Source

2 P0
10 P1

Routing Table of P0
Begin Interval Successor

1 [1,2) P1
2 [2,4) P3
4 [4,0) P0

The keys for witch P0 is responsible
Key Source

6 P1
14 P1
20 P3
31 P1

������

�����	
	���

Lookup the key 20

Figure 3. Example of a Ring

 6 2

 3 1 5

 4

 (x,y)

 0.0 0.125 0.25 0.5 0.625 0.75 1.0

 1.0

0.825

0.75

0.5

0.25

0.125

0.0

Figure 4. Example of d Dimension Cartesian

������������	
������	
�

��������
����������
�������
�
�����
�
�
��	���
�����
���
����

 123

their keys fall in its zone according to a hash function. Each key is represented by d
coordinated k= (c1, c2,… cd).

A greedy algorithm is used to route a given query towards the neighbors that their
zones are the most close to the zone in which the lookup key fall. For example, in figure 4, we
consider a Cartesian space of d=2 dimensions and we suppose that a peer possesses a zone i is
called Pi. Let us suppose that P1 needs to lookup the key (x, y). This peer sends a message to
P4 because this peer possesses the closest zone, in terms of Euclidian distance, to the zone in
witch the key (x, y) falls. Then, peer P4 sends the message to the neighbor possessing the
closest zone to the zone holding (x, y). This process is continued until the message arrives at
its destination. According to this topology, each peer has to store information concerning 2*d
neighbors and the average number of hops required to lookup a key is O(dN1/d) where N is
the number of all peers in the system.

2.2.4. Tree

 As an example of this topology, we study the case of Baton [26] which is utilized to
create a structure of distributed index by redistributing data on all peers in a balanced manner.
Each node in the tree represents a peer in the system. It is identified by the number of its level
in the tree and its order in this level. Thus, each peer has a logical identifier corresponding to
its level and to its order in this level and a physical identifier corresponding to its IP address.
Furthermore, each peer has a link (by using the physical identifiers) with its parent, its left

neighbor, its right neighbor, its sons and other selected neighbors in its level. The selected
neighbors are maintained in two routing tables, one for the right neighbors and the other for
the left neighbors. The number of entries of each table is O(log N) or N is the number of all
peers in the system. The ith entry of the right table (the left table) of a peer p contains a link
with the peer having the number n+2i-1 (respectively n-2i-1) at the same level. The data are
redistributed on the peers in a way that each peer becomes responsible for a range of values.
In figure 5, for example, peer 6 is the parent of peers 12 and 13 then its range ([54, 61)) has to
be in the middle of their ranges ([51, 54) and [61, 68) respectively).
 The routing of an equal query is performed as follow. If the neighbors having the
upper bounds (lower bounds) of their smaller (bigger) ranges than those of the query range,
the query is sent horizontally towards the neighbor farthest who has an upper bound (lower
bound) smaller (bigger) than the values of the query range. Then, the query is vertically
propagated by following the left (right) neighbor or left (right) son. This process is repeated
until the query arrives on the peer storing the desired data item. The number of hops to be

[51,54)

[54,61)

[61,68)

Level 3

Level 2

Noded 13 : level is 3, order is 6, parent is 6, left son is nul,
right son is 18
Left adjacent is 6, right adjacent is18
Left routing table
 Node Left son Right

son
Lower
bound

Upper
bound

0 12 Nul Nul 51 54
1 11 16 17 34 39
2 9 Nul Nul 8 12
Right routing table
 Nde Left son Right

son
Lower
bound

Upper
bound

0 14 Nul Nul 75 81
1 15 19 20 89 93

1

2 3

4

8 9

5

10 11

6

12 13

7

14 15

16 17 19 20 18

Level 0

Level 1

Level 4

Figure 5. Example of a Tree

������������	
������	
�

��������
����������
�������
�
�����
�
�
��	���
�����
���
����

 124

carried out during this query routing is O (LogN). As regards the range queries, the previous
process is repeated until we find the peers storing the lower bound (or upper bound) of the
query range. Then, it is necessary to look for the rest of the range. For that purpose, the query
has to visit x peers. Consequently, the complexity of the query routing becomes O(Log N +
x).

2.2.5. Discussion

Topology Algorithm Parameters Query routing
complexity

Join/leave
complexity DHT

Ring Chord ������������	�
���
��	 1/2LogN Log2N Yes

d Dimension
Cartesian space CAN

������������	�
���
��	�
�����������
��	����
��
�������������

dN1/d Join: d/2N1/d
Leave: 2d Yes

Tree Baton

������������	�
���
��	�
�����������
��	�������	�����
�����������������	��������
������������	�����	���������
	���������������������	�

LogN and
LogN+x for Range

Queries
Log N No

Hypercube HyperCup
������������	�
���
��	�
���������������������
����	����

LogbN LogbN No

Table 1. Comparison between the different structured P2P systems based on the studied shapes

In the table 1, we compare the four types of structured systems that are studied above.
We use the following parameters for the comparison: (i) query routing complexity witch
represents the average number of peers by which a query has to pass via during its routing. (ii)
join/leave complexity that represents the number of peers to be contacted when a peer
join/leave the system and (iii) with or without DHT.

Among the four geometric shapes, the best is Hypercube and the worst is CAN in
terms of query routing complexity. Baton does not separate the virtual network of the
underlying physical network. Having information about the physical network is not practical
because the network parameters are regularly changed. Another drawback of Baton is that
only the peers forming leaves of the tree can leave the system at any time. However, if another
peer wants to leave the system it must find a leaf in order to exchange their places. We can
also add that in the case of Baton, it is necessary to redistribute the data on all the peers
according to the values of their data items. Thus is not practical when the volume of shared
data is very height. It is more practical to redistribute information concerning the placements
of the data items and to maintain storing the data items on their sources as in the case of
Chord. Consequently, Baton is suitable for building a fully distributed data index in some
applications where we can move the data items. In terms of join/leave the system, Both Baton
and Hypercube are more efficient than CAN and Chord. That is due to the fact that Baton and
Hypercube have no DHT. The DHT facilitates the query routing and guarantees to find all
valid answers existed in the system. A DHT allows a well-balanced distribution of charge and
information. It does not require moving data from their sources. CAN and Chord are based on
the DHT technology.

2.3. Query Routing in Super-Peer P2P Systems

 We remind that in the super-peer P2P systems, there are two types of peers: (i) the
super-peers who are often powerful peers and (ii) the normal peers, or simply the peers, which
are clustered in a way that each cluster is connected to a super-peer. Each super-peer is
responsible for indexing the data items stored in the peers of its cluster. The super-peers form
a P2P system. This system can be structured or unstructured. We have already noticed that

������������	
������	
�

��������
����������
�������
�
�����
�
�
��	���
�����
���
����

 125

this class of systems is hybrid between both paradigms Client/Server and P2P. In the Super-
peer P2P systems, the query routing is done as follows. The peer initiating the query sends a
message, containing the query, to its super-peer that looks for relevant data sources in its local
index. If the super-peer finds relevant data sources, it answers the PIQ by sending it their IP
addresses. If not, the super-peer contacts its neighbors (at the super-peer level) found in the
system. Each super-peer looks for relevant data sources in its local index, if it finds valid
answers; it sends the message to its clients representing relevant data sources. The clients send
their answers to their super-peer which send these answers, in its turn, to the super-peer
responsible for the PIQ. Finally, the answers will be sent to the PIQ.

In P2P data sharing systems, efficient query routing is not enough to locate relevant
data sources. Schema heterogeneity problem has a direct impact on the data source
localization. Because of this problem, a relevant data source couldn’t be found during the
query routing phase even if it is the only relevant source available in the system. In order to
solve this problem, P2P data sharing systems must provide efficient functionalities for
matching heterogeneous schemas. Therefore, we next study schema matching issues.

3. SCHEMA MATCHING
In P2P data sharing systems, databases are designed and developed autonomously.

Each node describes its data using its own local schema. By "schema", we mean a plan (or a
shape) that describes the relationships between data items and represents a set of rules
defining these relationships. Because of the node autonomy at database design level, the local
schemes could be semantically and structurally heterogeneous.

In figure 6, we illustrate an example of heterogeneous peer schemas used in the medical
domain. We consider relational schemas because of the large use of relational database model.
The schema heterogeneity could appear at two levels:

• Semantic level: witch involves:
- Synonymy: it occurs when multiple terms having the same meaning. For instance,
“Consultant” in P32 schema and “Doctor” in P1 schema are two terms holding the
meaning of “a person training to treat ill people”.

- Polysemy: it occurs when one term having many meanings. For example,
“Consultant” on P21 has the meaning of expert which is defined as “a person having
special knowledge of a subject, gained as a result of training or experience”. It is not
the same meaning of “Consultant” on P32.

• Structural level: that refers to the heterogeneity of the attributes representing the
same relation in several schemas. For instance, Doctor (Name, Salary, Phone_number)

P1: Doctor (Name, Salary, Phone_number)
P8: Doc (Name, Paycheck, Telephone)
 Ill (Name, Address, Doctor_Name, SSN)
 Treat (Pressure, Temperature, Drug, Trade_Name, Dose)
P14: Physician (Name, Address)
 Patient (Name, Age)
P21: Consultant (Name, Earnings, Address, Telephone)
P32: Consultant (Name, Salary, Telephone)
P42: Doctor (Name, Address, Tel)
P48: Patient (Name, Age, Address, Doctor_Name, Disease,
 Social_Security_Number)
 Treatment (Pressure, Temp, Drug, Trade_name, Dose)

 Figure 6. Local schemas of a set of peers

������������	
������	
�

��������
����������
�������
�
�����
�
�
��	���
�����
���
����

 126

according to P1 schema and Doctor (Name, Address, Tel) according to P42 schema are
structurally heterogeneous.

When a node submits a query written in terms of its local schema, other nodes must
understand the query in order to be able to answer it correctly. The schema matching is the
process of finding for each element of a given schema, its correspondent element in another
schema and to produce matching rules for reformulating a query written in terms of one
schema into the terms of the other schema. In order to do that, this process must exploit
information related to both schemas. For instance, the names of schema’ elements, their data
types and domain ranges.

3.1. Schema Matching Types
The schema matching has a significant impact on query processing. If the matching

rules are “badly” created, the quality of query answers could be "bad" also. We mean that
some answers may be invalid or may not be those that are desired by the peer initiating the
query. Thus, important questions may arise at this point such as: (i) how to create the schema
matching? (ii) when? and (iii) by who, by experts or by end users? Since it is not possible to
carry out the schema matching in a totally dynamic way (without any human intervention)
[19], this process can be done manually (without any machine intervention) or semi-
automatically. The drawback of manual schema matching is that it is time consuming.
Therefore, semi-automatic approaches have emerged as a solution to this drawback.
Researchers are still trying to automate, as much as possible, the schema matching process. A
summary of the proposed approaches in this area is presented in [51]. We can distinguish
between two types of schema matching:

• Static Matching: in this matching type, the matching rules are created at the system
design time and remain unchanged (except, of course during maintenance). The matching
rules can be stored in a centralized manner on one or several sites known by all peers or
distributed in any way on all peers. They will be used during a query processing in order to
translate a given query between different schemas. These rules are often created by experts in
schema designing who are familiar with the semantics of the matched schemas.

• Dynamic Matching: when the matching rules are created on the fly, or changed
regularly, we call this type of matching by dynamic matching. In this type of matching, we
can change the matching rules and/or create new rules anytime. Usually, the matching rules
are created at the query run-time.

3.2. Schema Matching Approaches

 In P2P environments, schema matching approaches can be classified as follows: global
schema based approach, pairwise matching approach and information retrieval based
approach. We next explain each approach.

• Global Schema based Approach : The absence of a global schema in P2P systems
can be considered by some researchers as a strong hypothesis. Even if the peer instability and
the large scale prevent having information concerning data placement, peers can agree on a
global schema. Two approaches LAV (Local-As-View) [37] and GAV (Global - As - View)
[41] are existing to create the matching rules between the global schema and the local
schemas. According to the LAV approach, the local schemas are defined as views (queries)
formulated in terms of the global schema. A query written according to the global schema
must be reformulated in terms of the local schemas. On the other hand, in the GAV approach,
the global schema is defined as a view on the local schemas. According to this approach, we

������������	
������	
�

��������
����������
�������
�
�����
�
�
��	���
�����
���
����

 127

translate a given query (written in terms of global schema) into sub-requests written according
to the local schemas. A hybrid approach GLAV [36] between LAV and GAV approaches can
be used.

• Pairwise Matching Approach: The use of a global schema could be unacceptable in
certain applications for which, it is very difficult to find a common agreement between peers
on such a schema. For that reason, certain researchers prefer to use a direct pairwise matching
between local schemas. In this way, we create a semantic network whose nodes are the local
schemas and the links are the matching rules.

• Information Retrieval based Approach: According to this approach, the user has to
play an essential role in the matching process by providing keywords. This approach is similar
to that utilized in the information search on the Internet by using any search engine. The
principle of this approach consists of (i) providing keywords by the user, (ii) finding the sites
storing data having semantics close to that of the keywords, (iii) delivering the ID addresses
of these sites to the use in order to select the relevant sites and finally (iv) downloading the
desired data from the selected sites.

Schema matching defines semantic and structural relationships between heterogeneous
schemas. Thus allowing P2P data sharing systems to localize relevant data sources and to
process queries similar to that found in P2P file sharing systems by replacing the file name by
the name of data item. In order to process more advanced queries, P2P data sharing systems
must support other functionalities provided by traditional database systems such as query
optimization.

4. QUERY OPTIMIZATION
In traditional database systems, when a distributed query processing is carried out, the

query is translated by an optimizer into execution plans. An execution plan should define
certain details about the following steps: (i) the choice of relevant data sources for each data
item, (ii) the order of the query operations and the choice of the more suitable algorithm for
each one and (iii) the choice of the target nodes which are able to execute each operation.
Then, the optimizer chooses the close to optimal execution plan which minimizes a cost
function (e.g. response time). The most an execution plan is close to optimal, the more the
query execution is efficient. By "efficient", we mean a minimized value of the cost function.
The calculation of the cost function is based on information (usually called metadata) stored
in a global catalog. Usually such a catalog contains global information about data, their
schemas and their sources.

In traditional database systems, the global catalog storing metadata can be centralized
or duplicated on many servers. In P2P data sharing systems, the query optimization is more
complex with regard to traditional database systems. The absence of a global catalog in P2P
data sharing systems makes creating a close to optimal execution plan a real challenging. Due
to the decentralization, the peer autonomy and instability and the large scale of P2P systems,
it is not practical to have a centralized catalog which could create a bottleneck. Furthermore,
the autonomy of peers and the fact that each peer is a client and a server at the same time,
prevent P2P systems to have a catalog duplicated on all peers. This type of catalog requires a
big number of update messages when one peer join/leave the system. We can distinguish
between two optimization approaches. We next highlight the differences between both
approaches.

������������	
������	
�

��������
����������
�������
�
�����
�
�
��	���
�����
���
����

 128

4.1. Centralized Optimization

In this type of query optimization, an execution plan is generated on the peer initiating
the query and then it is decomposed into sub-plans that will be sent towards target peers.
When a target peer receives a sub-plan, it can re-optimize this sub-plan. But it has no idea
about the global execution plan. When a peer submits a query, it has generally neither global
vision on its environment nor global information about relevant data sources. It may have
information about the resources available on its neighbors only and some statistics coming
from previous query executions. The lack of information and the obsolete statistics are two
factors on which the optimality of an execution plan depends. Available information and
statistics could be obsolete because of the large scale, the node autonomy and instability of
P2P environments. Each peer can make updates locally on its own data without informing
other peers found in the system or sometimes without being itself connected to the system.
Furthermore, the values of some physical parameter concerning target peers (e.g. available
memory, CPU load) or those of the network (bandwidth and latency) could be continuously
varied because of (i) the enormous number of queries submitted at the same time and (ii) the
irregular arriving rate of these queries. So, the generated execution plan can be sub-optimal
which could lead to invalid answers.

 In our previous paper [29], we have proposed to take advantage of the location phase
to obtain all metadata needed for creating a close to optimal execution plan. During the
localization phase, relevant data sources are discovered and at the same time metadata
concerning the given query are obtained and returned to the PIQ. Even if the optimization
process is centralized on the PIQ, this optimization is not satisfied by local metadata available
on the PIQ. But it also utilizes metadata available on the data sources. The utilized metadata
are fresh and reliable because it is obtained directly from their data sources.

4.2. Distributed Optimization

 According to this approach, the peer initiating the query generates an initial execution
plan by basing on its local metadata. This execution plan will be sent to remote peers that re-
optimize it by using their own metadata. Papadimos and Maier have proposed the strategy of
Mutant Query Plans (MQP) [46] for sharing XML data. Each peer receives the execution plan
with intermediate results coming from another peer. Then, it optimizes again the query by
using its local knowledge. Finally, the results with the execution plan will be transmitted to
another peer and so on. The MQP strategy has two drawbacks: (i) shipping the intermediate
results with the query plan many times for one query witch will be expensive in terms of
network bandwidth consumption and (ii) the user query may be optimized and executed on a
peer without a prior knowledge about the capability of this peer at the moment of receiving
the user query to optimize and/or to execute the query.

 A similar strategy to MQP has been proposed by the authors of [38] who distinguish
their strategy from MQP by the consideration of the query decomposition and the using of
dynamic execution plan based on the cost of the transmission of intermediate results and on
the up-to-date information of the neighbors. However, these authors mention, in the same
paper [38], that in order to avoid transmitted a big amount of intermediate results, their
strategy requires about O(N) messages that must be exchanged in the network where N is the
number of all peers in the system.

Even if query optimization is still an open problem in P2P environments, little of
research works take attention about this problem. For instance, when we analyze selected

������������	
������	
�

��������
����������
�������
�
�����
�
�
��	���
�����
���
����

 129

projects of P2P data sharing systems in the next section, this problem is not addressed in the
majority of the case studies.

5. CASE STUDIES IN P2P DATA SHARING SYSTEMS
Recently, several projects for designing and developing P2P data sharing systems have

emerged. These projects differ in their methods of: query routing, schema matching, and
query optimization. In this section, we discuss several case studies representing essential steps
toward P2P data sharing systems. We note that the performance and the services of P2P
systems depend often on the system topology. Except the APPA system [2] which represents
an exception by being topology independent P2P system.

APPA [2] is a P2P system based on a fully distributed platform that is adaptable with
different P2P typologies (structured, unstructured or super-peer). The peers in APPA have
views on a Common Description Schema (hereafter CSD). This is similar to LAV approach
except that the queries in APPA are written in terms of local views and not in terms of the
CSD. Each peer stores locally matching rules between its schema and the CSD. Currently, the
APPA authors propose solutions for top-k query processing and for the reconciliation of
replicated data.

We next give an overview on other case studies of P2P data sharing systems classified
as the P2P topology utilized by these systems.

5.1. Unstructured P2P Data Sharing Systems
We begin our study by unstructured P2P data sharing systems in witch peers have

equivalent role and they don’t be forced to be organized on a predefined geometric shape.

HePTex [7] is a P2P system for sharing data stored in heterogeneous XML databases.
The focus of HePTex is how inferring automatically precise mapping rules from informal
schema correspondences and how to translate XQuery queries between the peers’ schemas.
The authors of HePTex mention that their translation algorithm is the first one that "deals with
schema mappings, including data-metadata along and against the direction of mappings".
Query routing in HePTex is totally decentralized and has logarithmic complexity (as in DHT-
based systems). However, HePTex supposes that each peer has some knowledge about other
peers’ schemas and the user of this peer must “easily” create correspondences between
schemas.

GrouPeer [35] is unstructured P2P system that allows sharing relational data by using
semantic overlay clusters. The authors of GrouPeer focus on the problem of the inability of a
peer to obtain information about desired data or about peers having similar interests. When
pairwise matching rules are already established, a peer receiving rewritten query cannot be
able to sufficiently answer the query. A given version of rewritten query could be corrupted
during the rewriting process on intermediate peers. GrouPeer offers a dynamic approach for
creating and maintaining semantic groups of peers. Through this approach, a peer can choose
a version of rewritten query or automatically writes its version. The authors investigate the
notion of semantic query similarity that decreases when the number of attributes increases.

OntoZilla [25] is a P2P system avoiding network flooding by using ontologies to
cluster peers into interest groups in order to route queries to relevant peers. Ontologies allow
the description of the peer resources which allows automatic information processing.
OntoZilla is more flexible than DHT-based systems since the peers’ clusters are based on

������������	
������	
�

��������
����������
�������
�
�����
�
�
��	���
�����
���
����

 130

peers’ special interests that could be varied over the time. The peers in a cluster utilize only
one classification system for special interests, services and information. Currently, the authors
develop a prototype and, as our knowledge, there is no experimental information about the
validity of OntoZilla system available yet.

5.2. Structured P2P Data Sharing Systems
In this sub-section, we study main structured P2P data sharing systems by beginning

with our proposed one.

Figure 7. Layered software architecture on each node of the OP2DBS

OP2DBS [31] is an ontology-based P2P database system for processing SQL based
queries. In this system, a query written in terms of a local schema is processed as follows.
After parsing the query, (i) Query Reformulation phase is carried out in order to make query
understood by remote peers. So, the semantic and structural conflicts must be resolved in this
phase. The system provides semi-automatic tools to user in order to reformulate locally the
query into another query written on terms of a domain ontology (hereafter DO). After that, (ii)
Query Localization and Metadata Obtaining phase localizes relevant data sources. This phase
is based on a DHT, it obtains all metadata required for the next phase. (iii) Global
optimization phase is similar to global optimization in data integration systems. The only
different is that in P2P environments, with the absence of a global catalog, global optimization
is based on information obtained during the localization phase. The output is sub-queries
written in terms of the DO and sent to remote peers in order to enter in a (iv) Local
Optimization phase and then in the (v) Execution phase. Finally the results must be assembled
and delivered to the user.

eSciGrid [53] is a P2P-based system for sharing huge amount of data in a Grid
environment. It allows e-science communities to establish decentralized and cooperative data
sharing infrastructures. This system provides a decentralized protocol for caching range query
results. This protocol takes into account the network traffic and the physical distance between
peers. eSciGrid must be extended to be used in other domains such as e-Health and
Astrophysics.

PIER [20] is an Internet-scale relational query engine. It supposes the existence of a
standard schema replicated on all peers. But, it doesn’t suppose the existence of a global
catalog. It obtains meta-data on the fly when needed by using a kind of monitoring service.
PIER utilizes CAN protocol [48] in which a relation key is constructed from the relation
namespace and the resource identifier (resource ID). The relation resource ID is its primary
key. The join between two relations requires the multicast of the join query to all peers in the
two namespaces attributed to these relations. Instead of using persistent storage, PIER

Parser

User Interface

Optimizer DBS

Local Repository

Domain Ontology Matching Rules

DHT

Exported Schema
& Metadata

Wrapper

������������	
������	
�

��������
����������
�������
�
�����
�
�
��	���
�����
���
����

 131

considers soft-state storage in which a temporary data item still alive for a given life-time and
then it is discarded.

PGrid [3] is a dynamic binary search based P2P system. The originality of this system
is due to the separation between peer identifier and peer position on the network (i.e. its IP
address). PGrid uses pairwise matching approach and assumes the existence of predefined
RDF matching rules between different schemas in the system. These rules are initially created
by skilled experts. PGrid is able to extract new matching rules between two local schemes that
are not initially matched. It uses routing strategy based on gossiping algorithm that is not
affected the system scalability. PGrid proposes a solution for processing RDF-based range
queries.

Pins [62] is a DHT-based P2P systems for data indexation and interrogation. It stores
any kind of objects (e.g. images, videos, documents, etc.). It supports storing also meta-data
(i.e. Nom_attribute=valeur) to facilitate data source search. The originality of Pins lives in the
fact that it can be used with any DHT-based P2P system and with any type of data. This
system supports several services such as the evaluation of declarative queries [62] and the
personalized indexation [62]. However, Pins suggest replicating shared objects (data and their
meta-data on several peers. When the number of these objects is very high, the management
of their replicas becomes very difficult. The authors of Pins [62] do not address the
heterogeneousness between the objects stored in Pines. Their future works will be dedicated
to add of semantics to the queries processed by the system and to supports various levels of
query expressions.

5.3. Super-peer P2P Data Sharing Systems

 We next study selected P2P data sharing systems that are largely utilized nowadays.

 SIGMCC [13] is a super-peer P2P system for sharing meta patient records that can be
stored by using different identifiers and various structures in many data sources. SIGMCC has
a filtering module allowing sending personal data only to authorized clients. It provides XML-
based meta-Electronic Patient Record (meta-EPR) that contains information extracted by
different EPRs. However, using a specific EPR is relevant to limited applications that have
specific requirements.

Piazza [22, 58] is super-peer system [8] allows sharing XML data. Each XML schema
defines the structure and the content of one peer. Piazza has centralized index storing
summaries of the peers’ data at different granularity. In addition, the index stores pairwise
matching rules representing the relationships between different heterogeneous XML schemas.
Thus makes Piazza very similar to a search engine. Piazza users can write their queries
according to their local schemes. The Xquery reformulation is the main problem addressed by
the Piazza authors. These authors don’t explain how can process the queries efficiently. They
propose a query reformulation algorithm to obtain all the answers in the existing peers.
However, this algorithm is centralized. Moreover, to process a query, a chain of
reformulations may be needed. The Piazza authors mention that their reformulation algorithm
"may produce more reformulations than necessary" [22].

coDB [15] is a P2P database system in witch databases are interconnected by GLAV
[36] coordination rules. Each peer can be queried, in its local schema, for data that can be
fetched from its neighbors if a coordination rule is existed. The architecture of coDB is based

������������	
������	
�

��������
����������
�������
�
�����
�
�
��	���
�����
���
����

 132

on JXTA platform2 which responsible for the peer’s activities on the network. Super-peers in
coDB can change dynamically the network topology at runtime. Furthermore, a super-peer
offers services to start-up all peers, to establish coordination rules, to run experiments and to
collect statistical information. Each peer stores a statistical report and makes it available for
the user. A user on a peer can show the interactions with the neighbors (called acquaintances)
and also the discovered peers (not neighbors).

Edutella [43] is a super-peer P2P based on the JXTA platform. It uses RDF for
resource notation (including data). Each resource is identified by unique identifier. All
notations are represented by a triplet <subject, property, value>, where subject identifies the
resource we want to describe (using URI), property indicates which attribute is specified and
value indicates the value of the specified attribute. The descriptions of a group of peers are
stored on its super-peer. An RDF Schema (RDFS) is used. This schema contains resource
classes, properties and conditions on the properties (domain, range, etc.). The properties can
be used to integrate two schemas, to link several resources or to create hierarchical
relationships between resources. Edutella supports RDF-based Top-k query processing.

PeerDB system [42, 44] allows sharing relational data by using Information Retrieval
approach and mobile agents to find relevant data sources. Mobile agents participate also in the
query processing. The overly network is composed of simple peers and LIGLO (Location
Independent Global Names Lookup) servers. LIGLO are used to enhance the query routing by
assigning unique IDs to the peers and maintaining traces of their current status (connected or
disconnected). For each schema item, the user creates keywords (i.e. synonyms). For a given
SQL query, mobile agents are created and propagated in the system. The mobile agents use
Matching Strategy in order to return information (IP addresses, semantic mappings) about
peers that are probably relevant data sources. Then the user chooses the "best" data sources
before creating other mobile agents for processing the submitted query. One of the drawbacks
of PeerDB is that there is neither global schema nor common semantics about shared data.
The connections between user keywords can lead to false query reformulation and then to
invalid query answers. Moreover, the PeerDB authors don’t address the problem of generation
a global execution plan. They use statistics stored in LIGLO servers for the aim of query
routing optimization and not for global query optimization purpose.

AmbientDB [10] is a prototype of a P2P database management system. It consists of
the following components: (i) Relational query processor that is based on a global known
schema, (ii) P2P networking protocol which manages the interactions between the peers by
basing on a DHT (iii) XML schema integrator which is responsible for solving the
heterogeneity between local schemas by using XML files and (iv) Local database which is
managed by a relational DBMS. To process a query, the authors assume the existence of an
execution plan but they say nothing about the information on which this plan is based, and
without saying anything about how to generate this plan. They propose some opportunities for
optimizing their algorithms in terms of network bandwidth consumption. But there are no
concrete results available at the moment of writing this paper.

5.4. Qualitative Comparison

In this section, we present a qualitative comparison between, on one hand, P2P data
sharing systems [2, 3, 7, 10, 13, 15, 20, 25, 35, 42, 43, 53, 58, 62] studied in the previous
section and the system OP2DBS considered in our research works presented in the papers [29,
30, 31, 32].

2 https://jxta.dev.java.net/

������������	
������	
�

��������
����������
�������
�
�����
�
�
��	���
�����
���
����

 133

HePTex [7], GrouPeer [35] and OntoZilla [25] are unstructured P2P systems that
maintain a high node autonomy level and a good fault tolerance. However, despite the big
efforts that have been made they are often incapable to find all valid answers found in the
system during the query routing process.

 coDB [15], Edutella [43], Piazza [58], PeerDB [42] and SIGMCC [13] are super-peer
P2P systems. In such systems, peers do not play equivalent roles. The Piazza System [58]
utilizes a central index installed on one (or multiple) node(s) for storing information needed in
the query reformulation phase. The system PeerDB utilizes LIGLO servers [42] to improve
the query routing quality. As for the coDB system [15], it stores matching rules between
heterogeneous schemas on the super-peers. The system Edutella [43] utilizes several super-
peers to enhance the data source localization, on one hand, and to execute queries on the other
hand. Despite the reduced number of exchanged messages during the data source localization,
these systems are less fault tolerant compared to other P2P systems (structured and
unstructured). Thus, the ability of these systems to find all valid answers depends on the type
of P2P system formed by the super-peers.

AmbientDB [10], PGrid [3], PIER [20], PinS [62], eSciGrid [53] and our system are
structured P2P systems capable to provide solutions to the limitations of unstructured and
super-peer P2P systems. One advantage of structured P2P systems is the ability to find all
valid answers available in the system while using an "acceptable" number of inter-nodes
exchanged messages. The structured P2P systems suffer from the fact that the node autonomy
is limited comparing with unstructured and super-peers P2P systems. It is true that the nodes
can not choose their neighbors, but this can be tolerated when we look at the benefits of these
systems. PIER [20], Pins [62] and our system are DHT based P2P systems. The PGrid [3]
system distinguishes itself from other structured P2P systems by the separation between the
node identifier and its position on the physical network (i.e. its IP address). Moreover, in the
PGrid system [3], several nodes may be responsible for storing meta-data concerning a shared
data item. Thus improves the fault tolerance of the PGrid system. However, managing the
join/leave of a peer is more complicated. The authors of PGrid [3] do not provide information
on the complexity of these two processes. A DHT can facilitate the query routing process
while maintaining an "acceptable" complexity to the peer join/leave. The PIER system [20] is
based on the CAN protocol [48] which is less efficient in terms of the number of inter-nodes
exchanged messages than the both protocols Pastry [49] and Chord [54] that are utilized by
PinS [62] and our system respectively. The PinS system [62] is characterized by the fact that
it can be used with any routing protocol and it is able to utilize any hash function. Although,
even if our system is currently using the protocol Chord [54], it is also independent of the
routing protocol and of any hash function. eSciGrid [53] utilizes a protocol taking into
account the network traffic and the physical distance between peers. Despite of this fact, the
scalability of the system is maintained and the query routing still having logarithmic
complexity in terms of the peers’ number.

As for the schema heterogeneity problem, the systems Piazza [58], coDB [15],
GrouPeer [35], OntoZilla [25], PGrid [3] and HePTox [7] utilize the approach of pairwise
matching that may requires a chain of matching process when locating the data sources of a
given query. The systems APPA [2] and PIER [20] utilize the global schema based approach
for carrying out the schema matching process. This solution is very similar to that used in the
data integration systems except in the APPA system [2] queries are written by local schemas.
In order to use a global schema, it must predict all nodes can connect to the system and all
local schemas must be known before sharing any data in the system. Having a global schema
makes difficult for a new node to connect to the system because the user of that node may not

������������	
������	
�

��������
����������
�������
�
�����
�
�
��	���
�����
���
����

 134

necessarily have the capacity to understand the semantics of the terms used in the global
schema. In our system, to create the matching rules between the local schemas, we use an
approach hybrid between the approach global schema based matching and that based on
information retrieval (IR) which is utilized by both systems PeerDB [42] and Edutella [43].
What distinguishes our system is that we replace the global schema by a domain ontology in
which the semantics is explicitly explained. This makes easier for a new peer to connect to the
system because the user can understand the semantics of the terms utilized by the ontology
and can then create the matching between the ontology and its local schema. Another
advantage of using a domain ontology is that thousands of domain ontologies are actually
available on the Internet which makes our choice practical. The schema matching in the
Edutella [43] system is static process. However, in the PeerDB system [42] and in our system
the schema matching is a dynamic process and well adapted with the dynamic nature of P2P
environments. At that point, the difference between our system and the system PeerDB [42] is
that PeerDB utilizes mobile agents to locate data sources while performing the schema
matching at the same time. Mobile agents can visit hundreds of peers and perform the
matching between the schemas of these nodes and the local schema of the node initiating the
query without prior knowledge of the contents of the visited nodes. Therefore, mobile agents
can visit several nodes by consuming more resources (e.g. network bandwidth) without any
benefit. However, we use in our system a domain ontology and we provide local matching
between the local schema of the node initiating the query and the domain ontology. Even if
the system PeerDB utilizes LIGLO [42] servers to guide (based on some statistics) the routing
of its agents, our system based on a DHT still more efficient. The authors of PinS [62] are
currently silent about the heterogeneity between the objects stored in PinS. They will add
semantics to the queries processed by PinS in their future research works. The authors of
eSciGrid [53] don’t currently address the heterogeneity problem to the best of our knowledge.

The global query optimization becomes a major problem when there is no global
catalog in the system. The global catalog contains often metadata needed for generating an
execution plan close to optimal. To our knowledge, none of the systems studied in the
previous section address, in details, this problem. The systems Edutella [43], coDB [15],
AmbientDB [10] and APPA [2] (in his super-peer architecture) utilize information available
on the super-peers. The Piazza system [58] utilizes information stored in its central index that
can create a bottleneck. Regarding our system, we know that it is not possible to obtain up-to-
dated global information (i.e. concerning all nodes in the system). We believe that it is not
necessary to have global information to process a given query. Information about data sources
is sufficient to generate an execution plan close to optimal. The generated plan will be
executed on the data sources. Therefore, we have proposed in our previous paper [29] to
obtain all the required meta-data during the data source localization phase.

 Topology
Schema Matching

������������	
������	
�

��������
����������
�������
�
�����
�
�
��	���
�����
���
����

 135

�
��
���
!""�����"
��
�#�
����
�

���
$��%	�"���

Table 2. Qualitative comparison between the studied P2P data sharing systems

6. CONCLUSION
The success of the P2P file sharing systems has led to the emergence of P2P data

sharing systems that support sharing data having granularity finer than a file. Providing highly
robust functionality for large-scale dynamic P2P environments is still a challenge. In this
paper, we have addressed query routing, schema matching and query optimization problems
in P2P data sharing systems. Furthermore, main research works towards the implementation
of this type of systems are analyzed and compared.

REFERENCES
[1] S. Alaei, M. Ghodsi and M. Toossi, "Skiptree: A new scalable distributed data structure on

multidimensional data supporting range-queries", Journal of Computer Communications, V(33), N(1),
pp. 73-82, January 2010.

[2] R. Akbarinia and V. Martins. “Data management in the APPA P2P system”. Journal of Grid
Computing, Vol 5(3), pp. 303-317 , September 2007.

[3] K. Aberer, P. C. Mauroux, A. Datta, Z. Despotovic, M. Hauswirth, M. Punceva and R. Schmidt. “P-
Grid: a self-organizing structured P2P system”. SIGMOD Rec. 32, 3 (Sep. 2003), pp. 29-33, 2003.

Approach Type

APPA
Adapted with any

P2P topology
Global Schema based Static NA*

PIER Structured Global Schema based Static
Decentralized

Based on monitoring meta-data

AmbientDB Structured Global Schema based Static NA

Piazza
Super-peer

[BCO+08]
Pairwise based Static NA

coDB Super-peer Pairwise based Dynamic NA

PGrid Structured Pairwise based Static NA

PeerDB Super-peer User-keyword based Dynamic NA

Edutella Super-peer User-keyword based Static
Centralized

Based on meta-data available on super-peers

PinS Structured NA NA NA

GrouPeer Unstructured Pairwise based Dynamic NA

OntoZilla Unstructured Pairwise based Dynamic NA

HePTex Unstructured Pairwise based Dynamic NA

SIGMCC Super-peer

Global Schema based

(Schema is replaced by

meta-EPR)

Static NA

eSciGrid Structured NA NA NA

OP2DBS Structured
&���'$��%��"
 based +
Global Schema based
(Schema is replaced by
ontology)

Dynamic

Centralized

Based on meta-data available

on data sources

������������	
������	
�

��������
����������
�������
�
�����
�
�
��	���
�����
���
����

 136

[4] K. Aberer, P. C. Mauroux and M. Hauswirth. “A Framework for Semantic Gossiping”. ACM SIGMOD
(SIGMOD’02) Record 31(4), pp. 48-53, 2002.

[5] A. Andrzejak and Z. Xu. “Scalable, efficient range queries for grid information services”. In Proc. of the
IEEE Int. Conf. on P2P computing, pp : 33-40, 2002.

[6] R. Blanco, N. Ahmed, D. Hadaller, L.G.A. Sung, H. Li and M.A. Soliman. “A survey of data
management in peer-to-peer systems”. Technical Report CS-2006- 18, University of Waterloo, 2006.

[7] A. Bonifati, E. Chang, T. Ho, L. V. Lakshmanan, R. Pottinger and Y. Chung, "Schema mapping and
query translation in heterogeneous P2P XML databases". The VLDB Journal, V(19), N(2), pp. 231-256,
April 2010.

[8] A. Bonifati, P. K. Chrysanthis, A. M. Ouksel and K. U. Sattler. “Distributed databases and Peer-to-Peer
Databases: Past and Present”. SIGMOD Rec. 37, 1, pp. 5-11, March 2008.

[9] I. Brunkhorst1, H. Dhraief, A. Kemper, W. Nejdl and C. Wiesner. “Distributed Queries and Query
Optimization in Schema-Based P2P-Systems”. In Proc. of the Int. Workshop on Databases, Information
Systems, and Peer-to-Peer Computing (DISP2P’03), pp. 184-199, 2003.

[10] P. Boncz and C. Treijtel. “AmbientDB: Relational Query Processing in a P2P Network”. Int. Workshop
on Databases, Information Systems and Peer-to-Peer Computing (DBISP2P), 2003.

[11] A. Crainiceanu, P. Linga, A. Machanavajjhala, J. Gehrke and J. Shanmugasundaram. “P-ring: an
efficient and robust P2P range index structure”. In Proc. of the 2007 ACM SIGMOD int. Conf. on
Management of Data (SIGMOD '07), pp : 223-234, 2007.

[12] A. Crespo, and H. G. Molina. “Routing indices for peer-to-peer systems”. IEEE Int. Conf. on
Distributed Computing Systems" (ICDCS’02), pp : 23-33, 2002.

[13] M. Cannataro, D. Talia, G. Tradigo, P. Trunfio and P. Veltri, "SIGMCC: A system for sharing meta
patient records in a Peer-to-Peer environment". Journal of Future Generation Computer Systems, V(24),
N(3), pp.222-234, March 2008.

[14] N. Daswani, H. G. Molina and B. Yang. “Open problems in data-sharing peer-to-peer systems”. Int.
Conf. on Database Theory (ICDT’03), pp. 1-15, 2003.

[15] E. Franconi, G. Kuper, A. Lopatenko, I. Zaiharayeu, "Queries and Updates in the coDB Peer to Peer
Database System", in the proceedings of the 30th VLDB, pp. 1277-1280, 2004.

[16] A. Gupta, D. Agrawal and A. El Abbadi. “Approximate range selection queries in peer-to-peer
systems”. First Biennial Conference on Innovative Data Systems Research (CIDR’03), pp. 141-151,
2003.

[17] S. Girdzijauskas, A., Datta and K. Aberer, "Structured overlay for heterogeneous environments: Design
and evaluation of oscar". ACM Trans. Auton. Adapt. Syst. 5, 1, pp. 1-25, 2010.

[18] F. Giunchiglia and I. Zaihrayeu. “Implementing Database Coordination in P2P Networks”. The Second
Workshop on Semantics in Peer-to-Peer and Grid Computing (SemPGrid'04), 2004.

[19] Halevy, A. “Why Your Data Won’t Mix: Semantic Heterogeneity”. ACM Queue 3(8), pp. 50–58, 2005.

[20] R. Huebsch, B. Chun, J. M. Hellerstein, B. T. Loo, P. Maniatis, T. Roscoe, S. Shenker, I. Stoica and A.
R. Yumerefendi. “The Architecture of PIER: an Internet-Scale Query Processor”. In Proc. of the 2005
CIDR Conf. pp : 28-43, 2005.

[21] M. Harren, J.M. Hellerstein, R. Huebsch, B.T. Loo, S. Shenker and I. Stoica. “Complex queries in
DHT-based peer-to-peer networks”. Int. Workshop on Peerto-Peer Systems (IPTPS’02), pp. 242-259,
2002.

[22] A. Halevy, Z. Ives, P. Mork and I. Tatarinov. “Piazza: data management infrastructure for semantic web
applications”. Int. Conf. on World Wide Web (WWW’03), pp : 556-567, 2003.

[23] A. Ismail, M., Quafafou, G., Nachouki, and M. Hajjar, "Efficient super-peer-based queries routing".
MEDES '09. ACM, pp. 91-98, 2009.

[24] A. Ismail, M. Quafafou, G. Nachouki and M. Hajjar, "Data mining effect in peer-to-peer queries
routing". In Proceedings of the International Conference on Management of Emergent Digital
Ecosystems (MEDES '09), ACM, pp.65-72, 2009.

������������	
������	
�

��������
����������
�������
�
�����
�
�
��	���
�����
���
����

 137

[25] Y. Joung and F. Chuang, "OntoZilla: An ontology-based, semi-structured, and evolutionary peer-to-peer
network for information systems and services". Journal of Future Generation Computer Systems, V(25),
N(1), pp. 53-63, January 2009.

[26] H.V. Jagadish, B. C. Ooi and Q. H. Vu. “BATON: A Balanced Tree Structure for Peer-to-Peer
Networks”. VLDB’05, pp. 661-672, 2005.

[27] F. B.Kashani and C. Shahabi, "Fixed-Precision Approximate Continuous Aggregate Queries in Peer-to-
Peer Databases," icde, pp.1427-1429, 2008 IEEE 24th International Conference on Data Engineering,
2008

[28] V. Kalogeraki, D. Gunopulos, and D. Zeinalipour-Yazti, "A local search mechanism for peer-to-peer
networks". In Proceedings of the CIKM '02. ACM, pp. 300-307, 2002.

[29] R. A. King, A. Hameurlain and F. Morvan. “Metadata Lookup for Distributed Query Optimization in
P2P Environment”. PDCS’07, ISCA, pp. 36-43, 2007.

[30] R. A. King, A. Hameurlain and F. Morvan. “Ontology-Based Data Source Localization in a Structured
Peer-to-Peer Environment”. IDEAS’08, pp. 9-18, 2008.

[31] R. A. King, A. Hameurlain and F. Morvan. “Ontology-Based Method for Schema Matching in Peer-to-
Peer Database System”. BNCOD’9 (poster session), pp. 208-212, 2009.

[32] R. A. King, A. Hameurlain and F. Morvan. “Matching Heterogeneous Schemas in a Large-Scale Peer-
to-Peer Database Environment”. PDCCS’09, ISCA, pp. 135-142, 2009.

[33] G. Koloniari and E. Pitoura. "Peer-to-peer Management of XML Data: Issues and Research
Challenges". SIGMOD Record, 34(2), pp.6–17, 2005.

[34] D. Kossmann, "The state of the art in distributed query processing", ACM Comput. Surv. 32, 4 (Dec.
2000), pp. 422-469, 2000.

[35] V. Kantere, D. Tsoumakos, T. Sellis and N. Roussopoulos "GrouPeer: Dynamic clustering of P2P
databases". Journal of Information Systems. V(34), N(1), pp. 62-86, March 2009.

[36] M. Lenzerini, "Data Integration: A Theoretical Perspective", Proceedings of the Twenty-first ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pp. 233-246, 2002.

[37] A.Y. Levy, A. Rajaraman and J. J. Ordille. “Querying Heterogeneous Information Sources Using
Source Descriptions”, In Proceedings of 22nd VLDB, pp. 251-262, 1996.

[38] M. Masud and M. A. Hossain, "Dynamic Query Plan for Efficient Query Processing in Peer-to-Peer
Environments", INFOCOMP Journal of Computer Science, Vol.7 (3). pp.01-06, 2008

[39] V. Martins, R. Akbarinia, E. Pacitti and P. Valduriez. “Reconciliation in the APPA P2P system”. IEEE
Int. Conf. on Parallel and Distributed Systems (ICPADS’06), pp. 401-410, 2006.

[40] D. S. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J. Pruyne, B. Richard, S. Rollins and Z. Xu.
“Peer-to-Peer Computing”. Tech. Report: HPL-2002-57, available on line at:
http://www.hpl.hp.com/techreports/2002/HPL-2002-57.pdf

[41] H. G. Molina, Y. Papakonstantinou, D. Quass, A. Rajaraman, Y. Sagiv, J. Ullman and J. Widom. “The
TSIMMIS project: Integration of heterogeneous information sources”. Journal of Intelligent Information
Systems, 8(2), March 1997.

[42] W. S. Ng, B. C. Ooi, K. L. Tan and A. Zhou. “PeerDB: a P2P-based system for distributed data
sharing”. Int. Conf. on Data Engineering (ICDE’03), pp : 633-644, 2003.

[43] W. Nejdl, B. Wolf, C. Qu, S. Decker, M. Sintek, A. Naeve, M. Nilsson, M. Palmer, and T. Risch.
“Edutella: a P2P networking infrastructure based on RDF”. Int. Conf. on World Wide Web (WWW’02),
pp. 604-615, 2002.

[44] B. C. Ooi, Y. Shu and K. L. Tan. “Relational Data Sharing in Peer-based Data Management Systems”.
ACM SIGMOD, 23 (3), pp : 59-64, 2003.

[45] M.T. Ozsu and P. Valduriez. “Principles of Distributed Database Systems”. Prentice Hall ISBN 0-13-
659707-6, 1999. Second Edition.

[46] V. Papadimos and D. Maier "Mutant Query Plans". In OOPSLA, 2001.

[47] V. Papadimos and D. Maier "Distributed Queries without Distributed State". In WebDB, 2002.

������������	
������	
�

��������
����������
�������
�
�����
�
�
��	���
�����
���
����

 138

[48] S. Ratnasamy, P. Francis, M. Handley, R. Karp and S. Shenker. “A scalable content-addressable
network”. ACM SIGCOMM Conf. on Applications, Technologies, Architectures, and Protocols for
Computer Communications, pp. 161-172, 2001.

[49] A. Rowstron and P. Druschel. “Pastry: scalable, distributed object location and routing for large-scale
peer-to-peer systems”. IFIP/ACM Int. Conf. on Distributed Systems Platforms (Middleware), pp. 329-
350, 2001.

[50] C. Roncancio, M. Pilar Villamil, C. Labbé and P. Serrano-Alvarado, “Data Sharing in DHT Based P2P
Systems”. In Transactions on Large-Scale Data- and Knowledge-Centered Systems I, A. Hameurlain, J.
Küng, and R. Wagner, Eds. Lecture Notes In Computer Science, vol. 5740. Springer-Verlag, Berlin,
Heidelberg, pp. 327-352, 2009.

[51] P. Shvaiko and J. Euzenat. “A survey of schema-based matching approaches”. Journal on Data
Semantics. IV. LNCS, vol. 3730, pp. 146–171. Springer, Heidelberg, 2005.

[52] C. Shirky. “What is P2P and What Isn’t”. The O'Reilly Peer to Peer and Web Service Conf.,
Washington, D.C. November 5-8, 2001. Available on: http://conferences.oreillynet.com/p2p/.

[53] M. Sínchez-Artigas and P. García-López, "eSciGrid: A P2P-based e-science Grid for scalable and
efficient data sharing". Journal of Future Generation Computer Systems, V(26), N(5), pp.704-719, May
2010.

[54] I. Stoica, R. Morris, D.R. Karger, M.F. Kaashoek and H. Balakrishnan. “Chord: a scalable peer-to-peer
lookup service for internet applications”. ACM Conf. on Applications, Technologies, Architectures, and
Protocols for Computer Communications (SIGCOMM’01), pp. 149-160, 2001.

[55] I. Sarr, H. Naacke and S. Gançarski, "TransPeer: adaptive distributed transaction monitoring for Web2.0
applications". In Proceedings of the 2010 ACM Symposium on Applied Computing (SAC '10), ACM,
pp. 423-430, 2010.

[56] M. Schlosser, M. Sintek, S. Decker and W. Nejdl. “HyperCuP – Hypercubes, Ontologies and Efficient
Search on P2P Networks”. International Workshop on Agents and Peer-to-Peer Computing, 2002.

[57] S. A. Theotokis and D. Spinellis. “A survey of peer-to-peer content distribution technologies”. ACM
Computing Surveys, 36(4), pp. 335-371, 2004.

[58] I. Tatarinov, Z.G. Ives, J. Madhavan, A. Halevy, D. Suciu, N. Dalvi, X. Dong, Y. Kadiyska, G. Miklau
and P. Mork. “The Piazza peer data management project”. ACM SIGMOD Record, 32(3), pp : 47-52,
2003.

[59] Y. Tao, H. Jin, S. Wu and X. Shi, "Scalable DHT- and ontology-based information service for large-
scale grids". Journal of Future Generation Computer Systems, V(26), N(5), pp. 729-739, May 2010.

[60] D. Tsoumakos and N. Roussopoulos. “Adaptive probabilistic search (APS) for peer-to-peer networks”.
In Proc. of the Int. IEEE Conference on P2P Computing, pp : 102-109, 2003.

[61] P. Valduriez and E. Pacitti, “Data Management in Large-Scale P2P Systems”. VECPAR’04, pp. 104-
118, 2004.

[62] M.P. Villamil, C. Roncancio, C. Labbé, "PinS: Peer-to-Peer Interrogation and Indexing System".
IDEAS'04, pp. 236-245, 2004.

[63] B. Yang, H. G. Molina. “Improving search in peer-to-peer networks”. In Proc. of the IEEE Int. Conf. on
Distributed Computing Systems (ICDCS’02), pp. 5-14, 2002.

[64] B. Yang, H. G. Molina. “Comparing Hybrid Peer-to-Peer Systems”. VLDB’02, pp. 561-570 2002.

[65] B. Yang and H. G. Molina. “Designing a Super-Peer Network”. ICDE’03, 2003.

[66] B.Y. Zhao, L. Huang, J. Stribling, S.C. Rhea, A.D. Joseph and J.D. Kubiatowicz. “Tapestry: a resilient
global-scale overlay for service deployment”. IEEE Journal on Selected Areas in Communications
(JSAC), 22(1), pp : 41-53, 2004.

������������	
������	
�

��������
����������
�������
�
�����
�
�
��	���
�����
���
����

 139

Authors

Raddad AL KING received his PhD degree in computer sciences from Paul Sabatier University,
Toulouse, France, in 2010. He is currently a Temporary Research Assistant at the Institute of
Research in Computer Science of Toulouse (IRIT). His research interests include data source
localization, query processing and optimization in Peer-to-Peer environments.

Abdelkader Hameurlain is full professor in Computer Science at Paul Sabatier University,
Toulouse, France. He is a member of the Institute of Research in Computer Science of
Toulouse (IRIT). His current research interests are in query optimization in parallel and large
scale distributed environments, mobile databases, and database performance. Prof. Hameurlain
has been the general chair of the International Conference on Database and Expert Systems
Applications (DEXA'02). He is co-editor in Chief of the International Journal "Transactions on
Large-Scale Data- and Knowledge-Centered Systems" (LNCS, Springer). He was guest editor
of two special issues of "International Journal of Computer Systems Science and Engineering
on "Mobile Databases" and "Data Management in Grid and P2P Systems".

Franck Morvan received a PhD degree in Computer Science from Paul Sabatier University in 1994. He worked
at Dassault Data Services society for 3 years before he joined Paul Sabatier University. He is currently associate
professor and member of the Institute of Research in Computer Science of Toulouse (IRIT). His main research
interests are optimization in distributed and parallel databases, mobile agents and mobile computing.

