
International Journal of Distributed and Parallel Systems (IJDPS) Vol.3, No.1, January 2012

DOI : 10.5121/ijdps.2012.3119 229

DECENTRALIZED LOAD BALANCING IN

HETEROGENEOUS SYSTEMS USING DIFFUSION

APPROACH

P.Neelakantan

Department of Computer Science & Engineering, SVCET, Chittoor

pneelakantan@rediffmail.com

ABSTRACT

The grid and cluster computing uses interconnected nodes to solve a problem in parallel in order to

improve the response time of the system. Diffusive load balancing algorithms works well when the nodes in the

system have the same processing capacity. But little attention was paid in diffusion load balancing algorithms in the

literature for distributing the workload in the nodes with different processing capabilities when the load of the nodes

is treated as integers. When the loads are distributed to the nodes without considering their processing capacities it

would affect the response time of the system. Effective load balancing in heterogeneity can be achieved by

considering the processing capacities of the nodes. This paper propose a diffusive load balancing algorithm which

distributes a proportion of excessive workload of heavily loaded node to lightly loaded node by considering the

nodes processing capabilities.

1. INTRODUCTION

Grid computing and cluster computing are examples of distributed computing which consists of many

heterogeneous nodes with different processing capacities connected by a communication network. Load balancing

must be used when the load among the nodes are not uniform. The nodes in a distributed system must have the

uniform distribution of loads after applying the load balancing algorithm. For migrating the load from the heavily

loaded node to lightly loaded node in a heterogeneous distributed system, their processing capacities must be

considered. So, the load balancing algorithms designed for homogeneous distributed systems won’t work efficiently

for the heterogeneous systems. So, there is a need for load balancing algorithm which distributes the load among the

nodes in a heterogeneous system by taking into consideration of the processing capacity of the nodes. Distributed

systems are geographically spread over different autonomous users and organizations which make them potentially

large [4].

Load balancing algorithms are divided into static and dynamic load balancing algorithms. Static load

balancing algorithms do not base their decision on the current state of the system, so, their performance would not

be optimal when compared to the dynamic load balancing algorithms which base their decision on the current state

of the system. But dynamic load balancing algorithms incurs more overhead when compared to the static load

balancing algorithms. Dynamic policies are further divided into two classes: Centralized and Distributed [1, 2,3]. In

centralized polices one node is held responsible for maintain the information of all the nodes in the system.

Collecting the information from all the nodes and then distributing the work load among the nodes would

be the difficult task and it imposes much overhead and it won’t perform well when the scalability of the system

increases. In distributed policies, each node collects the information from all nodes to know whether it is overloaded

or underloaded. A dynamic distributed load balancing algorithm has three components: (1) location policy

determines suitable nodes for exchange of the load(2) Information policy is used to collect the load information

from the nodes in the system(3)transfer policy determines , whether the node is suitable candidate for transfer of

load.

Even this method is not feasible when the number of nodes in the distributed computing is large. The

distributed load balancing schemes are further classified into sender –initiated and receiver- initiated. Iterative load

balancing schemes are found to be efficient in balancing the work load among the nodes. Here the nodes will collect

information from only the neighhors which reduce the communication overhead and also to achieve faster

convergence. In diffusion approach, the node can exchange the information from all its neighbors in single

International Journal of Distributed and Parallel Systems (IJDPS) Vol.3, No.1, January 2012

230

communication step. In literature there is no diffusion load balancing algorithm that deals with heterogeneous

systems by considering the load as an integer quantity. In this paper a decentralized load balancing algorithm has

been devised for heterogeneous systems by using diffusion approach.

2. MATHEMATICAL MODEL

The network is represented by an undirected graph G=�� , � �, where each node �∈� has a processing weight �	 >

0, and a processing capacity
	 > 0 and E � � � � is a set of edges represents the communication links connecting

the nodes in the heterogeneous distributed system.

N: Number of nodes in a system

V= {1, 2,….n} represents set of nodes in a system

�: Deficit Load

�	: Neighbors of the node i denoted by �	=��| � � � ��� ��, �� � ��
�	: processing weights of node i

�	: processing capacity of node i

�: Index of the neighbouring nodes

�	: Set consisting of deficient neighbours belonging to domain of node i

�	: Load of node i

�����: Set consisting of the nodes having the same minimum load value

��, ��: Indicators of apportion of load sent to the deficient neighbors.

The load of node � can be defined as �	 !"
#"

. When two nodes are connected by an edge, then they are

neighbors to each other and the two nodes can exchange their loads (task weight) through that edge. To minimize

their loads the node transfers their excess load to their neighbors. In general, it is not feasible for a node to collect

the load information from all the nodes in the network. Therefore, in order to reduce the communication delays, in

our model it is assumed that a node knows the load information of its neighbors only. The loads of other nodes are

unknown. A network is referred to as homogeneous network when the processing capacities of all nodes are equal;

otherwise it is referred to as heterogeneous network. In homogeneous systems, the value of �	= 1, and therefore �	
�	 .

3. PITFALLS IN DESIGNING LOAD BALANCING ALGORITHM

The algorithm that work in decentralized manner to balance the loads among the nodes in a heterogeneous

distributed system has to focus on three aspects which have impact on the convergence rate and number of steps

required to reach convergence.

1. Choosing target nodes

2. Amount of the excess load to be sent

3. Distribution of the excess load

The first aspect aims on nodes to be considered in domain of node i that invoked the load balancing algorithm to

send its excess load. Algorithms that belong to decentralized category will know the load information of only its

neighbors in its domain, so, it is obvious that it will send load to its neighbors. But when neighbour node consists of

more load than the node that is trying to send its excess load, then that neighbour node is not considered for sending

the load.

The load is sent only to the deficit neighbours and deficit neighbours would be identified in a domain of

node i that has invoked the load balancing algorithm. To do this the deficit neighbours are chosen in such a way that

the load value of the deficit neighbours must be less than the load value of the node that is trying to send apportion

of its excess load.

 The second aspect concerns about how much load is to be removed and sent to the neighbors. The amount

of the load to be sent depends on how much the current node is overloaded with respect to its neighbors.

Once it has been known the amount of load to be removed from the overloaded node to be sent to the target

deficit neighbours, then there are different ways to deal with third aspect. The first way is to divide the load among

International Journal of Distributed and Parallel Systems (IJDPS) Vol.3, No.1, January 2012

231

the deficit neighbors that receives the load. The second way is node i to distribute its entire excess load to one deficit

neighbour of all chosen deficit neighbors in its domain.

3.1 Choosing the target nodes

Since the goal load balancing algorithm is to balance the load, obviously heavier nodes should send load to

lighter nodes. In order to do this, node � has to select a subset of neighbors �	, where��	 $� � �	| �% & �	'� .The

algorithm runs in a decentralized manner in all the nodes, so nodes would send their excess load to lighter nodes to

achieve balance among the nodes.

The use of neighbourhood information can be further improved to estimate the average load of the local

domain. In order do this, the load information of all neighbor nodes (i.e., nodes connected through an edge to node

�� is collected. Then node � calculates the load average, which is given by �()))=*
+",∑ +..�/"
�|0",�|�

1. If the load of node � is

greater than �2 , then it is overloaded, so it has send load to the nodes which have load �% & � 2 . This strategy can be

used to achieve faster global load balancing.

3.2 Amount of the excess load to be sent

The amount of the load to be moved among deficit neighbors would have direct impact on the convergence

of the algorithm. If an algorithm is designed in such a way that allows sending small amounts of load, the nodes in

the network takes long time to converge depending on network topology, but the stability would be greater. On the

other side, if algorithm allows the nodes to send large proportions of load, then the convergence would be faster but

the system would not be stable and even balancing could not be reached which has a contrary effect on the

convergence speed.

Once the subsets of neighbors have been defined, the algorithm has to calculate how much load is to be

sent to the deficit neighbors. In general the amount of the load to be moved from the overloaded node to the deficit

neighhors would be the difference of load of overloaded node i and the average load of domain of node i which is

given by �=�	 3 �).

If � load is sent to each node in the subset of neighbors, then each node receives a load of
4

|50"|
 to each

node in �	, where |�	| indicates the number of nodes in �	. This approach would have an advantage of being fair

and simple as all nodes receives the same load and no node is privileged. Another approach is to send � load only to

the least loaded node(s). In this case the convergence rate becomes faster as the least loaded nodes are filled quickly.

But they would become target to his neighbors and results in accumulation of load rather than required. Both of

these approaches have their own advantage and disadvantages and none of them prove adequate.

3.3 Sending load to the deficit neighbours

When an algorithm is designed in such a way that allows overloaded node to send small amount of load to

the other nodes in the network it takes long time to converge. The time that it takes to converge depends on the

network topology, but those algorithms will have better stability with the number of nodes increasing in a system.

On other hand, if an algorithm is designed to send large portions of the load to the deficit neighbours in a domain,

the convergence would be faster but the system would not be stable and no node in the system reaches equilibrium

(all the nodes reach equilibrium when all the nodes have equal load) which has a adverse effect on the convergence

speed.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.3, No.1, January 2012

232

 Figure 1: when loads are moved in small proportion to the deficit neighbors

To analyze the above techniques, let consider in Figure 1, the nodes are sending loads cautiously where the

load fluctuations could not occur and all nodes reach stable state slowly. A node is said to be reached to the stable

state when the loads of nodes are equal to the average load of the system. Another approach is to distribute half of

the loads to the deficient neighbors which avoid load fluctuations and also faster convergence is achieved but it

would not work for few networks as shown in below figure 2.

Figure 2: A network showing one deficit neighbour targeted by all loaded nodes.

As seen in the above figure every node attempts to send half its load to only one deficit neighbour and the

deficit neighbour with load value equal to zero becomes 50* N and it is the node in the network which is heavily

loaded and it takes O(N) time to make the system into stable state. But when below topology is considered as shown

in the figure 3 and the same logic is applied, the nodes in the system reaches stable state in a single step.

Figure 3: four nodes with two nodes heavily loaded and two nodes with zero load.

4 Proposed method

Keeping in view of the above mentioned problems, the algorithm DISHET has been proposed which uses a

diffusion approach for sending the loads to the deficient neighbors. This algorithm is run in each node i.

4.1 Description of the proposed method

In a proposed method, a set of deficit neighbors of domain of node i is given by

 DN $j � N9| L; & L9' � (1)

After identifying the deficit neighbors of domain of node i, the load average domain of node i is calculated

by using the formula

 L<=> =
?@,∑ ?AA�BC
D@,∑ DAA�BC

 � (2)

Note in the above equation the processing capacities of the nodes are taken into account which is true in

heterogeneous computing. In general if node i take ti time units to process a task t and node j takes tj time units to

…

25

N

25 25 25 25

0

50 50 50 50

…

…

…

N N

5

0 5

0 25

25 25

25

…

50

0 50

0
49

1 49

1 4

2 4

2

…

International Journal of Distributed and Parallel Systems (IJDPS) Vol.3, No.1, January 2012

233

process the same task t then the ratio of ti/tj must be equal to one. Otherwise the ratios are different. The former is

the case, when the nodes have different processing capacities and the latter refers to when nodes have same

processing capacities.

After computing the load average of the system, the load difference in the domain of node i is calculated by

using the formula

LD= (�	-�EFG) �	 �(3)

When the value of LD is positive, then it indicates the node i is having an excess load, and it is to be sent to

the deficit neighbors belong to the set DNi. Ci indicates the relative processing capacity of node i when compared to

other nodes in the system. If the load difference is negative value the node i do not execute the procedure Balance

otherwise it calls the procedure Balance.

In procedure Balance the input parameters are the load difference and the set of deficit neighbors. The

algorithm is terminated when the load difference LD is reached to 1. First the excess load is to the least loaded node

in the set deficit neighbour DNi. For this purpose the nodes in set DNi are sorted in ascending order of their load

values which takes time complexity of O(d log d), where d is the number of nodes in the deficit neighbors(d=| DNi

|). After sorting the nodes according to their load values in set DNi, the first node is considered for migrating the

load and also a check is made to see if any node contains load value of the first node. If it is those elements are kept

in the set nless by incrementing the counter value and for each element in the set DNi, the following is done:

 HIJ K � �
�	�
 �H ��LMN+MEO �P�
 ����� ����� Q �K�;

IS�T
IS�T U 1;
 ����H

The Tempset consists of the nodes which is present in DNi but not in nless

 Tempset =
�	 3 ����� � (4)

The load to be sent is based on Tempset and how much to be sent is determined by use of two indicators

 �� and �� .The minimum of these two values have been used for sending the load to the deficit neighbors until the

value of load difference LD reaches zero.

 �� L5
WMXYZ &�� �P 3 �L Where k� tempset and L� nless-� (5)

When the load index of the neighbouring nodes falls below the average load of the domain of �I�� i, it is

said to be deficient neighbour. The deficient neighbours do not have the excess load to send and they receive

apportion of the load sent by the excessive neighbors. If all the loads of the nodes are equal to the average load of

the underlying domain, then the domain is in balanced state.

 Algorithm DISHET ()

 Begin for node i

�	=$� � �	| �% & �	'
Let �EFG =

!",∑ !..�\/
]",∑]..�\/

;

LD= (�	-�EFG) 	̂;
if (LD<0) then exit;

Balance (LD,
�);
 End

Procedure Balance (LD,
�)
Begin

 While (LD>1)

 // sort the loads in ascending order in set
�	
 �I_�I�� `�J�T���a��T ��
�	;

IS�T 0

International Journal of Distributed and Parallel Systems (IJDPS) Vol.3, No.1, January 2012

234

 ����� c

 HIJ K � �
�	�
 �H ��LMN+MEO �P�
 ����� ����� Q �K�;

IS�T
IS�T U 1;
 ����H

 ��� HIJ
 d�a���T
�	 3 �����;
 ��

�

IS�T ;

 �H� T�a���T e c�
 ���T�I��a�� H�J�T���a��T �� d�a���T
 �� �YfgZ+MEOh	Y 3 �+MN+MEO ;

 for each K � �����
 �H��� i ���
 dJ���H�J �� TI K;
 �
 �
 3 ��;
 end if
 ����
 dJ���H�J �� TI

 �
 �
 3 ��;
 ��� ����

 end for

 end if
 ����
 HIJ ��
j K � �����

 dJ���H�J �� TI K;
 �
 �
 3 ��;
 ��� HIJ
 ��� ����
 End while

 End

Algorithm: Balance

The above algorithm uses diffusion technique for balancing the load among the nodes in the distributed

system. This algorithm receives load information from the neighbours as an input. The idea behind this algorithm is

to distribute load equally among the lightest nodes in
�	 until their load value reaches the second lightest node in

�	 . This process is repeated until the value of
� runs out.

Lemma 1: Let �	Z be the load of node � at time t. Let �	Z = (��Z , ��Z , … . . �YZ) be the array of the loads in time T sorted in

ascending order. If there exists at least one node with DL> 0 in time T then �Z,� is lexicographically greater than �Z
.

Proof: At time T some nodes may send their load to the neighboring nodes may have their load decreased

in time T U 1; therefore these nodes do not send the load at time T U 1. This refers to the case when loads of the

nodes are distinct. But by using the same idea a similar proof shall be derived where all loads are not distinct.

Let ^ be the set of nodes that send load (i.e., the nodes with DL > 0) in time T, Let 	̂
Z e c. Let the node

does belong to 	̂Z shall also receive load in time T. Let m =n��	��	Z,�: � � ^�. That is, m is the node having lowest

load value at time T U 1 among the nodes that sent load in time T.
 Let m occupies the k-th position of the array �Z,�.Let pZ = (��Z , ��Z , … . . �Pq�Z � be the array of loads in first k-

1 positions of pZ . It has been seen that a node � belongs to pZ if its load is among the load values of the array pZ .
Nodes belonging to pZ,� will receive load (without sending) or remained unchanged in time T will depend on m.

Thus, all the load values in pZ,� are greater than or equal to the corresponding values of pZ .
 Next, let us consider two cases.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.3, No.1, January 2012

235

i. A set pZ,� contains a node i that received load in time t. In this case, node i belongs to both pZ and pZ,�,

and its load value is increased in time t + 1. Therefore, there will be at least one load value in set pZ,�

strictly greater than one value in pZ and therefore �Z,� is lexicographically greater than �Z .
 In the complementary case, it has been seen that

ii. There are nodes belonging to pZ,� which do not send or receive the load in time t. Thus, the load values in

set pZ and pZ,� are equal. In this case, it has been shown that the load value at k
th

position at time t+1 is

strictly greater than the load value in the same position at time t which has received load from S. Let J be

node with less load value in time t which received load from ^. As J received load, it cannot belong to pZ
. Thus, in time t, r would be at least in the k-th position. Therefore, the value of the K 3 Tj position of �Z is

at most �rZ . Note that �sZ,� t �sZ 3
� �sZ2 i �uZ where �sZ2 is the mean value for node q in time t and the last

inequality is true because r received load from m in time T. So, the value of the k-th position increased, and

therefore �Z,�is lexicographically greater than �Z . Note that this proof is valid for any number of nodes

which sends the excess load in a given time T, therefore it is valid for the asynchronous case.

Theorem 1 Convergence: In asynchronous and heterogeneous networks, if the nodes use the algorithm DISHET,

then the system converges to a balanced state.

Proof: If the nodes in the heterogeneous distributed systems are not balanced exhibits that there is at least one node

in the system heavily loaded, let � be the most loaded node. By the choice of �, all �v�	 have �% w �	 . Moreover, as �
is not balanced, then at least one �v�	 has �% w �	 . When calculating �(2 the nodes �v�	 such that ��(2�=

!",∑ !..�\/"
W",∑ W..�\/"

have their load value rounded to �	 . But if �	 i �(2 and consequently, � =�	-�(2 i 0. Thus, the result of Lemma 1

shall be used, which guarantees that the vector of loads sorted in ascending order, in the next time moment, is

lexicographically greater than the array of the current step.

Let us assume algorithm DISHET is executed by some of the nodes in the system asynchronously in a

given time instant T. Let ^ � � be the set of nodes executed the algorithm DISHET and nodes have changed their

load value by executing the algorithm in time t.

Let � be the array of loads sorted in ascending order of load values in time t. It has been shown that �Z,�

is lexicographically greater than �Z . Let ^h	Y � ^ be the lightly loaded nodes in a time t. There exists at least one

node x � ^h	Y which is adjacent to node K such that �PZ i �FZ . Now by using the algorithm DISHET, node K sends a

portion of its load to the neighbor node x but the node x does not send any load in time T because it is underloaded

when compared to the average load of the domain.

In time T U 1 the load value of node K in ^ \^h	Y decreases but its load value never becomes smaller than

the load value of node which is given by �PZ,� t � i �FZ . Thus �Z,� is lexicographically greater than �Z. Thus it

has been proven that the sorted array of load values of nodes in time T in ^ are lexicographically greater than the

sorted array of load values of nodes in S at time T U 1.

Lemma 3: A node � can only send load to a neighbor � if �	 i � % , � � %3 �	 i ~) i.e., where � � �	, �	 is the

neighbouring nodes (directly connected to the node �)

 In other words, this rule ensures that if loads of two nodes belong to same domain differs significantly, then

load will be transferred between two nodes belonging to same domain.

Lemma 4: Let �	Z be the load of node � at time T. Then

• �%Z � �(Z2

• �	Z t �%Z

 The first constraint says that the load on a nodes in a domain of node i does not deviate too much when

compared to the load average of the domain of node i and the second one guarantees, the load balancing algorithm

must distribute the load to the deficit neighbour in such a way that, the node after transferring its excess load to its

neighbour, its load value must remain greater or equal to its deficit neighbour. The second one is a technical

constraint because to avoid task thrashing effect.

International Journal of Distributed and Parallel Systems

5. Simulation

The proposed load-balancing algorithm DISHET is compared to the two heterogeneous load balancing

algorithms: Random biasing and Dynamic Biasing

graph which range from 8 to 64 nodes and for different load distributions patterns which vary from situations which

exhibit a light unbalance degree to high unbalance

number of iterations, throughput and average response time for the varying loads.

For that purpose, Load Balancing Simulator in Java which allows us to:

• Test the behaviour of different load

• Evaluate the behaviour of the load balancing algorithms for random graph with different sizes of nodes

• Evaluate the behaviour of the algorithms for different load situations

The load distribution among the nod

o Initial load distributions varying 25% from the global load average

� ∀i Li(0)∈ [L/n

o Initial load distributions varying 50% from the global load average

� ∀i Li(0)∈ [L/n

o Initial load distributions varying 75% from the global load average

� ∀i Li(0)∈ [L/n

o Initial load distributions varying 100% from the global load average

� ∀i Li(0)∈ [L/n

The 25% variation pattern corresponds to t

loads are close to the global average. i.e., the initial situation is quite balanced. On the other hand, the 100%

variation pattern corresponds to the situation where the difference

considerable. 50% and 75% variation patterns constitute intermediate situations between the other two.

The group of pathological distributions was also used in order to evaluate the behaviour of the strategies unde

extreme initial distributions. In these distributions a significant amount of nodes has a zero initial load. These

scenarios seem less likely to appear in practice, but we have used them for the sake of completeness in the

evaluation of the strategies. The pathological distributions were classified in four groups:

• Initial load distribution, where all the load is located on a single node :L(0) = {L,0,…0} , i.e., there are n

idle nodes

• 25% of idle nodes, a quarter of the nodes have an initial load equal t

• 50% of idle nodes, a quarter of the nodes have an initial load equal to 0.

• 75% of idle nodes, a quarter of the nodes have an initial load equal to 0.

In our simulations, the problem size is known beforehand and all the experiments included in this in this paper are

performed for a varying Load sizes equal to 1000, 2000, 4000 ,6000,8000,10000 load units. Therefore, the expected

final load at each processor, i.e., the global load average, can be evaluated a priori to be

size of the nodes in the heterogeneous systems.

Graphs for normal load distribution where load values are varied from 25% to 100 %.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.3, No.1, January 2012

balancing algorithm DISHET is compared to the two heterogeneous load balancing

Dynamic Biasing .The simulation framework has been designed including random

graph which range from 8 to 64 nodes and for different load distributions patterns which vary from situations which

exhibit a light unbalance degree to high unbalance situations. The comparison has been carried out in terms of

number of iterations, throughput and average response time for the varying loads.

For that purpose, Load Balancing Simulator in Java which allows us to:

Test the behaviour of different load balancing algorithms under the same conditions

Evaluate the behaviour of the load balancing algorithms for random graph with different sizes of nodes

Evaluate the behaviour of the algorithms for different load situations

The load distribution among the nodes are carried in the following manner

Initial load distributions varying 25% from the global load average

[L/n – 0.25*L/n, L/n+0.25*L/n]

Initial load distributions varying 50% from the global load average

[L/n – 0.50*L/n, L/n+0.50*L/n]

Initial load distributions varying 75% from the global load average

[L/n – 0.75*L/n, L/n+0.75*L/n]

Initial load distributions varying 100% from the global load average

[L/n –L/n, L/n+L/n]

The 25% variation pattern corresponds to the situation where all nodes have similar load at the beginning and these

loads are close to the global average. i.e., the initial situation is quite balanced. On the other hand, the 100%

variation pattern corresponds to the situation where the difference of load between nodes at the beginning is

considerable. 50% and 75% variation patterns constitute intermediate situations between the other two.

The group of pathological distributions was also used in order to evaluate the behaviour of the strategies unde

extreme initial distributions. In these distributions a significant amount of nodes has a zero initial load. These

scenarios seem less likely to appear in practice, but we have used them for the sake of completeness in the

he pathological distributions were classified in four groups:

Initial load distribution, where all the load is located on a single node :L(0) = {L,0,…0} , i.e., there are n

25% of idle nodes, a quarter of the nodes have an initial load equal to 0.

50% of idle nodes, a quarter of the nodes have an initial load equal to 0.

75% of idle nodes, a quarter of the nodes have an initial load equal to 0.

In our simulations, the problem size is known beforehand and all the experiments included in this in this paper are

performed for a varying Load sizes equal to 1000, 2000, 4000 ,6000,8000,10000 load units. Therefore, the expected

or, i.e., the global load average, can be evaluated a priori to be L/n or

size of the nodes in the heterogeneous systems.

Graphs for normal load distribution where load values are varied from 25% to 100 %.

(IJDPS) Vol.3, No.1, January 2012

236

balancing algorithm DISHET is compared to the two heterogeneous load balancing

The simulation framework has been designed including random

graph which range from 8 to 64 nodes and for different load distributions patterns which vary from situations which

situations. The comparison has been carried out in terms of

Evaluate the behaviour of the load balancing algorithms for random graph with different sizes of nodes

he situation where all nodes have similar load at the beginning and these

loads are close to the global average. i.e., the initial situation is quite balanced. On the other hand, the 100%

of load between nodes at the beginning is

considerable. 50% and 75% variation patterns constitute intermediate situations between the other two.

The group of pathological distributions was also used in order to evaluate the behaviour of the strategies under

extreme initial distributions. In these distributions a significant amount of nodes has a zero initial load. These

scenarios seem less likely to appear in practice, but we have used them for the sake of completeness in the

Initial load distribution, where all the load is located on a single node :L(0) = {L,0,…0} , i.e., there are n-1

In our simulations, the problem size is known beforehand and all the experiments included in this in this paper are

performed for a varying Load sizes equal to 1000, 2000, 4000 ,6000,8000,10000 load units. Therefore, the expected

or L/n, n being the

International Journal of Distributed and Parallel Systems

Figure

International Journal of Distributed and Parallel Systems (IJDPS) Vol.3, No.1, January 2012

Figure-1: Iteration Vs No. Of Nodes

Figure-2: Response Time Vs No. of Nodes

Figure-3: Throughput Vs Load

(IJDPS) Vol.3, No.1, January 2012

237

International Journal of Distributed and Parallel Systems

Graphs for spike load distribution

Figure

Figure

International Journal of Distributed and Parallel Systems (IJDPS) Vol.3, No.1, January 2012

Graphs for spike load distribution

Figure-4: Iteration Vs No of Nodes

Figure-5: Response Time Vs No of Nodes

(IJDPS) Vol.3, No.1, January 2012

238

International Journal of Distributed and Parallel Systems

REFERENCES

[1] T.Casavant and J.G.Kuhl.A taxonomy of scheduling in general

Software Eng.,14(2):141-154,February,1988.

[2] X.Tang and S.T.Chanson,Optimizing stiatic job scheduling in a

International conference on parallel processing, pages 373

[3] V.Bharadwaj and G.Barlas,Efficient scheduling strategies for processing Multiple divisible loads on Bus

networks,Journal of parallel and distributed computing, vol.62,no.1,pp.132

[4] O.Akay and K.Erciyes, “A dynamic load balancing model for a distributed system”,Mathematical and computational

applications, vo.8(1-3),pp.353-360,2003.

[5] D. Z. Gu, L. Yang and L. R. Welch, A Predictive, Decentralized Load Balancing Approach, in: Proceedings of the 19th

IEEE International Parallel and Distributed Processing Symposium, Denver, Colorado, 04

[6] V. Berten, J. Goossens, and E. Jeannot, On the distribution of

computational Grids, IEEE Transactions on Parallel and Distributed Systems, 17 (2) (2006) 113

[7] Lie,J..,Jin,X. and Wang,Y.2005.Agent

characterization , IEEE Transactions on parallel and distributed systems,586

[8] Kai Lu, Riky Subrata, Albert Y. Zomaya.

Environment. In Proceedings of GPC'2006. pp.466~477

[9] Luling,R., Monien,B.1993.Adynamic distributed load balancing algorithm with provable good performance. Proc of

the 5th ACM symposium on parallel algorithms and architecture 164

[10] MurataY.,Takizawa, H.,Inaba,T.and Kobayashi,H.2006,A distributed and c

large scale p2p systesm.Proc International Symposium on applications and internet workshops 126

[11] Shah,R.,Veeravalli, B.and Misra M 2006,Estimation based load balancing algorithm for data

grid environments. Proc.13th International conference on High Performance Computing(HiPC’06),72

[12] S. Zhou, A trace-driven simulation study of dynamic load balancing, IEEE Transactions on Software Engineering, 14

(9) (1988) 1327–1341.

[13] W. Zhu, P. Socko, B. Kiepuszewski, Migration impact on load balancing

Operating Systems Review, 31(1) (1997),pp:43

[14] D.L. Eager, E.D. Lazowska, J. Zahorjan, The limited performance benefits of migrating active proces

sharing, ACM SIGMETRICS Performance Evaluation Review, 16 (1) (1988) 63

[15] G. Cybenko, Dynamic load balancing for distributed memory multi

Computing, 7 (1989) 279–301.

[16] X. Qian, and Q. Yang, Load balancing on generalized hypercube and mesh multiprocessors with LAL, in: Proceedings

of 11th International Conference on Distributed Computing Systems. 20

[17] Barazandeh, I.; Mortazavi, S.S.;

Systems,2009, ICCEE '09. Second International Conference on computer and electrical engineering, pp 516

[18] Hyo Cheol Ahn, Hee Yong, Kyu Yeong jeon, Dynamic load balancing for large

interlligent fuzzy controller,IEEE International conference on Information reuse and Integration. Aug 2007, PP 576

581

International Journal of Distributed and Parallel Systems (IJDPS) Vol.3, No.1, January 2012

Figure-6: Throughput Vs Load

T.Casavant and J.G.Kuhl.A taxonomy of scheduling in general-purpose distributed computing systems, IEEE Trans.

154,February,1988.

X.Tang and S.T.Chanson,Optimizing stiatic job scheduling in a network of heterogeneous computers,In Proc of the

International conference on parallel processing, pages 373-382,August,2000.

V.Bharadwaj and G.Barlas,Efficient scheduling strategies for processing Multiple divisible loads on Bus

rallel and distributed computing, vol.62,no.1,pp.132-151,Jan 2002.

O.Akay and K.Erciyes, “A dynamic load balancing model for a distributed system”,Mathematical and computational

360,2003.

elch, A Predictive, Decentralized Load Balancing Approach, in: Proceedings of the 19th

IEEE International Parallel and Distributed Processing Symposium, Denver, Colorado, 04-08 April 2005.

V. Berten, J. Goossens, and E. Jeannot, On the distribution of sequential jobs in random brokering for heterogeneous

computational Grids, IEEE Transactions on Parallel and Distributed Systems, 17 (2) (2006) 113-124.

Lie,J..,Jin,X. and Wang,Y.2005.Agent –Based Load balancing on Homogeneous minigrids:macroscopic Mod

characterization , IEEE Transactions on parallel and distributed systems,586-598

Albert Y. Zomaya. Towards Decentralized Load Balancing in a Computational Grid

In Proceedings of GPC'2006. pp.466~477

uling,R., Monien,B.1993.Adynamic distributed load balancing algorithm with provable good performance. Proc of

ACM symposium on parallel algorithms and architecture 164-173.

MurataY.,Takizawa, H.,Inaba,T.and Kobayashi,H.2006,A distributed and cooperative load balancing mechanism for

large scale p2p systesm.Proc International Symposium on applications and internet workshops 126

Shah,R.,Veeravalli, B.and Misra M 2006,Estimation based load balancing algorithm for data –intensive Heterogene

International conference on High Performance Computing(HiPC’06),72

driven simulation study of dynamic load balancing, IEEE Transactions on Software Engineering, 14

u, P. Socko, B. Kiepuszewski, Migration impact on load balancing—an experience on Amoeba, ACM SIGOPS

Operating Systems Review, 31(1) (1997),pp:43–53.

D.L. Eager, E.D. Lazowska, J. Zahorjan, The limited performance benefits of migrating active proces

sharing, ACM SIGMETRICS Performance Evaluation Review, 16 (1) (1988) 63–72.

G. Cybenko, Dynamic load balancing for distributed memory multi-processors, Journal of Parallel and Distributed

Yang, Load balancing on generalized hypercube and mesh multiprocessors with LAL, in: Proceedings

of 11th International Conference on Distributed Computing Systems. 20-24 May 1991, pp. 402 –

 Two Hierarchical Dynamic Load Balancing Algorithms in Distributed

ICCEE '09. Second International Conference on computer and electrical engineering, pp 516

Hyo Cheol Ahn, Hee Yong, Kyu Yeong jeon, Dynamic load balancing for large-scale distributed syst

interlligent fuzzy controller,IEEE International conference on Information reuse and Integration. Aug 2007, PP 576

(IJDPS) Vol.3, No.1, January 2012

239

purpose distributed computing systems, IEEE Trans.

network of heterogeneous computers,In Proc of the

V.Bharadwaj and G.Barlas,Efficient scheduling strategies for processing Multiple divisible loads on Bus

O.Akay and K.Erciyes, “A dynamic load balancing model for a distributed system”,Mathematical and computational

elch, A Predictive, Decentralized Load Balancing Approach, in: Proceedings of the 19th

08 April 2005.

sequential jobs in random brokering for heterogeneous

124.

Based Load balancing on Homogeneous minigrids:macroscopic Modeling and

Towards Decentralized Load Balancing in a Computational Grid

uling,R., Monien,B.1993.Adynamic distributed load balancing algorithm with provable good performance. Proc of

ooperative load balancing mechanism for

large scale p2p systesm.Proc International Symposium on applications and internet workshops 126-129

intensive Heterogeneous

International conference on High Performance Computing(HiPC’06),72-83.

driven simulation study of dynamic load balancing, IEEE Transactions on Software Engineering, 14

experience on Amoeba, ACM SIGOPS

D.L. Eager, E.D. Lazowska, J. Zahorjan, The limited performance benefits of migrating active processes for load

processors, Journal of Parallel and Distributed

Yang, Load balancing on generalized hypercube and mesh multiprocessors with LAL, in: Proceedings

–409.

amic Load Balancing Algorithms in Distributed

ICCEE '09. Second International Conference on computer and electrical engineering, pp 516-521.

scale distributed systems with

interlligent fuzzy controller,IEEE International conference on Information reuse and Integration. Aug 2007, PP 576-

