
International Journal of Distributed and Parallel Systems (IJDPS) Vol.3, No.3, May 2012 

DOI : 10.5121/ijdps.2012.3303                                                                                                                   21 

 

 

 

 

Parallel String Matching Algorithm Using Grid 

K.M.M Rajashekharaiah
1
, Ch MadhuBabu

2 
and Dr. S. Viswanadha Raju

3 

1
Asso Prof, Dept of CSE, BVRIT, Research Scholar Rayalamaseema University, 

Kurnool 
rajashekharaiah.kmm@bvrit.ac.in 

2
Professor Ch MadhuBabu 

madhubabu.chunduri@bvrit.ac.in 
3
Professor, School of IT, JNTUH 

viswanadha_raju2004@yahoo.co.in 

 

Abstract 

 Grid computing provides solutions for various complex problems. Implementing computing intensive 

applications such as string matching problem on grid is inevitable. In this paper we present a new 

method for exact string matching based on grid computing. The function of the grid is to parallelize the 

string matching problem using grid MPI parallel programming method or loosely coupled parallel 

services on Grid. There can be dedicated grid, other way it can be resource sharing among the existing 

network of computing resources, we propose dedicated grid. Parallel applications fall under three 

categories namely Perfect parallelism, Data parallelism and Functional parallelism, we use data 

parallelism, and it is also called Single Program Multiple Data (SPMD) method, where given data is 

divided into several parts and working on the part simultaneously. This improves the executing time of 

the string matching algorithms on grid. The simulation results show significant improvement in executing 

time and speed up. 

Keywords: Grid Computing, Loosely coupled, SPMD, Parallelism.  

1. Introduction: 

 String matching is very important subject in the domain of text processing and it has been one 

of the most extensive problems in computer technologies during past two decades. It has 

applications such as DNA analysis, information retrieval systems and several other fields. 

String matching is the process of finding the occurrence of a pattern P in a text T, where T is 

longer than P. This occurrence is either exactly matched or partially matched with the pattern, 

based on this; string matching algorithms are classified as Exact and Approximate string 

matching algorithms. Exact string matching algorithms are concerned with the number of 

occurrences of the pattern into a given text, while approximate string matching algorithms are 

concerned with the similarity percentage between the pattern and the text or any part of the text 

[2][3]. This paper concentrates on exact string matching algorithms. Data dependence is 

minimal in string matching operations and hence it is ideal for parallelization. Parallel 

applications fall under three categories namely Perfect parallelism, Data parallelism and 

Functional parallelism [10][11]. 
 



International Journal of Distributed and Parallel Systems (IJDPS) Vol.3, No.3, May 2012 

22 

 

 

 

 

1.1 Perfect parallelism: Also known as embarrassingly parallel. An application can be 

divided into sets of processes that require little or no communication. 

 

1.2 Data parallelism: The same operation is performed on many data elements simultaneously. 

An example would be using multiple processes to search different parts of a database for one 

specific query.  

A Single Program Multiple Data streams (SPMD [18]) is a parallel processing technique where 

the same program (or task, in workflow terminology) is applied to multiple data elements. All 

elements are processed in parallel, if – as before – no dependencies exist among them. The 

Data Parallelism pattern applies this idea to speed up the execution of task that are run over 

large input datasets. Instead of feeding the entire dataset to a task, the data is partitioned and a 

copy of the same task is applied in parallel over each (independent) partition. Once all data 

partitions have been scheduled for execution, there can be different synchronization semantics 

to proceed with the execution (wait for all, wait for one, n-out-of-m). 

 

1.3 Functional parallelism: Often called control parallelism. Multiple operations are 

performed simultaneously, with each operation addressing a particular part of the problem.  

 

1.4 Single Program Multiple Data (SPMD) 

These are the applications in which the input data can be partitioned and processed concurrently 

using the same program. This type of application comprises the majority of applications that 

utilize the Grid today and covers a wide range of domains. The primary motivation for running 

this class of applications on a grid is to significantly improve performance and/or scope by 

scaling the application out to as many resources on the grid as possible.  

 

SPMD usually refers to message passing programming on distributed memory computer 

architectures. A distributed memory computer consists of a collection of independent 

computers, called nodes. Each node starts its own program and communicates with other nodes 

by sending and receiving messages, calling send/receive routines for that purpose. Barrier 

synchronization may also be implemented by messages. The messages can be sent by a number 

of communication mechanisms, such as TCP/IP over Ethernet, or specialized high-speed 

interconnects such as Myrinet and Supercomputer Interconnect. Serial sections of the program 

are implemented by identical computation on all nodes rather than computing the result on one 

node and sending it to the others. 

 

The remainder of this paper structured as follows, section 2 introduces Grid computing model. 

Next in section 3 we discuss the related carried out in parallel string matching. In section 4 we 

describe text partition, which is used for distribution of divided given text to different nodes. In 

section 5 we discuss experiment environment and results and concluding in section 6. 

 

2. Grid Computing Model  
 

Grid computing provides new solutions for numerous complex problems. It is inevitable to 

implement the distributed parallel computing of large-scale problems with the grid. There are 

two types of parallelization possible in grid environment: Loosely coupled parallel services and 

tightly coupled parallel (Grid MPI parallel program) services [1], we use loosely coupled 

technique in our simulation. 

 

 



International Journal of Distributed and Parallel Systems (IJDPS) Vol.3, No.3, May 2012 

23 

 

 

 

 

 

2.1 Loosely coupled parallel Services: 

 

The architecture of the implementation framework of loosely coupled parallel services on grid 

is shown in the figure 1. The input data can be partitioned and processed concurrently using the 

same program, alternatively it could be assumed that the database of an information retrieval 

system contains independent documents. Therefore in both the cases all the above partitions 

yield a number of independent tasks (threads), each comprising some data (i.e. a string and a 

large subtext) and a sequential string matching procedure that operates on that data. Further 

each task completes its string matching operation on its local data and returns the number of 

occurrences [1]. 
 

 
2.2 Model Advantages 

1. Much more efficient use of idle resources. Jobs can be farmed out to idle servers or even idle 

desktops. Many of these resources sit idle especially during off business hours. Policies can be 

in place that allows jobs to only go to servers that are lightly loaded or have the appropriate 

amount of memory/cpu characteristics for the particular application. 2. Grid environments are 

much more modular and don't have single points of failure. If one of the servers/desktops 

within the grid fails there are plenty of other resources able to pick the load. Jobs can 

automatically restart if a failure occurs. 3. This model scales very well. Need more compute 

resources? Just plug them in by installing grid client on additional desktops or servers. They 

can be removed just as easily on the fly. This modular environment really scales well. 4. Jobs 

can be executed in parallel speeding performance. Grid environments are extremely well suited 

to run jobs that can be split into smaller chunks and run concurrently on many nodes. 

3. Related Work 
 
Several computational models have been considered for parallel string matching algorithms the 

PRAM model, mesh structure [3] and S.V Raju and A. Vinay Babu proposed efficient parallel 

pattern matching using partition method [2] and obtained deterministic one and two 

dimensional arrays which are probably the best in both preprocessing, text search and reduced 

many calls across back end interface [3].  

 

Data dependence is minimal in string matching operations and hence it is ideal for 

parallelization. Parallel computing models helps to improve executing time. In parallel 

computing a problem is divided into smaller problems which are then processed 



International Journal of Distributed and Parallel Systems (IJDPS) Vol.3, No.3, May 2012 

24 

 

 

 

 

simultaneously. The parallelism degree can be controlled by changing Several computational 

models have been considered for parallel string matching algorithms the PRAM model, mesh 

structure [14] and etc. The parallel string matching algorithm is often said to be optimal if its 

cost is O (nm).  

 

A Single Program Multiple Data streams (SPMD [15]) is a parallel processing technique where 

the same program (or task, in workflow terminology) is applied to multiple data elements. All 

elements are processed in parallel, if – as before – no dependencies exist among them. 

 

Park and George [10] presented a dataflow schemes string matching algorithms parallelization. 

In their work, they covered exact matching and k mismatched problems. The time complexity 

of the proposed parallel algorithm was O ((n/d) +α), 0<=α=m, where n and m are the length of 

the text and pattern with (n>>m) and the value of the variable d, which is present in the input 

stream. Due to the one pass dataflow algorithms, there was no preprocessing and memory space 

used for this schema. 

 

 S.V Raju and Vinay Babu [4] proposed a parallel technique for string matching algorithm. 

They considered the linear array with reconfigurable pipelined bus system (LARPBS) and 2D 

LARPBS for string matching in their work, which has many existing applications such as 

cellular automata, computational biology and string database. The proposed method increases 

the speed of the string matching process. They obtained the time complexity O (1) for the string 

matching on 2D LARPBS where no preprocessing is done to the text and pattern. 

 

Recently Mosleh M. Abu-Alhaj and M. Halaiyqah [9] proposed a general platform called the 

PXSMAlg platform, in order to improve the Exact-Strings-Matching algorithms performance. 

In this platform they used MPI model over the Master/Slave paradigm to improve the 

performance in terms of speeding up of executing time. 

 

4. Text Partitioning 

 
The exact string-matching problem can achieve data parallelism with data partitioning 

technique. We decompose the text into r subtexts, where each subtext contains (T/p)+m-1 

successive characters of the complete text. There is an overlap of m-1 string characters between 

successive subtexts, i.e, a redundancy of r(m-1) characters. Alternatively it could be assumed 

that the database of an information retrieval system contains r independent documents. 

Therefore, in both the cases all the above partitions yield a number of independent tasks each 

comprising some data (i.e. a string and a large subtext) and a sequential string matching 

procedure that operates on that data. Further, each task completes its string matching operation 

on its local data and returns the number of occurrences. Finally, we can observe that there are 

no communication requirements among the tasks but only global (or collective) communication 

is required. The main issue to be addressed is how the several tasks (or r subtexts) can be 

mapped or distributed to multiple processors for concurrent execution. In [5] different ways of 

distributing the database across a multi computer network were discussed. Let p be the number 

of processors in network and r be the number of subtext in the whole collection then the text 

partition is defined as, if r=p then each subtext contains T/p+m-1 characters. This is called 

static allocation of subtext as shown in Fig2. 
 



International Journal of Distributed and Parallel Systems (IJDPS) Vol.3, No.3, May 2012 

25 

 

 

 

 

 
 

4.1 Implementation Procedure 

 

4.1.1 String Matching Algorithms 

 
Researchers have developed several exact pattern matching algorithms with the view to 

enhance the searching processes by minimizing the number of characters comparisons and 

maximize the length of the shifts [16]. Boyer-Moore (BM) [17] algorithm compared character 

from right to left of pattern and did not require the whole pattern to 

be searched in case of mismatch. In case of a mismatch or complete match, it used two shifting 

rules; bad character and good suffix rules to shift the pattern toward right. The time complexity 

of preprocessing phase is O(m). Worst case running time of searching phase is O(nm + |∑|). 

The best case of searching phase is O(n/m). Boyer-Moore Horspool (BMH) [18] is improved 

version of the Boyer-Moore algorithm. It used only the bad character rule of the Boyer-Moor 

algorithm to improve the length of the shifts. In preprocessing phase, it scans pattern for right 

most character of partial text window from right to left. As occurrence of the character is found 

it aligned the found character with the rightmost character of the text window. If the character 

is not found in the pattern then take maximum shift of size m. It's preprocessing time 

complexity is O(m) and searching time complexity is O(mn). Boyer-Moore Smith (MBS) [19] 

noticed that computing shift by BMH sometimes maximize the shifts than QS. It uses the bad 

character shifting rule of BMH and QS bad character rule to shift the pattern. It's preprocessing 

time complexity is O(m+|∑|) and searching time complexity is O(mn). The preprocessing 

phase of Quick Search (QS) [20] algorithm scans pattern from right to left for one character 

right to the partial text window to identify the shifts by applying bad character shifting rule. It 

performs character comparison from left to right of the pattern with selected text window. The 

worst case time complexity of QS algorithm is same as BMH algorithm but it can take more 

steps in practice. 

According to the implementation of loosely coupled parallel services, parallel string matching 

algorithm on Grid computing environment is developed as follows [1].The input data can be 

partitioned and processed concurrently using the same program. 

1. Write a program which operates on different data streams as Grid service. 

2. Create a distributed thread by either by extending the thread or implementing Runnable 

interface in java. 

3. Create a grid service instance inside the run method of the distributed thread. 

4. Create a grid client application program that can manage and run distributed threads. 

5. The Grid client application collects results of Grid service instances on Grid nodes. 

 

 



International Journal of Distributed and Parallel Systems (IJDPS) Vol.3, No.3, May 2012 

26 

 

 

 

 

5. Results and Discussions. 

 
5.1 Test Environment: We considered a heterogeneous environment, in which we used 10 

computers, 8 of which had the configuration of Intel 2.2 GHz CPU, 512 MB RAM, windows 

XP OS, Globus toolkit 4.0. And 2 computers had the configuration of Intel 2.8vGHz 1 GB 

RAM UBONTO Linux OS and Globus 4.0 toolkit. Each node is interconnected through 

100MBits/Sec Fast Ethernet card. We have carried out 10 different experiments to search 

patterns of fixed length in a file of size 3 MB. We have used Quick search algorithm, the result 

showed improvement in the executing time and speedup. The fig 3 shows improve in executing 

time and fig 4 shows improvement in speedup. 

 

 

Fig 3. Executing Time Vs Number of Nodes. 

 

 

Fig 4. Speed Up Vs Number of Nodes. 

6. Conclusions and Feature work 

In this paper we proposed generalized parallel grid computing environment for executing exact-

string matching algorithm, and used SPMD method. The simulation results show that the 

performance of string matching algorithms namely execution-time and speedup improved 

0

0.5

1

1.5

2

2.5

0 2 4 6 8 10 12

S
p

e
e

d
 U

p

Number of Nodes

0

1

2

3

4

5

0 2 4 6 8 10 12

E
x

e
cu

ti
n

g
 T

im
e

Number of Nodes



International Journal of Distributed and Parallel Systems (IJDPS) Vol.3, No.3, May 2012 

27 

 

 

 

 

compared to sequential execution. Our feature work includes evaluating reliability of Grid and 

memory optimization. 

Acknowledgements 

We sincerely thank our colleagues in the Department of Computer Science and Engineering for 

their advice and helpful discussions. 

7. References 
 

[1] Weiwei Lin, Changgeng Guo, Deyu Qi, Yuehong Chen and Zhang Zhili, (2006) 

“Implementations of Grid-Based Distribute Parallel Computing”, IMSCCS’06. 

[2] S.Viswanadha Raju and A.Vinaya Babu, “Efficient Parallel Pattern Matching Using Partition 

Method”, Proc. of PDCAT 2006, IEEE Computer society, 2006. 

[3] S.Viswanadha Raju and A.Vinaya Babu,“ Backend Engine For Parallel String Matching Using 

Boolean Matrix”, Proc.of PARALEC 2006, IEEE Computer society, 2006. 

[4]  A.Vinaya Babu and S.Viswanadha Raju, “Parallel Algorithms for String Matching on Single 

and Two Dimensional LARPBS”, Journal of Computer Science, 2007. 

[5] Park, J.H., And George, K.M., “Parallel string matching algorithms based on Dataflow”, In 

proceedings of the 32
nd

 Hawaii International on System Sciences, 1999. 

[6] Alimohammad Saghiri and Alireza Bagheri, “An adaptive architecture for personalized search 

engine in Ubiquitous environment with peer to peer systems”, International conference on Information 

and Multimedia Technology, 2009. 

[7] Sikan Chen, Minglu Li, Feng He (2006) “GridPPI: A Lightweight Grid-Enabled Parallel 

Programming Framework”, APSCC’06. 

[8] S.Viswanadha Raju and A. Vinaya Babu, “Performance in the Design of Parallel 

Programming”, Obcom 2004, Vellore Institute of Technology, Vellore, 2004. 

[9] Mosleh M. Abu-Alhaj and M. Halaiyqah, “An Innovative platform to improve the performance 

of Exact-String-Matching Algorithms”, International journal of computer and information security, Vol 

7, No. 1, 2010. 

[10] Joshy Joseph and Craig Fellenstein “Grid Computing” Pearson Education, IBM Press. 

[11] Ahmar Abbas, “Grid Computing A practical Guide to Technology and Applications”, 

FIREWALL MEDIA 

[12] Michailids, P.K. Margaritis (2001), “String Matching problem on Cluster of Personal 

Computers: Experimental Results” Proc. 15
th

 International Conference Systems for Automation of 

Engineering and Research. 

[13] Park, J.H., And George, K.M., “Parallel string matching algorithms based on Dataflow”, In 

proceedings of the 32
nd

 Hawaii International on System Sciences, 1999. 

[14] A.Vinaya Babu and S.Viswanadha Raju, “Optimal Parallel algorithm for String Matching Mesh 

Network Struture”, International Journal of Applied Mathematical Sciences, 2007. 

[15] K. Hwang and F. A. Briggs. Computer Architecture and Parallel Processing. McGraw-Hill, 

1984. 

 

[16]  Thierry Lecroq, “Fast exact string matching algorithms,” Information Processing Letters, 

Volume 102 , no. 6, Year of Publication: 2007, Pages 229-235. 

[17]  R.S. Boyer, J.S. Moore, "A fast string searching algorithm," Communication of the ACM, Vol. 

20, No. 10, 1977, pp.762–772. 



International Journal of Distributed and Parallel Systems (IJDPS) Vol.3, No.3, May 2012

 

[18]  R. N. Horspool, "Practical fast searching in strings," 

10, No. 3, 1980, 501–506. 

[19]  Smith, P.D., "Experiments with a very fast substring search alg

Experience, Vol. 21, No. 10, pp.1065

[20]  Sunday, D.M., "A very fast substring search algorithm," 

No. 8, 1990, pp. 132-142. 

 

 

8. About Authors 
 
 K.M.M Rajashekharaiah obtained 

computer Science discipline from Rayalaseema University, Kurnool, AP. Presently 

working as Assoc Prof in the department of CSE, BVRIT, Narsapur, Medak Dist, AP, 

India. 

 

Prof Ch. MadhuBabu obtained M.Tech (CSE) from JNTUH, 

Computer Science discipline from ANU, AP, India. Presently working as professor in 

the department of CSE, BVRIT, Narsapur, Medak Dsit, AP, India. His area of interests 

are programming languages, software engineering.

Dr. S. Viswanadha Raju obtained his Ph.D in Computer Science &Engineering from 

ANU. He obtained his M.Tech in CSE from

background with a very sound and academic research experience. At present he is 

working as a professor in School of Inf

Hyderabad. He is guiding 10 research scholors for Ph.D and also conducted several 

conferences/workshops/seminars with sponsored agencies such as AICTE, DST, TCS, 

IEEE and CST. His research includes Information Retrieva

Retrieval, Data Mining and related areas. He published 25

International Journals/Conferences proceedings in his research area. He is active 

member in different professional bodies with life membership like IET

 

 

 

 

 

 

 

 

International Journal of Distributed and Parallel Systems (IJDPS) Vol.3, No.3, May 2012

R. N. Horspool, "Practical fast searching in strings," Software—Practice and Experience, 

Smith, P.D., "Experiments with a very fast substring search algorithm," Software-Practice and 

, Vol. 21, No. 10, pp.1065-1074. 

Sunday, D.M., "A very fast substring search algorithm," Communications of the ACM

obtained M.Tech (CSE) from VTU, pursuing PhD in 

computer Science discipline from Rayalaseema University, Kurnool, AP. Presently 

working as Assoc Prof in the department of CSE, BVRIT, Narsapur, Medak Dist, AP, 

 

obtained M.Tech (CSE) from JNTUH, Pursuing PhD in 

Computer Science discipline from ANU, AP, India. Presently working as professor in 

the department of CSE, BVRIT, Narsapur, Medak Dsit, AP, India. His area of interests 

are programming languages, software engineering. 

obtained his Ph.D in Computer Science &Engineering from 

ANU. He obtained his M.Tech in CSE from JNTUniversity. He has a good academic 

background with a very sound and academic research experience. At present he is 

working as a professor in School of Information Technology in JNTUniversity, 

guiding 10 research scholors for Ph.D and also conducted several 

conferences/workshops/seminars with sponsored agencies such as AICTE, DST, TCS, 

IEEE and CST. His research includes Information Retrieval, Databases, Image 

Retrieval, Data Mining and related areas. He published 25 research papers in reputed 

International Journals/Conferences proceedings in his research area. He is active 

member in different professional bodies with life membership like IETE, ISTE and CSI. 

 

 

International Journal of Distributed and Parallel Systems (IJDPS) Vol.3, No.3, May 2012 

28 

 

 

 

Practice and Experience, Vol. 

Practice and 

Communications of the ACM, Vol. 33, 

 


