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ABSTRACT 

In this paper, scan and ring schemes of the pseudo-ring memory self-testing are investigated. Both 

schemes are based on emulation of the linear or nonlinear feedback shift register by memory itself. 

Peculiarities of the pseudo-ring schemes implementation for multi-port and embedded memories, and for 

register file are described. It is shown that only small additional logic is required and allows 

microcontrollers at-speed testing. Moreover, posteriori values are given for some types of memories 

faults coverage when pseudo-ring testing schemes are applied. 
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1.  INTRODUCTION 

A classical memory built-in self-test (MBIST) scheme contains [1]: (1) a memory BIST 
controller, (2) an address sequencer (or stepper), (3) a comparator for response checking, (4) a 
data generator for inserting test patterns, and (5) a MUX circuit feeding the memory during self-
test. The leading position in memory BIST hold the March test algorithms [2]. A March 
algorithm consists of a set of simple operations such as write, read and compare that are 
performed iteratively for each memory cell. 

Unlike March schemes, the pseudo-ring testing (PRT) is based on emulating a linear (or 
nonlinear) feedback shift register (LFSR) by the memory itself [3]. The idea of pseudo-ring or 

testing−π  is to use a set of memory’s cells as the register stages of LFSR and shift this virtual 

register across memory cells. Therefore, it is not the data that are shifting but the virtual LFSR is 
shifted relatively to data. After shifting via all memory cells, that is called a test−π  iteration, a 
comparison between the (virtual) register final state and the expected one is carried out. 

The test−π iteration consists of: initialization of virtual automaton, pushing this automaton in 
the space of memory array, unloading the automaton final state, and analysis of the results The 
quality of testing−π is estimated by comparing the virtual LFSR final state with expected one. 

In particular case, when the number of shifting is proportional to periodT of polynomial )(xp , 

then the comparison with the initial state is made: Init ≷≷≷≷ Fin. 
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iteration−Π is a constitutive part of the PRT RAM. The number of iterations−π depends on 
the set of faults to be detected. Test-engineer can define own parameters for each iteration−π . 
In fact, there are three controlling parameters (degree of freedom): LFSR structure, defined by 

polynomial )(xp ; initial seed in the ; addressing mode or trajectory of LFSR.  

Pseudo-ring test technique is suitable for a large spectrum of memory devices: one- and multi-
port, file registers and cash memory, bit- and word-oriented. Also, a “consistent” running of the 
virtual LFSR allows at-speed testing of embedded memories, this is important for many complex 
digital devices such as programmable logic devices (PLD), microprocessors and 
microcontrollers.  

From structural point of view, the test−π scheme follows the classical MBIST architecture, but 
is not that sophisticated and complex. In this paper, the pseudo-ring testing schemes and 
algorithms will be analyzed. The features of PRT, the file registers and multi-port memories are 
presented in section 2. Software implementation of the microcsontrollers testing−π is 

considered in section 3. The paper ends with analysis of PRT fault coverage and concluding 
remarks. 

2. THE SCHEMES OF PSEUDO-RING TESTING 

Compact BIST schemes are based on probabilistic test pattern generation using LFSR [4] and 
output compaction using signature analyzer [5]. The pseudo-ring testing schemes can be 
implemented with or without signature analyzer. testing−Π  schemes of both cases are 

presented in Fig. 1. The memory cell in the ring scheme plays a role of the virtual feedback stage 
of LFSR (Fig. 1, a). In the scan scheme all register stages connected to feedback are considered 
as cells of memories (Fig. 1, b). 

In the ring scheme (see Fig. 1, a) the Signature Analyzer is used to detect some memory faults 
that can be “omitted” by virtual LFSR during a iteration−π . It is easy to see, the Signature 
Analyzer can be an external one. In the scan test mode the shift register ShReg (see Fig. 1,b) is 
only used for temporary data storage. So, ShReg-unit is the copy of the virtual register of LFSR, 
emulated by cells of memory. When the number of RAM ports is equal to register length, there is 
no need to use the register ShReg. 

 

The signal Read/Write is generated, e.g. by GenA, in correspondence with RAM specification. 
At each clock of time the virtual register is shifted relatively to data. Address generator or 
sequencer GenA determines the trajectory of LFSR shifting. Three types of trajectories can be 
selected: counting up, counting down or pseudorandom. It’s necessary to outline that in some 

Figure 1.   Schemes of  Π-testing. 
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works (for example, [6, 7]) is mentioned, that use of different initial conditions such as address 
order or background changing can increase the test quality of the March algorithm. 

In addition to the three parameters, specified in the Introduction, to control the testing−π can be 

used another, fourth, parameter namely the input or input-output inversion of data. Inversion of 
data allows extending the variety of automaton states, which are not specific for classical LFSR. 
For example, double inversion (input-output) of data allows crossing LFSR through states 11…1 
(full in the memory array by ones). As a consequence the iteration−π  can simulate the March 
algorithms.    

Tested memory can be either bit- or word-oriented. PRT scheme, i.e. automaton, is a classical 
LFSR that process data over Galois field GF(2), when RAM is bit-oriented. Automaton is a so-
called General LFSR [8] that processes data over extended GF

k(2m), if RAM is word-oriented, 

where )(deg xpm =  is the cell size and )(deg zqk =  is the degree of irreducible polynomial 

over GF
k(2m). Obviously, the value k is multiple to the size N of memory array. In following 

subsections the specifics of PRT schemes implementation for different memory type are 
presented and described.  

2.1 Pseudo-Ring Testing of Small Embedded RAM  

In Fig. 2 is shown the scan testing−π  scheme of a register file. Symbol ⊕ specifies a logical 

scheme of XOR-gates, that depends on selected LFSR type: (1) over extended Galois field 
GF

n(2m), where m is the size of cell, n is the number of register stages; (2) group of n (homo- or 
heterogeneous) LFSR over GF(2m), where mn.  is the cell size. Selection of LFSR type (1) or (2) 

depends on hypothesis about faults: intra- or inter-words. 

 For the first LFSR type the hardware overhead will be equal to m  2-inputs XOR-gates. For the 
second LFSR type hardware overhead will be the same as for LFSR (1) plus some XOR-gates 
that implement multiplication by a constant over corresponding field GF

n(2m). In both cases 
registers RgWrAddr and RgRdAddr are indispensible parts of the scan chain. Remark that 
RgScan can be built-in, as well as external to unit under test. 

testing−Π  is defined as follows: by computer-aided design tools [9] the test sequences are 

generated, simulated and verified for a prescribed list of faults. Further, the prepared tests are 
feed to Address and Data chain inputs. The Address and Data chains are synchronized separately 
(synchronizations inputs are not shown in Fig. 2). This feature allows to schedule testing−π to 

detect various faults types. For example, as was shown in [9], the corresponding control and 
configuration of testing−π scheme allows detecting all static single- and two-cell faults and all 

dynamic single-cell faults in the period of time proportional to N54 , where N is the RAM array 
size. 
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Figure 2.   Π-testing scheme of the registers file. 
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2.2 Pseudo-Ring Testing of Multi-Port Memory 

Most of the multi-port memory circuits are word-oriented. Two-port memory will be used further 
to illustrate the synthesis of PRT scheme. Among all possible designs of PRT for two-port RAM, 
in [10] are selected two most attractive from hardware implementation standpoint. 

The initial data of designing a pseudo-ring system are: size m  of memory cell, size N of array 

memory array, polynomial )(xq  over extended Galois field GF
k(2m), where )(deg xqk = is the 

number of register stages. Period T  characterizes the GLFSR behavior. If )(zq  is a primitive 

irreducible polynomial then period is maximal: 
1)2( −

=
km

T . In the case 2=k  a transition of 

the virtual GLFSR over GF(24) is shown in Fig. 3.  

 

Test iteration, shown in Fig. 3, has an equivalent description in memory test language: 

)}(,,{ 121 +++
⊕ iiiii rrwrrc , where {…} signifies the iterative performing of the included 

operation, w(.) is the write to address (.) , (.)r is the read from address (.) , and symbol ⊕ signs the 

sum modulo )(zq . For example, the polynomial 
2221)( zzzq ++=  is one of the primitive 

irreducible polynomials over GF
2(24) with field generator polynomial 

41)( xxxp ++=  over 

GF(2). So, for this example is needed to multiply modulo )(zq by 2 the two adjacent cell’s 

values z  , 
2z and sum modulo )(xp , i.e. XOR the resulted values. It is well known that 

multiplication with a constant over Galois field is implemented by a combinational circuit [11]. 

Thus, the operation sum modulo )(zq is accomplished by not “costly” logical circuit. 

 To facilitate testing−π  a modification of the standard two-port (A and B) memory 

architecture is proposed. This modification needs: (1) allowing the “conversion” of the existent 
address registers RgAddr to counters and (2) additional hardware overhead of specific XOR-
logic on RAM chip area, i.e. block ⊕. Generic VHDL entities were elaborated to generate the 
corresponding units of testing−π  scheme for bit-oriented as well as for word-oriented RAMs. 

The supplementary hardware overhead is negligible. Table 1 shows the rate of hardware 
overhead when designing a test−π  system. 

Considering estimation NiterationO =− )(π , the test−π length is of order ).( NrO , where 

r  is the number of iteration−π . In [3] was proved that for hard-to-detect, namely single, 

faults the optimal number of π-iterations is bounded below by value 1+k . It up to the test-
engineer only to find the optimal parameters of PRT for a prescribed set of RAM faults. 
Analyzed in this section testing−π schemes allow extending the pseudo-ring test technique for 

embedded memory of microcontrollers. 

3. PSEUDO-RING TESTING FOR MICROCONTROLLER 

The application note [12] describes the Cyclic Redundancy Check (CRC) based algorithm for 
testing the program memory of AVR RISC microcontrollers. The article [13] focuses on 
adaptation of March bit-oriented algorithm for at-speed BIST the Atmel AVR-controllers. In this 

Figure 3.  Diagram of the pseudo-ring testing with glfsr. 
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section the peculiarities of the implementation of pseudo-ring AVR-microcontrollers self-testing 
is described. 

LFSR’s structure will be “assembled” by the microcontroller registers, the polynomial algebra 
operations – multiplication and addition, will be performed by using built-in flash EEPROM 
memory. To read the contents of flash memory cells will use the LPM instruction (loap program 
memory) that load a data byte from the FLASH program memory into the register file. The 

registerZ − in register file is used to access the program memory. 

TABLE I.  Π-TESTING SCHEME  HARDWARE OVERHEAD 

 LFSR GLFSR 

Memory 
Array Size 

1 kb 
32 

kb 

1 

Mb 

32 

Mb 
1 Gb 1 kB 

32 

kB 

1 

MB 

32 

MB 
1 GB 

Hardware 
overhead, % 

3,4 
10-4 

1,5 
10-5 

6,2 
10-7 

2,4 
10-8 

8,0 
10-10 

7,3 
10-5 

2,86 
10-6 

1,07 
10-7 

3,9 
10-9 

1,4 
10-10 

b means bits and B means bytes. 

 

All operations are executed in the extension of Galois field GF
k(2m) with coefficients of residue 

classes of polynomials modulo )(xp . Next will be described an example of implementation the 

virtual GLFSR defined by irreducible polynomial 
291)( zzzq ++= over GF(24) with generator 

polynomial 
41)( xxxp ++= over GF(2). The sum ))((mod9 2

xpzz +  table is needed to 

generate before implementing modular operations. The resulted decimal values are saved in the 

first 256 bytes of data memory (see Fig. 4).   

Figure 4. Table of  9z^2+z  mod (1+x+x^4). 

.eseg ; org 0 

 .db 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 

 .db 9,8,11,10,13,12,15,14,1,0,3,2,5,4,7,6 

 .db 1,0,3,2,5,4,7,6,9,8,11,10,13,12,15,14 

 .db 8,9,10,11,12,13,14,15,0,1,2,3,4,5,6,7 

 .db 2,3,0,1,6,7,4,5,10,11,8,9,14,15,12,13 

 .db 11,10,9,8,15,14,13,12,3,2,1,0,7,6,5,4 

 .db 3,2,1,0,7,6,5,4,11,10,9,8,15,14,13,12 

 .db 10,11,8,9,14,15,12,13,2,3,0,1,6,7,4,5 

 .db 4,5,6,7,0,1,2,3,12,13,14,15,8,9,10,11 

 .db 13,12,15,14,9,8,11,10,5,4,7,6,1,0,3,2 

 .db 5,4,7,6,1,0,3,2,13,12,15,14,9,8,11,10 

 .db 12,13,14,15,8,9,10,11,4,5,6,7,0,1,2,3 

 .db 6,7,4,5,2,3,0,1,14,15,12,13,10,11,8,9 

 .db 15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0 

 .db 7,6,5,4,3,2,1,0,15,14,13,12,11,10,9,8 

 .db 14,15,12,13,10,11,8,9,6,7,4,5,2,3,0,1 
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Algorithm of checksum calculation will run as follows: Beginning with the first cell of program 
memory with address 0=i , clock by clock the content of the two GLFSR stages are summed 

modulo )(zq , and the result is XOR-ed with value of the thi −  memory cell. The GLFSR is 

shifted, so the less significant word (LSW) is moved in the most significant word (MSW), and 
the result, obtained in previous calculus, is saved in the LSW stage. The corresponding listing of 
AVR-subroutine of the above algorithm is shown in Fig. 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The subroutine PiSign is called from main program as listed below: 

.include "8515def.inc" 

;***** Constants 

.equ end_P_= 0x1FFF  ;Size of program memory (bytes) 

;*****  Register Variables 

.def Zero =r14  ; constant zero register 

.def sum =r15  ; CRC checksum 

.def temp =r16  ; temporary register 

.def glfsr =r17  ; linear feadback shift register 

;/////////////////// Program start – execution starts here /////////////////////////// 

.cseg 

.org $0000 

rjmp RESET  ;Reset handle 

.org 11 

;//////////////   Starts of Main Program ////////////////////////////// 

Figure 5.  Subroutine of π-testing the avr-controller program memory. 

; ***** Subroutine Register Variables 

.def sizeL = r17  ; Program code  

.def sizeH = r18  ; size register 

.def LSW = r19  ; Lower byte of GLFSR 

.def MSW = r20  ; Upper byte of GLFSR 

 

PiSign: ldi sizeL, low(end_P+1) ; Load end of 

 ldi sizeH, high(end_P+1); program memory address 

 clr zL  ; Clear Z pointer 

 clr zH 

_pi: cp zL, sizeL  ; Check for end of code 

 cpc zH,sizeH 

 brge piEnd  ; Jump if end of code 

 out EEARL, MSW ; Output address low 

 out EEARH, Zero ; and high byte 
 

 sbi EECR, EERE ; Set EEPROM read strobe 

 mov MSW, LSW  ; MSW� LSW -- shift GLFSR 

 in r0, EEDR  ; r0 � az^2
 

 eor LSW, r0  ; LSW � LSW ⊕ r0 {az^2+z} 

 lpm   ; r0 � Code[ i] 

 eor LSW, r0  ; LSW � LSW ⊕ r0 

 adiw zL, 1  ; next cell i of  

 rjmp _pi  ; Code Memory 

piEnd: ret   ; from PiSign8 
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Reset:  ldi temp, high(RAMEND) ; Initialize stack pointer 

out SPH,temp   ; High byte only required if 

ldi temp,low(RAMEND)  ; RAM is bigger than 256 Bytes 

out SPL, temp 

clr Zero   ; set constant 0 

clr glfsr   ; reset GLSFR register 

rcall PiSign   ; get GLFSR value 

; Output GLFSR value to PortA 

      .exit  

About 385000  cycles are required to run the program outlined above. The elaborated program is 
a draft aimed to run on the simulator. Therefore, it does not take into account peculiarities of read 
and write in the EEPROM of various members of the AVR family. Based on described algorithm 
of testing−π  EEPROM-memory of the AVR-controller, we have also developed algorithms 

and corresponding programs to PRT BIST other types of memory of the microcontroller. 

Speed related faults detection is one of the aims of embedded built-in self-test program. A way to 
detect these faults is by using back-to-back (BtB) memory cycles. To provide this “desideratum” 
one must follow the BtB recommendations contained in the [13], but adapted to the psedo-ring 
testing. In addition to at-speed testing of microcontroller, also arouse interest the testing of static 
faults.  

4.  FAULT COVERAGE OF THE PSEUDO-RING TESTING 

In this section, the results of simulation the trivial testing−π are presented. The number of 

iterations−π  in the test experiment is equal to 31 =+m  and start with significant seeds. This 

test−π experiment was performed for the list of 31 single and 86 two- cell faults, proposed for 
one-port SRAM in [14]. For PRT simulation were applied the tools described in [9], and the ring 
scheme shown in Fig. 1, a) was used as a testing−π scheme. The results of this experiment 

have showed that the average fault coverage R of single cell faults is equal to 0.9128 and for the 
two-cell faults is equal to 0.8627. Also, remark that in the class of single cell faults the most 
difficult to detect is the Write Destructive fault, and in the class of two-cell faults - the Transition 
Coupling fault (with 75.0=R both). 

Underline that the obtained results are “reliable” for one-bit oriented memories with arbitrary 
array size. As can be seen from Table II, there are such type of faults for which the estimation R
of LFSR is higher than estimation R of SA, and vice versa. It is necessary to mention that for 
memory chips more than 150 of possible faults are known [14]. 

5.  CONCLUSIONS  

Pseudo-ring testing (PRT) is a new technique to built-in self-testing of different type of memory 
circuits, and to (embedded) self-testing the memories of microcontroller units (MCU) and 
(micro) processors. The PRT or testing−π is based on emulation of a linear automaton such as 

linear feedback shift register by memory itself. Therefore, rich theory of linear automaton can be 
utilized to solve pressing BIST problems. As a result, test-engineers get a powerful 
methodological tool to organize, control and manipulate the RAM test procedure. 

Two basic schemes – ring and scan, of testing−π are presented in this paper. Relative to the 

memory chip the PRT-schemes can be implemented externally, internally or mixed. In all cases, 
a few hardware overhead are needed for scan or ring scheme implementation. In some cases, just 
an extension of inbuilt memory components abilities may be sufficient. 

The proposed schemes are suitable both for bit-oriented as well as for word-oriented memories 
and provide adequate architecture support to allow interfacing with known BIST standard, e.g. 
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IEEE 1149. Another remarkable property of the testing−π , that must be noted, is the 

invariability of the testing scheme. It means that the same test−π scheme can be applied 
(without essential adjustments) as for single-port so for multi-port memories. Four control 
parameters (as degree of freedom) are “subject” to the test-engineer for synthesis a fast and high 
fault coverage test−π . 

One of the distinct features of the described PRT in this paper is that the quality estimation of 
testing−π is performed at the end of PRT by comparing the final of the emulated automaton 

with the expected one. This feature allows at-speed testing, which is also important for 
microcontrollers’ embedded testing. An example of AVR-controller embedded testing−π is 

shown in this article. The example is implemented in assembler language and is about 40% 
shorter than the known Cyclic Redundancy Checking ATMEL-program.  
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