
International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.6, November 2011 

DOI : 10.5121/ijdps.2011.2612                                                                                                                  127 

 

 

 

TAILORING OF FLATTENED DISPERSION 

IN TRIANGULAR-LATTICE PHOTONIC 

CRYSTAL FIBER 

 
1
Sandhir Kumar Singh, 

2
D. K. Singh, 

3
P. Mahto 

1Department of Engineering Physics, NETGI,  Ranchi, Jaharkhand, India 
Sandhir1975@yahoo.co.in 

 
2
Department of Electronics and Comm. Engg, BIT Sindri, Dhanbad, Jharkhand 

dksingh_bit@yahoo.com 

 
3
P.G. Depatment of Physics, VBU Hazaribag, Jharkhand. 

pmahtovbu@rediffmail.com 

 

Abstract :  
The  interest of researchers and engineers in several laboratories,  since the1980s, has been 

attracted  by the ability to structure  materials  on the scale of the optical  wavelength,  a fraction  of 

micrometers or less, in order to develop new optical  medium,  known as photonic  crystals . Photonic  

crystals  rely on a regular  morphological  microstructure of air-holes,   incorporated  into  the 

material,  which radically alters its optical  properties. In Photonic Crystal Fiber (PCF) it is possible to 

realize flat dispersion over a wide wavelength range that cannot be realized with a conventional single-

mode fiber.  In PCFs, the dispersion can be controlled and tailored with unprecedented freedom. In fact, 

due to the high refractive index difference between silica and air, and to the flexibility of changing air-

hole sizes and patterns, the waveguide contribution to the dispersion parameter can be significantly 

changed, thus obtaining unusual position of the zero dispersion wavelength, as well as particular values 

of the dispersion curve  slope. In particular, by manipulating the air- hole radius or the lattice period of 

the micro structured cladding, it is possible to control the zero-dispersion wavelength, which can be tuned 

over a very wide range, or the dispersion curves, which can be engineered to be ultra flattened. In this 

paper the geometric parameters of triangular PCF have been properly changed to optimize the dispersion 

compensation over a wide wavelength range.  
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I.  Introduction 

Due to the flexibility for the cross section design, photonic crystal fibers (PCFs)  have achieved 

excellent properties in dispersion[1-10] , single polarization single mode[11-13], 

nonlinearity[14], and effective mode area[15-17], and also excellent performances in the 

applications of fiber sensors[18-19], fiber lasers[20-22]  and nonlinear optics[23-26] over the 

past several years. Large numbers of research papers have highlighted some optical properties of 

the PCFs such as ultrahigh birefringence and unique chromatic dispersion, which are almost 

impossible for the conventional optical fibers. 

 

The tendency for different light wavelengths to travel at different speeds is a crucial factor in the 

telecommunication system design. A sequence of short light pulses carries the digitized 

information. Each of these is formed from a spread of wavelengths and, as a result of  chromatic 

dispersion, it broadens as it travels, thus obscuring the signal. The magnitude of the dispersion 
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changes with the wavelength, passing through zero at 1.3 µm in conventional optical fibers. For 

example, as the air-holes get larger, the PCF core becomes more and more isolated, until it 

resembles an isolated strand of silica glass suspended by six thin webs of glass. If the whole 

structure is made very small, the zero-dispersion wavelength can be shifted to the visible light, 

since the group velocity dispersion is radically affected by pure waveguide dispersion. On the 

contrary, very flat dispersion curves can be obtained in certain wavelength ranges in PCFs with 

small air-holes, that is with low air-filling fraction. First of all,  the study of the dispersion 

properties of triangular PCFs with a high air-filling fraction, that is with small hole-to-hole 

spacing and large air-holes, is designed to compensate the anomalous dispersion and the 

dispersion slope of single-mode fibers [27–29]. In particular, the geometric parameters which 

characterize these triangular PCFs have been chosen to optimize the fiber length and the 

dispersion compensation over a wide wavelength range. 

II. Dispersion compensation in triangular lattice PCFs 

PCFs with a high air-filling fraction have been designed in order to compensate the anomalous 

dispersion and the dispersion slope of SMFs. In fact, their chromatic dispersion limits the data 

transmission rate in broadband wavelength division multiplexing (WDM) systems. In particular, 

it becomes a critical issue as soon as the transmission bit-rate increases over 10 Gb/s. The 

positive dispersion of installed fibers can be compensated by dispersion compensating fibers 

(DCFs) with a large dispersion of opposite sign. For WDM systems this goal must be achieved 

over a broad wavelength range around 1550 nm, thus implying, besides large negative dispersion 

values, a proper negative dispersion slope. The present analysis has demonstrated that PCFs can 

be exploited to this aim. In fact, their dispersion properties can be modified with high flexibility, 

since the large refractive index variation between silica and air permits to achieve significant 

waveguide dispersion over a wide wavelength range. PCFs with large air-holes have been 

already proposed  for dispersion compensation, even though their description has been 

performed through a simplified model consisting of a silica core in air [30]. When the 

wavelength increases, this approximation gets worse.  

 

 

 

 

 

 

  

 

 

 

Fig. 1: Cross-section of a triangular PCF with the air-hole diameter d and the pitch Λ. 
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                  Fig.3 : Mode view of the triangular lattice PCF structure  

 

 

 

Fig.2 : Index profile of the triangular lattice PCF structure 
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Fig. 4: Dispersion parameter for PCFs  with d/Λ = 0.9 µm and         different Λ 

values  

 

Fig. 5: Dispersion parameter for PCFs  with Λ = 0.8 µm and different d/Λ values  
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Fig. 6: Chromatic dispersion value at 1550 nm for the different triangular PCFs 

considered  

III.  Results and Discussion 

In this study, the design of triangular PCFs has been optimized by properly tailoring the air-hole 

diameter d and the pitch Λ, as shown in Fig. 1, in order to compensate both the positive 

dispersion and the positive dispersion slope of single-mode fibers over a wavelength range 

around 1550 nm. To this aim, triangular PCFs with large air-holes and a small pitch, that is with 

a small core diameter dcore = 2Λ− d = Λ・ (2 − d/Λ), have been considered. For  the triangular 

PCFs here studied, a proper number of air-hole rings has been considered  in order for the 

solution to converge toward that of a fiber with an infinite photonic crystal cladding. This results 

in a considerable reduction of the leakage losses [31]. In this paper the radiation field is 

evaluated by using FEM formulation. It has been shown that, by choosing the ring number 

between three and ten, leakage losses of fibers with d/Λ in the range 0.6–0.9 can be reduced 

under the Rayleigh scattering limit [32,33]. The dispersion parameter D has been derived in the 

wavelength range 1200 nm–1600 nm. The first fibers considered have d/Λ = 0.9 and Λ which 

varies between 0.6 and 1 µm. Fig. 4 shows their dispersion parameter D for the wavelengths 

between 1200 and 1600 nm. D is always negative if Λ < 1 µm and becomes positive only for the 

triangular PCF with Λ = 1 µm when λ < 1300 nm. The absolute value of the dispersion 

parameter increases reducing the hole to hole spacing Λ. For the triangular PCF with Λ = 0.6 µm 

D reaches a value around −1700 ps/km nm at 1550 nm, while for conventional DCFs it is 

typically −100 ps/km ・nm at this wavelength [30,36]. The dispersion slope is always negative 

in the wavelength range considered if Λ ≥ 0.7 µm, while for the PCF with the smallest pitch, Λ = 

0.6 µm, D reaches a minimum at 1475 nm and then the dispersion slope becomes positive. In 

order to optimize the PCF design, the effect of d variation has been investigated. For this reason 

the pitch has been fixed to Λ = 0.8 µm, that is, a middle value between those previously 

considered, and the ratio d/Λ has been varied from 0.9 to 0.6. As shown in Fig. 5, D is always 

negative in the wavelength range chosen for all the d/Λ values. As d/Λ decreases from the initial 

value of 0.9, the dispersion slope changes and becomes positive for the PCF with d/Λ = 0.6 if λ 

> 1525 nm. The minimum value of D at 1550 nm, around −1000 ps/km/ nm, has been obtained 

with the largest air-holes, that is, with d/Λ = 0.9. Results  are summarized in Fig. 6, which shows 

the dispersion parameter values at 1550 nm. Notice that the dispersion value increases 
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significantly with Λ when d/Λ is fixed to 0.9, while it slowly decreases when the air-holes 

become larger, as in the case Λ = 0.8 µm. This result suggests important technological 

considerations. In fact, proper pitch values, rather than high air-filling fractions, allow to get 

fibers with dispersion values slightly affected by small variations of the air-hole diameter, 

eventually introduced by the fabrication process. 

The anomalous dispersion of an SMF at 1550 nm is completely compensated by a DCF if 

 

DSMF ٠ LSMF + DDCF ٠ LDCF = 0 ,    

 
where DSMF, DDCF, LSMF, and LDCF are, respectively, the dispersion parameters and the lengths of 

the single-mode and the dispersion-compensating fibers. For a given SMF, if the absolute value 

of DDCF is bigger, the length of the DCF can be shorter. The triangular PCF with Λ = 0.6 µm and 

d/Λ = 0.9, which has the largest value of negative dispersion at 1550 nm, as shown in Fig.4, can 

be about 17 times shorter than a classical DCF. Unfortunately 

this fiber has a positive dispersion curve slope in the third window. In fact, the dispersion slope 

is very important, being the parameter which characterizes the dispersion compensation over a 

wavelength range. In an SMF the slope of D(λ) at 1550 nm is positive. The two PCFs, with Λ = 

0.6 µm and d/Λ = 0.9 in Fig. 4 and with Λ = 0.8 µm and d/Λ = 0.6 in Fig. 5, have a positive 

dispersion slope too, so they are suitable for dispersion compensation only at one wavelength. In 

particular, the latter PCF has a lower value of D at 1550 nm, −755 ps/km nm. All the other PCFs 

present a negative dispersion slope at 1550 nm and can be exploited to compensate the 

anomalous dispersion of an SMF over a wide wavelength range. 

IV CONCLUSIONS 

The analysis  performed above have shown that, by properly changing the geometric 

characteristics of the air-holes in the PCF cross-section, the waveguide contribution to the 

dispersion parameter can be significantly changed, thus obtaining unusual positions of the zero-

dispersion wavelength, as well as particular values of the dispersion curve slope. By 

manipulating the air-hole radius or the lattice period of the micro structured cladding, it is 

possible to control the zero-dispersion at wavelength around 1550 nm, which can be tuned over 

a very wide wavelength range, and the  dispersion curves can be engineered to be ultra flattened. 

The PCFs with these characteristics and with a small effective area, that is a high nonlinear 

coefficient are suitable for a great number of telecommunication applications, such as 

wavelength conversion or optical parametric amplification.  It is believed that the analysed PCF 

will have promising future in ultra broadband transmission applications.  
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