
International Journal of Distributed and Parallel Systems (IJDPS) Vol.3, No.5, September 2012

DOI : 10.5121/ijdps.2012.3501 1

SCALING UP OF E-MSR CODES BASED

DISTRIBUTED STORAGE SYSTEMS WITH FIXED

NUMBER OF REDUNDANCY NODES

Haotian Zhao, Yinlong Xu and Liping Xiang

School of Computer Science and Technology, University of Science and Technology of

China, Hefei, Anhui, China
zhaoht@mail.ustc.edu.cn, ylxu@ustc.edu.cn, xlping@mail.ustc.edu.cn

ABSTRACT

Distributed storage systems are becoming more and more popular with the rapidly increasing demand for

large-scale data storage. To increase the capacity and I/O performance of a distributed storage system,

scaling it up is a common method. Regenerating Codes are a class of distributed storage codes that offer

good reliability through encoding and provide good bandwidth cost on failed nodes repairing. This paper

studies the scaling problem of E-MSR codes based distributed storage systems with fixed number of

redundancy codes. We generate the encoding matrices of an storage system carefully from the

encoding matrices of an storage system to minimize the changes of encoded blocks when

scaling. Therefore the system can be scaled up with relatively low bandwidth cost and computation cost.

KEYWORDS

Distributed storage, network coding

1. INTRODUCTION

Recent years, distributed storage systems are becoming more and more popular with the rapidly

increasing demand for large-scale data storage. The storage nodes in these systems are often

individually unreliable. So redundancy is introduced into these systems to improve reliability

with the cost of increased storage. The simplest redundancy scheme is replication, where data is

straightforwardly replicated in multiple storage nodes. Erasure coding schemes generate

redundancy with encoding and such schemes can achieve the same reliability with replication

using much less redundant storage cost. However, the bandwidth cost of repairing failed nodes

is increased [9]. Regenerating codes are a kind of encoding schemes which significantly

decrease the bandwidth cost of failed nodes repairing. Dimakis et al. [3] derived the lower

bounds on the repair communication of regenerating codes. Optimal storage efficiency codes

are called minimum-storage regenerating (MSR) codes [2] [4] while optimal bandwidth

efficiency codes are called minimum-bandwidth regenerating (MBR) codes [7] [8] [5].

To meet the rapidly increasing demand of capacity and I/O performance, scaling up distributed

storage systems is a common operation. Replication schemes based systems are relatively easy

to scale up because they are quite simple. But the scaling up of regenerating codes is much more

complicate. There are some previous researches on RAID scaling problem [11] [10] [12]. But as

far as we know, there are few previous works focused on scaling of regenerating codes.

This paper works on the scaling problems of systematic E-MSR codes based distributed storage

systems which have fixed number of redundancy nodes. An MSR based distributed

storage system is a system having nodes and can tolerant any nodes failure. Such a

system is able to provide the same reliability with replication schemes using much less

redundancy storage, while the bandwidth cost of failed nodes repairing is much less than erasure

International Journal of Distributed and Parallel Systems (IJDPS) Vol.3, No.5, September 2012

2

codes based systems. E-MSR is short for Exact-MSR, which means that in the repairing process

of a failed node, the replacement node is constrained to store exactly the same data as the

corresponding failed node. A “systematic” code means that the system stores systematic parts,

i.e., uncoded original file data blocks. Keeping a code in systematic form is important in

practice since most of the time a user would simply want to access a part of the stored

information. If the code is systematic, accessing part of a file is very simple. On the contrary if

every node in the system stores encoded blocks, to decode one piece of the information would

require to decoding the whole file, which brings high bandwidth cost and computation cost [1].

This paper focuses on the expansion from an E-MSR code to an E-MSR

code, ensuring load balancing. Meanwhile by carefully designing the encoding matrices of the

 E-MSR code from the encoding matrices of the E-MSR code, only part of

original file data is needed to update the encoded redundancy in the scaling process, thereby the

bandwidth cost and computation cost are decreased.

2. PROBLEM FORMULATION

This paper focus on the problem of scaling an E-MSR code based distributed storage

system up to an E-MSR code based distributed storage system. An E-MSR

code based distributed storage system is a system achieving the minimum storage point in the

storage-repair tradeoff curve in [3] and satisfying the following properties: (1) Reconstruction

property: An user connecting to any of the nodes is able to reconstruct the original file. (2)

Exact repair property: After repairing process of a failed node, the data stored in the

replacement node is exactly the same with the failed one. We want to ensure load balancing

after scaling up and decrease the bandwidth cost and computation cost in the scaling process.

2.1. E-MSR codes

Table 1. Matrices.

 stores
 sends to when failed

 matrix used to rebuild storage node

 matrix of original file data

Let denote the storage nodes of the E-MSR code based distributed storage

system. The original file data of size is divided into several blocks, constructing data matrix

 which has rows. Each node stores , data of size , where is the

 encoding matrix. As a systematic code, . E-

MSR codes satisfy reconstruction property. Choosing any nodes , an user

connecting to these nodes gets encoded blocks . If and only if the square

matrix of order is full ranked, the original file data can be

decoded.

When a node failed, the repair process is evoked with a new node to replace the failed

node. connects to all remaining nodes and downloads size of data from each of

these nodes. For node , it encodes the blocks it stores using a vector

and transfers to . Then encodes the blocks it received using an

 matrix and stores the encoded blocks. The numbers of rows and columns

of the encoding matrices here are designed to ensure the system to achieve the

minimum storage point in the storage-repair tradeoff curve. E-MSR codes satisfy exact repair

International Journal of Distributed and Parallel Systems (IJDPS) Vol.3, No.5, September 2012

3

property. After the repair process, the blocks stores are exactly the same with the blocks

stored at the failed node . In other words,

Fig. 1 is an example of a E-MSR code over GF(3), with encoding matrices

Here the encoding matrices of any 3 nodes form a nonsingular square matrix of order 6. For

example, the encoding matrices of nodes form an encoding matrix as

It is easy to see that this matrix is full ranked. So a user can decode the original file data by

connecting to these 3 nodes.

Figure 1. An example of a E-MSR code over GF(3)

International Journal of Distributed and Parallel Systems (IJDPS) Vol.3, No.5, September 2012

4

When a node failed (in this example the failed node is), the repair process is evoked with a

new node to replace the failed node. Each sends encoded blocks to . For

example sends to where , and sends to where

. Then encodes the encoded blocks received using an encoding matrix

. After the repair process, stores exactly the same data with the failed

node .

2.2. The Scaling Problem

Suppose we have an E-MSR based distributed storage system and we want to scale it up

to a system of nodes. This system is E-MSR based, i.e., it also achieves the

minimum storage point, meanwhile satisfies reconstruction property and exact repair property.

For the purpose of better I/O performance, the system after scaling needs to be

load balancing. And we hope to minimize the bandwidth cost in the scaling up process.

Use to denote the nodes of the E-MSR code based

distributed storage system, where are new nodes and is of

the system. are the encoding matrices of the

 system, just like of the one. is the original file data matrix

of the system, which stores the same elements as , but in a different form.

has columns. Since the system is load balanced, so each node

stores size of data, while each node of the system stores size of data. In order to

the convenience of data transfer in the scaling process, let has columns denoted as

, so has columns denoted as . We call

 blocks to be a strip. So stores strips while stores strips.

In the scaling process, for the systematic part, size of data are transferred from

 to . For the encoded data blocks stored in the redundancy

nodes, a simple way is that the encoding matrices of the system and the

system are chosen independently so that these blocks need to be totally rebuilt, which brings

high bandwidth cost and high computation cost.

Fig. 2 is an example of scaling a E-MSR code up to a E-MSR code, where the

encoding matrices of these two E-MSR codes are chosen independently. The left is the E-

MSR code. Nodes store the systematic blocks where node are redundancy nodes

storing encoded blocks. The right is the E-MSR code after expansion. Each of

sends two blocks to to keep load balancing. While nodes need to rebuild the

encoded blocks they store so the whole 12 blocks of original file data are needed. We can see

the total bandwidth cost is 28 blocks. And the computation cost is also high because the whole

file needs to be encoded when rebuilding . One way to reduce bandwidth cost is that

only downloads the 12 blocks of original file data and besides generating the encoded

blocks itself needs, also generates the 4 encoded blocks which needs. So may

download only 4 blocks from instead of 12 blocks. The total bandwidth cost in this way is

20 blocks.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.3, No.5, September 2012

5

Figure 2. An example of scaling a E-MSR code based system up to a system where

the encoding matrices of the two systems are chosen independently.

It can be seen that the bandwidth cost of rebuilding encoded blocks is very high. And since the

encoded blocks are encoded from the whole original file data, so the computation cost is also

high. In order to reduce the bandwidth cost and computation cost, we need to carefully design

the encoding matrices of the E-MSR code and the E-MSR code such that in

the scaling process, the redundancy nodes need only parts of the original file data to update their

encoded blocks instead of needing the whole original file data to rebuild the encoded blocks.

3. DESIGN OF ENCODING MATRICES

Suppose it is known that it will be later scaled up to an E-MSR code when

constructing the E-MSR code. We construct the encoding matrices of the E-MSR

code using the encoding matrices of the E-MSR code to make them having some

same features. In the scaling process, the encoded data blocks of the E-MSR code can still

be used to generate the encoded data blocks of the E-MSR code. Instead of

downloading the whole original file data, the redundancy nodes downloading only parts of the

systematic data and encoding these data with the encoded data blocks they originally stored, are

able to accomplish the scaling process. So the bandwidth cost and computation cost are reduced.

Some previous works focused on the constructions of E-MSR codes. For example Rashmi et al.

[6] presented explicit constructions of E-MSR codes for all . We first get an

 E-MSR code just like in the previous works. Then we construct an E-MSR

International Journal of Distributed and Parallel Systems (IJDPS) Vol.3, No.5, September 2012

6

code using this E-MSR code. Such constructed E-MSR code can be scaled

up to sometime later with a relatively low bandwidth cost and computation cost.

An E-MSR code satisfies reconstruction property and exact repair property.

Choosing any nodes the matrix is full ranked.

And

for any . It is able to construct an E-MSR code from any

E-MSR code. The encoding matrices of the E-MSR code

can be constructed like this. Let

 (1)

 (2)

 (3)

Such constructed E-MSR code also satisfy reconstruction property and exact repair

property.

Proof of reconstruction property: Choosing any nodes from , we get

an encoding matrix . If is not full ranked, for a nodes choice

 in the E-MSR code, the encoding matrix is

. Since it's a systematic code, so

. can be converted to by elementary

row transformation. This matrix is not full ranked because is not full ranked, and this is

contradicted to the reconstruction property of the E-MSR code.

Proof of exact repair property: For the E-MSR code, we have

International Journal of Distributed and Parallel Systems (IJDPS) Vol.3, No.5, September 2012

7

So for the E-MSR code we constructed,

4. THE SCALING PROCESS

The scaling process contains two parts: (1) systematic data transfer for the sake of load

balancing; (2) updating of encoded blocks stored in redundancy nodes in order to make the

system satisfy reconstruction property and exact repair property.

In part one, the systematic data stored in nodes are distributed evenly into

nodes . Node , i.e., node transfers to node

. Marking as , so will be in the form of ,

where is a matrix transformed from matrix .

Before data transfer each node stores strips of data, while after data

transfer each node stores strips. The total data transferred of this part is

 strips, i.e., .

International Journal of Distributed and Parallel Systems (IJDPS) Vol.3, No.5, September 2012

8

In part two, each node needs to update the encoded blocks it stores. After the

scaling process, for the E-MSR code, node stores

encoded blocks . While before the scaling process, node ,

i.e., node stores . The relations between encoding matrices and

 are like which shown in equations (1), (2), and (3) above. Node

stores , including which are parts

of . So needs , i.e., , or to

accomplish the update.

Node downloads strips of data from or from

the new nodes to get . Notice that itself stores encoded strips

, so actually needs to download only strips to

decode . So the total data transferred in this part is . Total data transferred in

both parts is .

When , the data transferred in part two can be reduced like this. First a node

 downloads the data it needs and get just like before. Then it can generate the blocks

 needs, i.e., . Each can download strips

from to update their encoded blocks instead of strips. The data transferred in

this method is . Together with the first part is .

5. EXAMPLE

Now let's see an example of scaling a E-MSR code up to a E-MSR code. Here the

encoding matrices of the E-MSR code are just like shown in Fig. 1. Mark the nodes and

encoding matrices of the E-MSR as . The encoding matrices of the

 E-MSR code, i.e., are constructed like the following.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.3, No.5, September 2012

9

Figure 3. A E-MSR code constructed from a E-MSR code.

The original file data is divided into 12 blocks , constituting the data matrix

As is shown in Fig. 3, each node stores 3 strips of data . A user

connecting to any 2 of these 4 nodes can decode the 12 blocks of original file data. When a node

failed (in the figure it is), a new node is used to replace the failed one. Each node

 generates one encoded block per strip using and transfers these blocks to .

Then encodes the blocks received using to get exactly the data stored.

Fig. 4 is the E-MSR code after scaling. Denote the 4 old nodes as

, and the new node as . downloads from and downloads

 from . So the data matrix of the E-MSR code is

International Journal of Distributed and Parallel Systems (IJDPS) Vol.3, No.5, September 2012

10

 needs to update the encoded blocks it stores. It downloads from

 and decode using the 2 encoded blocks

it originally stores. Then can update the encoded blocks it stores. is similar with .

The total data transferred in both parts is 8 blocks, i.e., , much less than the example in Fig.

2.

Figure 4. E-MSR code scaling up from the E-MSR code.

Another way of data transfer is after decoding , generates the 4 blocks which

needs, i.e., , and transfers these 4 blocks to

. When , this method is with lower bandwidth cost.

6. SCALING UP TO OTHER SCALES

In section 3, when designing the encoding matrices, we suppose it is known that the E-

MSR code will be later scaled up to an E-MSR code. Such condition may be hard

to achieve in a real system. In this section we show that the E-MSR code can be scaled up

to any E-MSR code where . So when constructing from

 E-MSR code, if it is not known exactly what scale will scaling up to in the future,

we can just use a big . Then when the E-MSR code needs scaling, any E-

MSR code that can be easily achieved.

When constructing E-MSR code from E-MSR code, the only constraint is

. So we can construct any E-MSR code from E-MSR

code where . Considering , , and , the problem

International Journal of Distributed and Parallel Systems (IJDPS) Vol.3, No.5, September 2012

11

is converted to a problem of constructing E-MSR code from E-MSR

code, as is discussed before. Since , we can construct an E-MSR code

from E-MSR code. Then we can construct an E-MSR code from this

 E-MSR code. Such constructed E-MSR code can be scaled up to the

 E-MSR code, just like scaling up to E-MSR code, which discussed

before.

Denote the encoding matrices of the E-MSR code as , and

encoding matrices of the E-MSR code constructed from as .

. Similarly we can see that and . That is to say, no

matter what is, the E-MSR code can be scaled up from the original E-

MSR code constructed from the E-MSR code. In other words, the E-MSR

code can be scaled up to for any that .

7. CONCLUSION

This paper studied the scaling up problem of an E-MSR code based distributed storage system

with fixed number of redundancy nodes. There are few previous works on scaling problem of

regenerating codes based distributed storage systems. Our works bring forward a scheme of

scaling an E-MSR code up to an E-MSR code or any E-MSR

code that . We generate the encoding matrices of an E-MSR code from the

encoding matrices of an E-MSR code. Through carefully designing of encoding

matrices, the changes of encoded blocks when scaling are minimized, so the distributed storage

system can be scaled up with relatively low bandwidth cost and computation cost.

REFERENCES

[1] Erasure coding for distributed storage wiki. URL:

csi.usc.edu/?dimakis/StorageWiki/doku.php?id=start.

[2] Daniel Cullina, Alexandros G. Dimakis, and Tracey Ho. Searching for minimum storage

regenerating codes. arXiv:0910.2245, October 2009. IEEE Intl Symp. on Information Theory

(ISIT), Seoul, Korea, June 2009.

[3] A.G. Dimakis, P.B. Godfrey, Yunnan Wu, M.J. Wainwright, and K. Ramchandran. Network

coding for distributed storage system- s. Information Theory, IEEE Transactions on, 56(9):4539

–4551, September 2010.

[4] Yuchong Hu, Yinlong Xu, Xiaozhao Wang, Cheng Zhan, and Pei Li. Cooperative recovery of

distributed storage systems from multiple losses with network coding. Selected Areas in

Communications, IEEE Journal on, 28(2):268 –276, February 2010.

[5] S. Pawar, N. Noorshams, S. El Rouayheb, and K. Ramchandran. DRESS codes for the storage

cloud: Simple randomized constructions. In Information Theory Proceedings (ISIT), 2011 IEEE

International Symposium on, pages 2338 –2342, August 2011.

[6] K. V. Rashmi, Nihar B. Shah, and P. Vijay Kumar. Optimal Exact- Regenerating codes for

distributed storage at the MSR and MBR points via a Product-Matrix construction.

arXiv:1005.4178, May 2010. IEEE Transactions on Information Theory, vol. 57, no. 8, pp. 5227

- 5239, August 2011.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.3, No.5, September 2012

12

[7] K.V. Rashmi, N.B. Shah, P.V. Kumar, and K. Ramchandran. Explicit construction of optimal

exact regenerating codes for distributed stor- age. In Communication, Control, and Computing,

2009. Allerton 2009. 47th Annual Allerton Conference on, pages 1243 –1249, October 2009.

[8] Kenneth W. Shum and Yuchong Hu. Exact Minimum-Repair- Bandwidth cooperative

regenerating codes for distributed storage systems. arXiv:1102.1609, February 2011. Presented

in IEEE Int. Symp. on Inform. Theory (ISIT) 2011.

[9] Yunnan Wu and A.G. Dimakis. Reducing repair traffic for erasure coding-based storage via

interference alignment. In Information Theory, 2009. ISIT 2009. IEEE International Symposium

on, pages 2276 –2280, July 2009.

[10] Guangyan Zhang, Jiwu Shu, Wei Xue, and Weimin Zheng. SLAS: an efficient approach to

scaling round-robin striped volumes. Trans. Storage, 3(1), 2007.

[11] Guangyan Zhang, Weiman Zheng, and Jiwu Shu. ALV: a new data redistribution approach to

RAID-5 scaling. Computers, IEEE Transactions on, 59(3):345 –357, March 2010.

[12] Weimin Zheng and Guangyan Zhang. FastScale: accelerate RAID scaling by minimizing data

migration. In Proceedings of the 9th USENIX conference on File and stroage technologies,

FAST’11, page 1111, Berkeley, CA, USA, 2011. USENIX Association.

