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ABSTRACT 

Distributed storage systems are becoming more and more popular with the rapidly increasing demand for 

large-scale data storage. To increase the capacity and I/O performance of a distributed storage system, 

scaling it up is a common method. Regenerating Codes are a class of distributed storage codes that offer 

good reliability through encoding and provide good bandwidth cost on failed nodes repairing. This paper 

studies the scaling problem of E-MSR codes based distributed storage systems with fixed number of 

redundancy codes. We generate the encoding matrices of an  storage system carefully from the 

encoding matrices of an  storage system to minimize the changes of encoded blocks when 

scaling. Therefore the system can be scaled up with relatively low bandwidth cost and computation cost. 
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1. INTRODUCTION 

Recent years, distributed storage systems are becoming more and more popular with the rapidly 

increasing demand for large-scale data storage. The storage nodes in these systems are often 

individually unreliable. So redundancy is introduced into these systems to improve reliability 

with the cost of increased storage. The simplest redundancy scheme is replication, where data is 

straightforwardly replicated in multiple storage nodes. Erasure coding schemes generate 

redundancy with encoding and such schemes can achieve the same reliability with replication 

using much less redundant storage cost. However, the bandwidth cost of repairing failed nodes 

is increased [9]. Regenerating codes are a kind of encoding schemes which significantly 

decrease the bandwidth cost of failed nodes repairing. Dimakis et al. [3] derived the lower 

bounds on the repair communication of regenerating codes. Optimal storage efficiency codes 

are called minimum-storage regenerating (MSR) codes [2] [4] while optimal bandwidth 

efficiency codes are called minimum-bandwidth regenerating (MBR) codes [7] [8] [5].  

To meet the rapidly increasing demand of capacity and I/O performance, scaling up distributed 

storage systems is a common operation. Replication schemes based systems are relatively easy 

to scale up because they are quite simple. But the scaling up of regenerating codes is much more 

complicate. There are some previous researches on RAID scaling problem [11] [10] [12]. But as 

far as we know, there are few previous works focused on scaling of regenerating codes. 

This paper works on the scaling problems of systematic E-MSR codes based distributed storage 

systems which have fixed number of redundancy nodes. An  MSR based distributed 

storage system is a system having  nodes and can tolerant any  nodes failure. Such a 

system is able to provide the same reliability with replication schemes using much less 

redundancy storage, while the bandwidth cost of failed nodes repairing is much less than erasure 
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codes based systems. E-MSR is short for Exact-MSR, which means that in the repairing process 

of a failed node, the replacement node is constrained to store exactly the same data as the 

corresponding failed node. A “systematic” code means that the system stores systematic parts, 

i.e., uncoded original file data blocks. Keeping a code in systematic form is important in 

practice since most of the time a user would simply want to access a part of the stored 

information. If the code is systematic, accessing part of a file is very simple. On the contrary if 

every node in the system stores encoded blocks, to decode one piece of the information would 

require to decoding the whole file, which brings high bandwidth cost and computation cost [1]. 

This paper focuses on the expansion from an  E-MSR code to an  E-MSR 

code, ensuring load balancing. Meanwhile by carefully designing the encoding matrices of the 

 E-MSR code from the encoding matrices of the  E-MSR code, only part of 

original file data is needed to update the encoded redundancy in the scaling process, thereby the 

bandwidth cost and computation cost are decreased. 

2. PROBLEM FORMULATION 

This paper focus on the problem of scaling an  E-MSR code based distributed storage 

system up to an  E-MSR code based distributed storage system. An  E-MSR 

code based distributed storage system is a system achieving the minimum storage point in the 

storage-repair tradeoff curve in [3] and satisfying the following properties: (1) Reconstruction 

property: An user connecting to any  of the  nodes is able to reconstruct the original file. (2) 

Exact repair property: After repairing process of a failed node, the data stored in the 

replacement node is exactly the same with the failed one. We want to ensure load balancing 

after scaling up and decrease the bandwidth cost and computation cost in the scaling process.  

2.1. E-MSR codes 

Table 1.  Matrices. 

   stores  
   sends  to  when  failed 

  matrix used to rebuild storage node  

  matrix of original file data 

 

Let  denote the  storage nodes of the  E-MSR code based distributed storage 

system. The original file data of size  is divided into several blocks, constructing data matrix 

 which has  rows. Each node  stores , data of size , where  is the 

 encoding matrix. As a systematic code, . E-

MSR codes satisfy reconstruction property. Choosing any  nodes , an user 

connecting to these  nodes gets encoded blocks . If and only if the square 

matrix  of order  is full ranked, the original file data  can be 

decoded. 

When a node  failed, the repair process is evoked with a new node  to replace the failed 

node.  connects to all  remaining nodes and downloads  size of data from each of 

these  nodes. For node , it encodes the blocks it stores using a  vector  

and transfers  to . Then  encodes the blocks it received using an 

 matrix  and stores the encoded blocks. The numbers of rows and columns 

of the encoding matrices  here are designed to ensure the system to achieve the 

minimum storage point in the storage-repair tradeoff curve. E-MSR codes satisfy exact repair 
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property. After the repair process, the blocks  stores are exactly the same with the blocks 

stored at the failed node . In other words,  

 

Fig. 1 is an example of a  E-MSR code over GF(3), with encoding matrices 

                                     

Here the encoding matrices of any 3 nodes form a nonsingular square matrix of order 6. For 

example, the encoding matrices of nodes  form an encoding matrix as 

                                               

It is easy to see that this matrix is full ranked. So a user can decode the original file data by 

connecting to these 3 nodes. 

 

Figure 1.  An example of a  E-MSR code over GF(3)  
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When a node failed (in this example the failed node is ), the repair process is evoked with a 

new node  to replace the failed node. Each  sends encoded blocks to . For 

example  sends  to  where , and  sends  to  where 

. Then  encodes the encoded blocks received using an encoding matrix 

. After the repair process,  stores exactly the same data with the failed 

node . 

2.2. The Scaling Problem 

Suppose we have an  E-MSR based distributed storage system and we want to scale it up 

to a system of  nodes. This system is  E-MSR based, i.e., it also achieves the 

minimum storage point, meanwhile satisfies reconstruction property and exact repair property. 

For the purpose of better I/O performance, the  system after scaling needs to be 

load balancing. And we hope to minimize the bandwidth cost in the scaling up process. 

Use  to denote the  nodes of the  E-MSR code based 

distributed storage system, where  are  new nodes and   is  of 

the  system.   are the encoding matrices of the 

 system, just like  of the  one.  is the original file data matrix 

of the  system, which stores the same elements as , but in a different form.  

has  columns. Since the  system is load balanced, so each node  

stores  size of data, while each node  of the  system stores  size of data. In order to 

the convenience of data transfer in the scaling process, let  has  columns denoted as 

, so  has  columns denoted as . We call 

 blocks  to be a strip. So  stores  strips while  stores  strips. 

In the scaling process, for the systematic part,  size of data are transferred from 

 to . For the encoded data blocks stored in the  redundancy 

nodes, a simple way is that the encoding matrices of the  system and the  

system are chosen independently so that these blocks need to be totally rebuilt, which brings 

high bandwidth cost and high computation cost. 

Fig. 2 is an example of scaling a  E-MSR code up to a  E-MSR code, where the 

encoding matrices of these two E-MSR codes are chosen independently. The left is the  E-

MSR code. Nodes  store the systematic blocks where node  are redundancy nodes 

storing encoded blocks. The right is the  E-MSR code after expansion. Each of  

sends two blocks to  to keep load balancing. While nodes  need to rebuild the 

encoded blocks they store so the whole 12 blocks of original file data are needed. We can see 

the total bandwidth cost is 28 blocks. And the computation cost is also high because the whole 

file needs to be encoded when rebuilding . One way to reduce bandwidth cost is that 

only  downloads the 12 blocks of original file data and besides generating the encoded 

blocks itself needs,  also generates the 4 encoded blocks which  needs. So  may 

download only 4 blocks from  instead of 12 blocks. The total bandwidth cost in this way is 

20 blocks. 
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Figure 2.  An example of scaling a  E-MSR code based system up to a  system where 

the encoding matrices of the two systems are chosen independently.  

It can be seen that the bandwidth cost of rebuilding encoded blocks is very high. And since the 

encoded blocks are encoded from the whole original file data, so the computation cost is also 

high. In order to reduce the bandwidth cost and computation cost, we need to carefully design 

the encoding matrices of the  E-MSR code and the  E-MSR code such that in 

the scaling process, the redundancy nodes need only parts of the original file data to update their 

encoded blocks instead of needing the whole original file data to rebuild the encoded blocks.   

3. DESIGN OF ENCODING MATRICES 

Suppose it is known that it will be later scaled up to an  E-MSR code when 

constructing the  E-MSR code. We construct the encoding matrices of the  E-MSR 

code using the encoding matrices of the  E-MSR code to make them having some 

same features. In the scaling process, the encoded data blocks of the  E-MSR code can still 

be used to generate the encoded data blocks of the  E-MSR code. Instead of 

downloading the whole original file data, the redundancy nodes downloading only parts of the 

systematic data and encoding these data with the encoded data blocks they originally stored, are 

able to accomplish the scaling process. So the bandwidth cost and computation cost are reduced. 

Some previous works focused on the constructions of E-MSR codes. For example Rashmi et al. 

[6] presented explicit constructions of E-MSR codes for all . We first get an 

 E-MSR code just like in the previous works. Then we construct an  E-MSR 
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code using this  E-MSR code. Such constructed  E-MSR code can be scaled 

up to  sometime later with a relatively low bandwidth cost and computation cost. 

An  E-MSR code satisfies reconstruction property and exact repair property. 

Choosing any  nodes  the matrix  is full ranked. 

And  

                                       

for any . It is able to construct an  E-MSR code from any  

E-MSR code. The encoding matrices   of the  E-MSR code 

can be constructed like this. Let  

                                                                (1) 

                                                                                                (2) 

                                                                       (3) 

Such constructed  E-MSR code also satisfy reconstruction property and exact repair 

property. 

Proof of reconstruction property: Choosing any  nodes  from , we get 

an encoding matrix . If  is not full ranked, for a  nodes choice 

 in the  E-MSR code, the encoding matrix is  

. Since it's a systematic code, so 

.  can be converted to  by elementary 

row transformation. This matrix is not full ranked because  is not full ranked, and this is 

contradicted to the reconstruction property of the  E-MSR code. 

Proof of exact repair property: For the  E-MSR code, we have 
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So for the  E-MSR code we constructed,  

 

  

  

4. THE SCALING PROCESS 

The scaling process contains two parts: (1) systematic data transfer for the sake of load 

balancing; (2) updating of encoded blocks stored in redundancy nodes in order to make the 

system satisfy reconstruction property and exact repair property. 

In part one, the systematic data stored in  nodes  are distributed evenly into  

nodes . Node , i.e., node   transfers  to node  

. Marking  as , so  will be in the form of , 

where  is a  matrix transformed from  matrix . 

Before data transfer each node   stores  strips of data, while after data 

transfer each node   stores  strips. The total data transferred of this part is 

 strips, i.e., . 
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In part two, each node  needs to update the encoded blocks it stores. After the 

scaling process, for the  E-MSR code, node  stores 

encoded blocks . While before the scaling process, node , 

i.e., node  stores . The relations between encoding matrices  and 

 are like which shown in equations (1), (2), and (3) above. Node  

stores , including  which are parts 

of . So  needs , i.e., , or  to 

accomplish the update. 

Node  downloads  strips of data  from  or from 

the  new nodes  to get . Notice that  itself stores  encoded strips 

, so actually  needs to download only  strips to 

decode . So the total data transferred in this part is . Total data transferred in 

both parts is . 

When , the data transferred in part two can be reduced like this. First a node 

 downloads the data it needs and get  just like before. Then it can generate the blocks 

 needs, i.e., . Each  can download  strips  

from  to update their encoded blocks instead of  strips. The data transferred in 

this method is . Together with the first part is .  

5. EXAMPLE 

Now let's see an example of scaling a  E-MSR code up to a  E-MSR code. Here the 

encoding matrices of the  E-MSR code are just like shown in Fig. 1. Mark the nodes and 

encoding matrices of the  E-MSR as . The encoding matrices of the 

 E-MSR code, i.e.,  are constructed like the following. 
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Figure 3.  A  E-MSR code constructed from a  E-MSR code.  

The original file data is divided into 12 blocks , constituting the data matrix  

                                

As is shown in Fig. 3, each node  stores 3 strips of data . A user 

connecting to any 2 of these 4 nodes can decode the 12 blocks of original file data. When a node 

failed (in the figure it is ), a new node  is used to replace the failed one. Each node 

 generates one encoded block per strip using  and transfers these blocks to . 

Then  encodes the blocks received using  to get exactly the data  stored. 

Fig. 4 is the  E-MSR code after scaling. Denote the 4 old nodes  as 

, and the new node as .  downloads  from  and downloads 

 from . So the data matrix of the  E-MSR code is 
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 needs  to update the encoded blocks it stores. It downloads  from 

 and decode  using the 2 encoded blocks   

it originally stores. Then  can update the encoded blocks it stores.  is similar with . 

The total data transferred in both parts is 8 blocks, i.e., , much less than the example in Fig. 

2. 

 

Figure 4.   E-MSR code scaling up from the  E-MSR code.  

Another way of data transfer is after decoding ,  generates the 4 blocks which  

needs, i.e.,  , and transfers these 4 blocks to 

. When , this method is with lower bandwidth cost. 

6. SCALING UP TO OTHER SCALES 

In section 3, when designing the encoding matrices, we suppose it is known that the  E-

MSR code will be later scaled up to an  E-MSR code. Such condition may be hard 

to achieve in a real system. In this section we show that the  E-MSR code can be scaled up 

to any  E-MSR code where . So when constructing  from 

 E-MSR code, if it is not known exactly what scale will scaling up to in the future, 

we can just use a big . Then when the  E-MSR code needs scaling, any  E-

MSR code that  can be easily achieved. 

When constructing  E-MSR code from  E-MSR code, the only constraint is 

. So we can construct any  E-MSR code from  E-MSR 

code where . Considering ,  , and , the problem 
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is converted to a problem of constructing  E-MSR code from  E-MSR 

code, as is discussed before. Since , we can construct an  E-MSR code 

from  E-MSR code. Then we can construct an  E-MSR code from this 

 E-MSR code. Such constructed  E-MSR code can be scaled up to the 

 E-MSR code, just like scaling up to  E-MSR code, which discussed 

before. 

Denote the encoding matrices of the  E-MSR code as , and 

encoding matrices of the  E-MSR code constructed from  as . 

. Similarly we can see that  and . That is to say, no 

matter what  is, the  E-MSR code can be scaled up from the original  E-

MSR code constructed from the  E-MSR code. In other words, the  E-MSR 

code can be scaled up to  for any  that . 

7. CONCLUSION 

This paper studied the scaling up problem of an E-MSR code based distributed storage system 

with fixed number of redundancy nodes. There are few previous works on scaling problem of 

regenerating codes based distributed storage systems. Our works bring forward a scheme of 

scaling an  E-MSR code up to an  E-MSR code or any  E-MSR 

code that . We generate the encoding matrices of an  E-MSR code from the 

encoding matrices of an  E-MSR code. Through carefully designing of encoding 

matrices, the changes of encoded blocks when scaling are minimized, so the distributed storage 

system can be scaled up with relatively low bandwidth cost and computation cost. 
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