
International Journal of Distributed and Parallel Systems (IJDPS) Vol.3, No.6, November 2012

DOI : 10.5121/ijdps.2012.3601 1

A METHOD OF DETECTING SQL INJECTION
ATTACK TO SECURE WEB APPLICATIONS

Sruthy Manmadhan
1
 and Manesh T

2

1
Department of Computer Science & Engineering, Adi Shankara Institute of

Engineering & Technology, Kalady
sruthym.88@gmail.com

2
Department of Information Technology, Adi Shankara Institute of Engineering &

Technology, Kalady
maneshpadmayil@gmail.com

ABSTRACT

Web applications are becoming an important part of our daily life. So attacks against them also increases
rapidly. Of these attacks, a major role is held by SQL injection attacks (SQLIA). This paper proposes a
new method for preventing SQL injection attacks in JSP web applications. The basic idea is to check
before execution, the intended structure of the SQL query. For this we use semantic comparison. Our
focus is on stored procedure attack in which query will be formed within the database itself and so
difficult to extract that query structure for validation. Also this attack is less considered in the literature.

KEYWORDS

Arraylist, Attack, Parse Tree, Semantics, SQL injection, Web application.

1. INTRODUCTION

Nowadays, for most of the activities in our life, we depend on internet or web applications.

There exists a natural trend that as the usage of a particular service increases; the attacker’s

interest on it also increases. The same thing happened in case of web applications. Of many

kinds of attacks against web applications, SQL Injection Attack (SQLIA) is one of the top most

threats against them[12]. So it is highly requires in the current scenario to have a good solution

to prevent such attack to secure the information. This is the motivation behind this work.

SQL Injection targets the web applications that use a back end database. Working of a typical

web application is as follows: User is giving request through web browsers, which may be some

parameters like username, password, account number etc. These are then passed to the web

application program where some dynamic SQL queries are generated to retrieve required data

from the back end database.

SQL Injection attack is launched through specially crafted user inputs. That is attackers are

allowed to give requests as normal users. Then they intentionally create some bad input patterns

which are passed to the web application code. If the application is vulnerable to SQLIA, then

this specially created input will change the intended structure of the SQL query that is being

executed on the back end database and will affect the security of information stored in the

database. The tendency to change the query structure is the most characteristics feature of

SQLIA which is being used for its prevention also.

For better understanding let us have look at the following example. We all know that most of

the applications that we are accessing through internet will have a login page to authenticate the

user who is using the application. Figure 1 show such a login page. Here when a user is

submitting his username and password, an SQL query is generated in the back end to check

whether the given credentials are valid or not. Suppose the given username is 1 and password is

111, the query will be:

International Journal of Distributed and Parallel Systems (IJDPS) Vol.3, No.6, November 2012

2

Select * from login where user=’1’ and pass=’111’

This is the normal case and if any rows are selected by the query, the user is allowed to log in.

Now, figure 2 shows an attack scenario. That is an attacker wants to log in without correct

username and password. Instead of entering valid username if he uses injection string like

“hacker’ OR ‘1’=’1’—“ as username and “something” as password, the query formed will be

like this:

Select * from login where user=’hacker’ or ‘1’=’1’ –‘ and pass=’something’

When this query is executed in the database, it will always return a true and the authentication

will succeed.

 Figure 1. Example login – Normal case Figure 2 : Example login – attack case

2. LITERATURE SURVEY

The following formatting rules must be followed strictly. This (.doc) document may be used as

a template for papers prepared using Microsoft Word. Papers not conforming to these

requirements may not be published in the conference proceedings.

2.1. SQLIA Types

The SQLIA can be broadly classified into two: first order and second order attacks. First of

these will have direct effect on the system whereas other doesn’t have any direct harm.

Different types of first order attacks are listed below[1]:

Tautologies: The main intention of this attack is to bypass authentication. For this they attack

the field that is used in a query’s WHERE conditional. Transforming the conditional into a

tautology causes all of the rows in the database table to be returned so that he can login

successfully without having a valid username and password. The attack shown in figure 2 is an

example of tautology attack.

Illegal/Incorrect Queries: This is the first step of SQL injection attack. Here the intention of the

attacker is to gather information about the type and structure of the back end database that is

being used in the web application. This attack exploits very descriptive default error pages

returned by the application servers.

Union Queries: This type of attack is mainly used to bypass authentication and to extract data

by changing the data set returned for a given query. Format is ‘UNION SELECT <part of

injected query>’, where the query after the UNION keyword is fully under control of the

attacker so that he/she can retrieve data from any table which is not intended by the actual

query.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.3, No.6, November 2012

3

Piggybacked Queries: This attack mainly aims at extracting data. Like the concept of

piggybacked acknowledgement in computer networks where, acknowledgement of a packet is

sent along with the next packet, here, the attacker tries to inject additional queries with original

one.

Stored procedure Attack: This type of attack tries to execute stored procedures present in the

database with malicious inputs. This is explained in next section.

Inference: Main aim of this kind of attack is to identify injectable parameters. The information

can be inferred from the behavior of the page by asking the server true/false questions. If the

injected statement evaluates to true, the site continues to function normally. If the statement

evaluates to false, although there is no descriptive error message, the page differs significantly

from the normally functioning page.

2.2. Related Works

Research on SQL injection attacks can be broadly classified into two basic categories:

vulnerability identification approaches and attack prevention approaches. The former category

consists of techniques that identify vulnerable locations in a Web application that may lead to

SQL injection attacks. In order to avoid SQL injection attacks, a programmer often subjects all

inputs to input validation and filtering routines that detects attempts to inject SQL commands.

The techniques presented in [3, 4, 13] represent the prominent static analysis techniques for

vulnerability identification, where code is analyzed to ensure that every piece of input is subject

to an input validation check before being incorporated into a query (blocks of code that validate

input are manually annotated by the user). While these static analysis approaches scale well and

detect vulnerabilities, their use in addressing the SQL injection problem is limited to merely

identifying potentially unvalidated inputs. The tools do not provide any way to check the

correctness of the input validation routines, and programs using incomplete input validation

routines may indeed pass these checks and cause SQL injection attacks.

Another approach to solve the problem is provided by the class of attack prevention techniques

that retrofit programs to shield them against SQL injection attacks [5, 6, 7, 8, 9, 10, 11]. These

techniques often require little manual annotation, and instead of detecting vulnerabilities in

programs, they offer preventive mechanisms that solve the problem of defending the Web

application against SQL injection attacks. Relying on input validation routines as the sole

mechanism for SQL injection defense is problematic. Although they can serve as a first level of

defense, they cannot defend against sophisticated attack techniques (e.g., those that use alternate

encodings and database commands to dynamically construct strings) that inject malicious inputs

into SQL queries.

A more fundamental technique to solve the problem of preventing SQL injection comes from

the commercial database world in the form of PREPARE statements. These statements,

originally created for the purpose of making SQL queries more efficient, have an important

security benefit. They allow a programmer to declare (and finalize) the structure of every SQL

query in the application. Once issued, these statements do not allow malformed inputs to

influence the SQL query structure, thereby avoiding SQL injection vulnerabilities altogether.

The following statement.

 SELECT * FROM phonebook WHERE username = ? AND password = ?

is an example of a PREPARE statement. The question marks in the statement are used as

“place-holders” for user inputs during query parsing and, therefore, ensure that these possibly

malicious inputs are prevented from influencing the structure of the SQL statement. Thus,

PREPARE statements allow a programmer to easily isolate and confine the “data” portions of

the SQL query from its “code.” Thus, PREPARE statements are in fact a robust and effective

mechanism to defend against SQL injection attacks. However, retrofitting an application to

make use of PREPARE statements requires manual effort in specifying the intended query at

International Journal of Distributed and Parallel Systems (IJDPS) Vol.3, No.6, November 2012

4

every query point, and the effort required is proportional to the complexity of the Web

application.

Table 1. Comparison of related works.

Technique Tautology Illegal Piggy

Back

Union Stored

Proced-

ure

Inference Alterna

te

encodin

g

SQL-DOM * * * * X * *

SQLrand * X * * X * X

AMNESIA * * * * X * *

Tainting * * * * * * *

SQLCheck * * * * X * *

SQLGuard * * * * X * *

CANDID * p p p X p p

*-Prevention

p-Partial prevention

X-Prevention not possible

From this comparison, it is clear that stored procedure attacks are less considered in the

literature. This paper focuses on this particular kind of attacks along with general prevention.

3. PROPOSED METHOD

This paper offers a technique, dynamic query structure validation, that automatically (and

dynamically) mines programmer-intended query structures at each SQL query location, thus

providing a robust solution to the retrofitting problem.

The idea is that the process of generation of queries in a dynamic web application can be

represented as a function of user‘s inputs[2]. In this context, SQL injection is any situation in

which the user‘s input is inducing an unexpected change in the output generated by the function.

Two parameters can be defined

Original_Query = Fun(input_i) i = 1 to n

 input_i = input from user

 Fun() = Function represented by web

 application

Benign_Query =Fun(input_benign_i) I = 1 to n

 input_benign _i = “qqq” or any evidently

 non-attacking input

The idea requires that the application will not allow the user to enter any part of SQL query

directly. Two statements are said to be semantically equivalent, if they perform similar

activities, once they are executed on the database server. So if it can be determined that both

Original_Query and Benign_Query are semantically equivalent, then there is no possibility of

SQL injection. This paper uses this semantic comparison to detect SQL injection. The semantic

comparison is done by parsing each of the statements and comparing the syntax tree structure. If

the syntax trees of both the queries are equivalent, then the queries are inducing equivalent

semantic actions on the database server, since the semantic actions are determined by the

structure of the Original_Query.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.3, No.6, November 2012

5

Steps include:

1. Generate a Benign_Query from the Original_Query generated by the application. This

is done by replacing user inputs to the query with benign inputs.

2. Check the syntax of the Benign_Query to ensure its validity while doing the

replacement.

3. Get the count of stacked queries in both original SQL query and generated

Benign_Query.

4. Compare the count of stacked queries. If both counts are different, then we can directly

report SQL injection attack and prevent that query from execution without going for

semantic checking.

5. Now construct a syntax tree of both Original_Query and Benign_Query and compare

them. Here, syntax trees are created using java ArrayList structure.

6. Compare the syntax trees. If they are equal, the query is valid and allow its execution.

Otherwise, report injection and block the query.

These steps can be explained using an example: Consider a web application with two text boxes

and a submit button. Let the text boxes be uid, and pwd. Consider the input from the user as

“hacker‘ OR 1 = 1 –“, and “something”. Here the Original_Query generated from the web

application is

Original_Query = SELECT * FROM User WHERE UserName=‘hacker‘ OR 1 = 1 --‘ AND
Password=‘Something‘

Here first the user inputs in the order “hacker‘ OR 1 = 1 –“ and “something” will be replaced to

produce the statement as shown below.

SQL_Statement_Safe = SELECT * FROM User WHERE UserName=‘qqq‘ AND
Password=‘qqq‘

Then, the syntax trees are created and compared. The syntax tree for the Original_Query using

ArrayList will look like:

 [select, [VAR, *],

 from,

 [VAR, login],

 where,

 [VAR, uname=qqq, AND, pwd=qqq]]

Now, the tree for Benign_Query generated will be look like:

 [select, [VAR, *],

 from,

 [VAR, login],

 where,

 [VAR, uname=admin', OR, '1'='1'--, AND, pwd=somethng]]

While comparison we can identify that the tree structures are different and so it is an SQL

Injection attack. So we prevent its actual execution.

3.1. Extension To Prevent Stored Procedure Attack

Stored procedures are an important part of relational databases. They add an extra layer of

abstraction into the design of a software system. This extra layer hides some design secrets from

International Journal of Distributed and Parallel Systems (IJDPS) Vol.3, No.6, November 2012

6

the potentially malicious users, such as definitions of tables. By using stored procedures, one

could make sure that all the data is always contained in the database and is never exposed. In

these databases, the developer is allowed to build dynamic SQL queries ie. SQL statements are

built at runtime according to the different user inputs. For example, in SQL Server,

EXEC(varchar(n) @SQL) could execute arbitrary SQL statements. This feature offers

flexibility to construct SQL statements according to different requirements, but faces a potential

threat from SQL Injection Attacks.

Consider an example MySQL Stored procedure for Login.

DELIMITER $$

USE `sqlstor`$$

DROP PROCEDURE IF EXISTS `LoginCheckNew1`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `LoginCheckNew1`(IN uname VARCHAR(20),IN passwrd
VARCHAR(20))

BEGIN

SET @aaa=CONCAT('select * from login where id=',uname,' ',' and pass=',passwrd);

 PREPARE stmt FROM @aaa;

 EXECUTE stmt;

 DEALLOCATE PREPARE stmt;

END$$

DELIMITER ;

Here, the procedure name is ‘LoginCheckNew1’ with two input arguments, uname and

password. According to the inputs given by users, the query will be formed as a string and

executed through ‘EXECUTE’ statement.

Now, the way of calling this procedure from the web page is as follows:

1. String uname= request.getParameter("username");

2. String pwd = request.getParameter("password");

3. CallableStatement calstat = con.prepareCall("{call LoginCheckNew1(?,?)}");

4. calstat.setString(1, uname);

5. calstat.setString(2, pwd);

6. ResultSet rs = calstat.executeQuery();

First two statements are for accepting input arguments. The third statement will create an object

of ‘CallableStatement’ for calling stored procedure. The next two statements will set the values

of three arguments of the stored procedure. The last statement will execute and give the result.

The SQL injection attack is possible by injecting specially crafted user inputs to the stored

procedure. For prevention, the method proposed in this paper is dynamic semantic equivalence

checking. For doing that the query structure that is being formed within the procedure is

required. But, in case of stored procedures, getting query structure before actual execution is

difficult. To manage this, we are constructing one additional procedure which is similar to the

one being considered, but, with one additional output argument ‘qry’ for getting the dynamic

query structure which is required for semantic equivalence checking.

DELIMITER $$

USE `sqlstor`$$

DROP PROCEDURE IF EXISTS `LoginCheckNew1`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `LoginCheckNew1`(IN uname VARCHAR(20), IN passwrd
VARCHAR(20),OUT qry TEXT)

International Journal of Distributed and Parallel Systems (IJDPS) Vol.3, No.6, November 2012

7

BEGIN

SET @aaa=CONCAT('select * from login where id=',uname,' ',' and pass=',passwrd);

SET qry=@aaa;

END$$

DELIMITER ;

For prevention, first execute this procedure with original arguments. Then the ‘qry’ variable will

give the dynamic query structure that is being generated. For example, if the inputs given are

‘’1’ or ‘1’=’1’—‘ for uname and ‘’ for password, then the result will be:

qry = select * from login where id='1' or '1'='1'-- and pass=

Now pass the original inputs and this query string to the above explained attack detection

algorithm.

3.2. Test Results

For testing I used the test suite obtained from an independent research group, AMNESIA test

bed[14]. It consists of some medium to large web applications. From that I selected one

application, ‘BookStore’.

Also two sets of URLs(Total: 3191) is used for testing, one set with attack URLs(3063) and

other set with legitimate URLs(128).

Test results can be summarized in a table as follows:

Table 2. Test Results

 Bookstore-

Without

Prevention

Bookstore With

Prevention

Bookstore- With

Prevention

(Stored Proc)

Total URLs 3191 3191 3191

Valid URL

Requests

2901 2901 2901

SQLIA Detected 0 2777 2777

Undetected 2810 0 0

Syntax Errors 0 60 60

Others 91 64 64

Redirects 0 0 0

Error URL Requests 290 290 290

Omitted 0 0 0

Time 413s 327s 313

4. CONCLUSION

SQL injection vulnerability is one of the top vulnerabilities present in the web applications. In

this paper we proposed an efficient approach to prevent this vulnerability. Our solution is based

on the principle of dynamic query structure validation which is done through checking query’s

semantics. It detects SQL injection by generating a benign query from the final SQL query

generated by the application and the inputs from the users and then comparing the semantics of

International Journal of Distributed and Parallel Systems (IJDPS) Vol.3, No.6, November 2012

8

safe query and the SQL query. The main focus is on stored procedure attacks in which getting

query structure before actual execution is difficult.

REFERENCES

[1] Halfond, W., Viegas, J., & Orso, A. (2006). "Classification of SQLInjection Attacks and

Countermeasures." SSSE 2006.

[2] Sandeep Nair Narayanan, Alwyn Roshan Pais, & Radhesh Mohandas. Detection and Prevention of

SQL Injection Attacks using Semantic Equivalence. Springer 2011

[3] Preventing SQL Injections in Online Applications: Study, Recommendations and Java Solution

Prototype Based on the SQL DOM .Etienne Janot, Pavol Zavarsky Concordia University College of

Alberta, Department of Information Systems Security

[4] Xie, Y., and Aiken, A. Static detection of security vulnerabilities in scripting languages. In USENIX

Security Symposium (2006).

[5] Boyd, S. W., and Keromytis, A. D. Sqlrand: Preventing sql injection attacks. In ACNS (2004), pp.

292–302.

[6] Halfond, W., and Orso, A. AMNESIA: Analysis and Monitoring for NEutralizing SQL-Injection

Attacks. In ASE (2005), pp. 174–183.

[7] Nguyen-Tuong, A., Guarnieri, S., Greene, D., Shirley, J., and Evans, D. Automatically hardening

web applications using precise tainting. In SEC (2005), pp. 295–308.

[8] Buehrer, G., Weide, B. W., and Sivilotti, P. A. G. Using parse tree validation to prevent sql injection

attacks. In SEM (2005).

[9] Prithvi Bisht, P. Madhusudan, V. N. VENKATAKRISHNAN. CANDID: Dynamic Candidate

Evaluations for Automatic Prevention of SQL Injection Attacks. ACMTransactions on Information
and System Security,Vol. 13, No. 2, Article 14, Publication date: February 2010.

[10] Ke Wei, M. Muthuprasanna, Suraj Kothari. Preventing SQL Injection Attacks in Stored Procedures.

IEEE Software Engineering Conference, 2006. Australian.

[11] Pietraszek, T. Berghe, C. V. 2006. Defending against injection attacks through context sensitive

string evaluation. In Proceedings of the Conference on Recent Advances in Intrusion Detection.

Springer, Berlin, 124–145.

[12] OWASP, O.W.(2010). OWASP Top 10 for 2010. Category: OWASP Top Ten Project
http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project (Apr. 14, 2011).

[13] Mcclure, R. A. and Kr¨Uger, I.H. 2005. SQL DOM: Compile time checking of dynamic SQL

statements.In Proceedings of the 27th International Conference on Software Engineering
(ICSE’05).ACM, New York, 88–96.

[14] William G. J. Halfond, SQL Injection Application Testbed.

http://www- bcf.usc.edu/~halfond/testbed.html

Authors

Sruthy Manmadhan received B.Tech degree in Computer Science &

Engineering from Adi Shankara Institute of Engineering and Technology,

Mahatma Gandhi University with first rank in 2010.She is now doing her

M.Tech at ASIET.

Manesh T received M.Tech degree in Computer Science & Engineering from

NIT Suratkal. He is now working as Assistant Professor at Adi Shankara

Institute of Engineering and Technology, Kalady.

