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ABSTRACT 
 
 In order to increase availability in a distributed system some or all of the data items are replicated and 
stored at separate sites. This is an issue of key concern especially since there is such a proliferation of 
wireless technologies and mobile users. However, the concurrent processing of transactions at separate 
sites can generate inconsistencies in the stored information. We have built a distributed service that 
manages updates to widely deployed counter-like replicas. There are many heavy-weight distributed 
systems targeting large information critical applications. Our system is intentionally, relatively light-
weight and useful for the somewhat reduced information critical applications. The service is built on our 
distributed concurrency control scheme which combines optimism and pessimism in the processing of 
transactions. The service allows a transaction to be processed immediately (optimistically) at any 
individual replica as long as the transaction satisfies a cost bound. All transactions are also processed in a 
concurrent pessimistic manner to ensure mutual consistency. 
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1. INTRODUCTION 
 
Our system is called COPAR (Combining Optimism and Pessimism in Accessing Replicas). It 
runs on a collection of computing nodes connected by a communications network. The 
transactions access data that can be fully or partially replicated. Transactions can originate at any 
node and the transaction processing system attempts to treat all transactions in a uniform manner 
through cooperation among the nodes. We have had test runs on private LANs as well as over the 
Internet, and preliminary results have been published and presented (see [1], [2], [3] and [4]). 
This paper provides some background to the project in this section, explains the basic interactions 
between the optimistic and pessimistic processing in section 2, and discusses recent key upgrades 
in sections 3 to 6.  
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One of the main reasons for replicating the data in distributed systems is to increase availability. 
Replication has become increasingly more useful in the face of wireless technology and roaming 
users. However, this replication increases the need for effective control measures to preserve 
some level of mutual consistency.  Several replica control techniques have been proposed to deal 
with this issue and these techniques are described to different levels of detail in many articles and 
presentations (e.g. see [5], [6], [7], [8], [9], [10] and [11]).  

 
The techniques vary in a number of ways including the number of the replicas that must 
participate before a change can be made to a replica, the nature of the communication among the 
replicas, and if a replica can be changed before the others how is the change propagated. A key 
contributor to the choice of specific procedures is the nature of the application. For example some 
applications can tolerate mutually inconsistent replicas for longer periods than others. The twin 
objective is 
 
 process the transaction correctly as quickly as possible, and 
 reflect this at all the replicas so that no harm is done. 

 
One approach is to employ pessimistic strategies which take no action unless there are guarantees 
that consistent results and states will be generated. Such techniques sacrifice availability. Another 
approach is to employ optimistic techniques that take actions first and then clean up afterwards. 
Such techniques may sacrifice data and transaction integrity. Saito & Shapiro [12] and Yu & 
Vahdat  [13] deal specifically with the issue of optimistic replication. 

 
There is also the matter of failure. How do we achieve consistency and availability when the 
network partitions? That is when some nodes cannot communicate with other nodes. In many 
cases the key objective remains the same, i.e. to provide a quick response. Although that response 
may not be accurate it may be tolerable. Strong arguments have been made for the relaxation of 
consistency requirements in order to maintain good availability in the face of network 
partitioning. Indeed in what is referred to as Brewer’s CAP theorem, the argument was made that 
a system can provide just two from Consistency, Availability and Partition tolerance (see [14] and 
[15]). 

 
We will first demonstrate how our system works without partition tolerance to provide 
consistency and availability. Then we will discuss a partition tolerance implementation that 
maintains availability with delayed or weak consistency. Our system can be described as adhering 
to the Base Methodology (see [16]). That is our system conforms to the following: 

 
 Basically Available: Provides a fast response even if a replica fails. 
 Soft State Service: Optimistic processing does not generate permanent state. Pessimistic 

processing provides the permanent state. 
 Eventual Consistency: Optimistic processing responds to users. Pessimistic processing 

validates and makes corrections. 
 
The use of a cost bound in the processing of transactions is useful in a system where countable 
objects are managed. Lynch et al [17] proposed such a technique as a correctness condition in 
highly available replicated databases. Crichlow [18] incorporated the cost bound in a scheme that 
combined a simple pessimistic technique with a simple optimistic mechanism to process objects 
that are countable. We regard an object as countable if its data fields include only its type and 
how many of that object exists. For example an object may be of type blanket and there are one 
thousand blankets available. 

 
Every transaction submitted to the system enters concurrently a global pessimistic two-phase 
commit sequence and an optimistic individual replica sequence. The optimistic sequence is 
moderated by a cost bound, which captures the extent of inconsistency the system will tolerate. 
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The pessimistic sequence serves to validate the processing and to commit the changes to the 
replicas or to undo an optimistic run if it generated an inconsistency. Using this scheme we built 
the COPAR service that can provide highly available access to counter-like replicas widely 
deployed over a network. 
 
There are several examples of systems that process countable data items. Reservation systems 
handle available seats, rooms, vehicles, etc. Distribution systems handle available resources, e.g. 
blankets, bottles of water, first-aid kits and so on for disaster relief. Traffic monitoring systems 
count vehicles. Therefore our system COPAR although limited to countable objects has wide 
applicability. 
 
The main objectives in the design were to: 
 
 Provide a high level of availability at a known penalty to the application, 
 Permit wide distribution of replicas over the network, 
 Preserve data integrity, and 
 Build a system that is conceptually simple. 

 

2. COPAR Operation 
 
COPAR uses the client-server model of distributed processing. Servers maintain the “database” of 
resources (i.e. the resource counts), and accept transactions from client machines. In our current 
prototype there is one client machine called the generator (it generates the transactions) and the 
“database” is fully replicated at all the servers. We call these servers the nodes. 
 
Each node maintains two counts of available resources. One count is called the pessimistic or 
permanent count; the other count is called the optimistic or temporary count. Changes to the 
permanent count are synchronized with all the other nodes over the network using the two-phase 
update/commit algorithm (see [19], and [20]). This algorithm forces all the participating nodes to 
agree before any changes are made to the count. Thus, this count is the same at all the nodes and 
represents true resource availability. The temporary count is maintained separately and 
independently by each node. 
 
In general, resource counts for availability are a single non-negative integer R, such as for one 
type of resource, or a vector of non-negative integers (R1,R2, ...,Rm), such as for m types of 
resources. Similarly, resource counts for transactions are a single integer r, negative for an 
allocation and positive for a deallocation or release, or a vector of integers (r1, r2, ..., rm). 
When the system is initialized, the permanent count Pjk at each node j (where k ranges from 1 to 
m resource types) is set to the initial resource availability Rk. For example let R1 = 2000 first aid 
kits, R2 = 1000 blankets, or R3 = 4000 bottles of water for disaster relief. Then the Pjk for 4 nodes 
will be initialized as in Table 1: 
 

Table 1. An initial state at 4 nodes 
 

Nodes    
1 P11 = 2000 P12 = 1000 P13 = 4000 
2 P21 = 2000 P22 = 1000 P23 = 4000 
3 P31 = 2000 P32 = 1000 P33 = 4000 
4 P41 = 2000 P42 = 1000 P43 = 4000 

 
The temporary count Tjk at each node is set to the initial permanent count divided by the number 
of nodes n. Tjk is then adjusted upward by an over-allocation allowance c, called the cost bound, 
where c >= 1. Therefore, 
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Tjk = c * Pjk /n 
 
For example, if there are four nodes, if R1 is 100, and if c is 1.16, then Pj1 is set to 100 and Tj1 is 
set to 29 at each node as in Table 2: 
 

Table 2. Initial permanent and temporary counts at 4 nodes 
 

Nodes  
1 P11 = 100 

T11 = 29 
2 P21 = 100 

T21 = 29 
3 P31 = 100 

T31 = 29 
4 P41 = 100 

T41 = 29 
 

Most reservation/allocation systems allow some over-allocation to compensate for reservations 
that are not used, such as passengers not showing up for an airline flight or people not picking up 
supplies when delivered to a relief center. There is a cost involved in over-allocation, such as 
compensating passengers denied boarding on an airline flight. Organizations using a 
reservation/allocation system must carefully evaluate the cost of over-allocation and limit it to 
what can be afforded or tolerated.  
 
Currently, interaction with the system is simulated by generating a transaction ti, which makes a 
request (r1, r2, ..., rm), i.e. for ri resources of type i, where i ranges from 1 to m types of resources. 
This request is sent to a node j. This node is then considered the parent or owner of the 
transaction. 
 
The m integers in a transaction are generated randomly and the node j is chosen at random from 1 
to n, where there are n nodes. Transactions from the generator are numbered sequentially. 
Additions to the pool of resources are handled differently. Such additions are discussed in section 
4. 
 
For example, a transaction may make a request (-10, -20, -100) for 10 first aid kits, 20 blankets 
and 100 bottles of water, where there are 3 resource types: type1 – first aid kits, type 2 – blankets 
and type 3 – bottles of water. Furthermore a transaction deallocating or returning 10 first aid kits, 
20 blankets and 100 bottles of water may be expressed as (10, 20, 100).   
 
Each node maintains two queues of transactions, called the parent or owner queue and the child 
queue. A parent node, on receiving a transaction, adds that transaction to its parent queue and to 
its child queue. The transaction is also broadcast to all nodes to be added to each node’s child 
queue. The transactions ti in each node’s parent queue, are kept sorted in order of increasing i, in 
other words, in the order generated by the transaction generator. 
 
Note that a particular transaction ti is in exactly one node’s parent queue. Each node j has two 
processors (threads), one responsible for maintaining the parent queue and the permanent count 
Pjk at the node, and the other responsible for maintaining the child queue and the temporary count 
Tjk at the node (see Figure 1). 
 
The permanent processor at each node participates in a two-phase commit cycle with all the other 
node permanent processors. After the processing of transaction ti−1 by its parent, the node whose 
parent queue contains transaction ti becomes the coordinator for the two-phase commit cycle that 
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changes the permanent count Pjk at all nodes j to Pjk + rk for k = 1, 2, ...,m. The temporary counts 
are also forced to change after permanent processing. We will discuss this in the following 
section. 
 
The change to the permanent count is subject to the restriction that Pjk + rk is nonnegative for all 
k. If that is not the case, all Pjk are left unchanged and the transaction ti is marked as a violation. 
This in effect means that if a request cannot be totally granted then nothing is granted. (This will 
be upgraded during further research to allow non-violation if Pjk + rk is nonnegative for at least 
one k, i.e. to allow granting of partial requests). At the end of the two-phase commit cycle, the 
owner (parent) of transaction ti sends a message to all nodes, including itself, to remove ti from 
the node’s child queue if ti is present. 
 
Temporary processing takes place concurrently with permanent processing. The temporary 
processor at each node j removes the transaction th at the head of its child queue, if any, and 
calculates if the request rk made by  th can be allocated or satisfied from its temporary (optimistic) 
count Tjk. In other words, node j checks if it is the case that Tjk +rk is non-negative for all k = 1, 2, 
… m. If that is not the case, th is discarded (This will be upgraded during further research so that 
transaction th is not discarded if Tjk + rk is nonnegative for at least one k); otherwise, node j sets 
Tjk to Tjk + rk and sends a message to the parent (owner) node of the transaction, i.e. the node 
whose parent queue contains the transaction. 
 
When a parent node n receives such a message from node j for transaction th, node n makes two 
checks. 
 

• Is this the first such message received from any node’s temporary processor for transaction th? 
• Has transaction th been done permanently yet? 
 
If this is not the first such message, a reply is sent to node j that it should back out of the 
temporary allocation it did for th, that is, change its temporary count Tjk to Tjk − rk. This operation 
is necessary since another node will have done the temporary processing. This is possible because 
all the nodes get a chance to make an individual response to a request. The fastest one wins. 
A temporary transaction may have to be “undone”. Therefore, if this is the first such message and 
if the transaction th has not yet been done permanently (pessimistically), node j sending the 
message is marked as the node having done transaction th temporarily (optimistically). If this is 
the first such message, but transaction th has already been done permanently, no node is recorded 
as having done the transaction temporarily. 
 
When the permanent processor in a node j coordinates the two-phase commit for a transaction ti 
and has decided that transaction ti is a violation, that is, Pjk + rk is negative for one or more k, 
node j checks to see if the transaction was marked as having been done optimistically earlier by 
some node’s temporary processor. If so, the transaction ti is marked as “undone,” meaning that a 
promised request cannot now be granted. 
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Figure 1. Each node A and B has a parent queue P and a child queue C. Node A owns 
transactions 1 and 2 and will process these pessimistically in a two-phase commit protocol 
involving A and B. Node B owns transaction 3 and will process it pessimistically in a two-phase 
commit protocol involving A and B. Concurrently nodes A and B process transactions 1, 2 and 3 
optimistically.  
 
If no node has done the transaction optimistically and it is not a violation, the owner’s temporary 
processor allocation Tjk is “charged” for it, Tjk = Tjk + rk. This is done to lessen the probability of a 
later transaction being performed optimistically but then marked “undone” by the permanent 
processor. 
 

3. Updating Optimistic counts after Pessimistic/Permanent Processing 
 
The temporary optimistic counts Tjk change at the end of optimistic transaction processing. The 
pessimistic counts Pjk change at the end of permanent transaction processing. Whenever there is a 
change to Pjk this should generate an update to Tjk which is consistent with the new Pjk. Therefore 
Tjk is updated by the temporary optimistic processing and after the pessimistic permanent 
processing. 
 
As is stated above, when the system is initialized, the permanent count Pjk at each node j (where k 
ranges from 1 to m resource types) is set to the initial resource availability Rk. However, 
permanent processing of a transaction generates a new Pjk where  
 
(new) Pjk = (old) Pjk + rk  
 
Therefore a new Tjk is generated where  
 
Tjk = c * (new) Pjk * wjk 

 

You may notice that there is an apparent difference between how Tjk is derived here and how it 
was derived initially (/n is replaced by * wjk). The wjk is a weight which captures the amount of 
allocations done by a node and influences the reallocation of the Tjk values. 
 
We will now discuss how the wjk is calculated. Permanent processing uses the two-phase commit 
protocol which requires a coordinating node. Permanent processors via the coordinator maintain a 
running total of allocations done by each node. Let rajk be the total allocations of resource k done 
by node j on completion of permanent processing. Let RAk will be the total allocations of 
resource k done by all the nodes at end of permanent processing. We let 
 
wjk = (rajk + 1)/(RAk + n) where n is the number of nodes. 
 
Note that initially rajk and RAk are equal to zero, therefore on initialization wjk is equal to 1/n. This 
is consistent with the initial derivation of Tjk. 
 
The coordinating parent processor can now use 
 
Tjk = c * Pjk * wjk 
 
to compute the new temporary counts for optimistic processing. However there is a problem here. 
While the coordinating pessimistic processing was being done, the optimistic temporary 
processors were still running. Therefore the information used in the computation of the Tjk can be 
stale. That is the rajk used in the computation of the new Tjk for node j could have been changed 
due to further optimistic processing by that node. 
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We must therefore distinguish between two rajk. Let the one that was used by pessimistic 
processing to compute the new count be called rajk,recorded and the current one be rajk,current. 
 
When the temporary processors receive Tjk from the permanent processor the temporary 
processors adjust the Tjk as follows in order to reflect its current position: 
 
Tjk = Tjk – (rajk,current  - rajk,recorded) 
 
If this result is negative make it 0. The zero value forces temporary processing at this node to 
stop. 
 
For example, let R1 denote resources of type 1 (say blankets) initially 100 and c = 1.1. 
 
Then Pj1 = 100 and Tj1 = 110/n. 
Let there be 3 replicas i.e. n = 3. 
Therefore T11 = T21 = T31 = 37. 
 
Let permanent processors at nodes 1, 2, 3 record allocations of 30, 20, 10 blankets respectively.  
 
Therefore 
ra11,recorded = 30, ra21,recorded = 20, and ra31,recorded = 10. 
Therefore Pj1 = R1 is now 40 (i.e. 100 – 30 – 20 – 10) and 
Tj1 = 1.1 * 40 * wj1 
 
Therefore 
T11 = ((30 + 1) / (60 + 3))* 44 = 22 
 
Assume that 6 more blankets were allocated at temporary processor 1. 
 
Therefore 
T11 = T11 - (ra11,current  - ra11,recorded) = 22 – (36 – 30) = 16 
 
We now compute the new temporary count for temporary processor 2.  
T21 = ((20 + 1) / (60 + 3))* 44 = 15 
 
Assume 4 more blankets were allocated at temporary processor 2. 
 
Therefore 
T21 = T21 - (ra21,current  - ra21,recorded) = 15 – (24 – 20) = 11 
 
We now compute the new temporary count for temporary processor 3. 
T31 = ((10 + 1) / (60 + 3))* 44 = 7 
 
Assume 3 blankets were returned/deallocated at temporary processor 3. 
 
Therefore 
T31 = T31 - (ra31,current  - ra31,recorded) = 7 – (7 – 10) = 10 
 
On the other hand let’s assume that 8 more blankets were allocated at temporary processor 3, then 
ra31,current  = 18, and  
 
T31 = T31 - (ra31,current  - ra31,recorded) = 7 – (18 – 10) = -1. This temporary count is then set to 0 and 
temporary processor 3 is stopped until it gets a count greater than 0. 
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Note that this still does not prevent temporary over-allocations since one temporary does not 
know what the other temporary is doing and cost bound c = 1.1. However, it reduces the incidents 
of over-allocations and hence the number of “undones”. But our objective of high-availability is 
being maintained. 
 

4. ADDITIONS  
 
At any time while the system is running additions can be made to the available pool of resources, 
e.g. new donations can be made to a pool of resources for disaster relief. An addition is 
considered a unique transaction called ai(r1 … rm) that adds rk, (i.e. r resources of type k where k 
ranges from 1 to m) to the pool of available resources. It is not appended to the child queues.  
When this transaction is processed Pjk and Tjk are updated by the permanent processor: 
 
Pjk = Pjk + rk 

 

Tjk = c * Pjk * wjk using the current values of the wjk. 
 
The temporary processors will then update Tjk to reflect their current situation as discussed in 
section 3. 
 
5. RESULTS FROM TESTS WHERE THERE ARE NO FAILURES 
 
The COPAR test-bed includes a transaction generator and servers on a LAN at Rowan University 
in New Jersey (R) interconnected via the Internet with a server about 40 miles away at Richard 
Stockton College in New Jersey (RS) and a server at the University of the West Indies (UWI) 
located in Trinidad in the southern Caribbean approximately 2000 miles away. 
 
The transaction generator and servers are all started with a program running on the transaction 
generator node that reads and parses an XML file containing the data for the run. We have 
demonstrated that a large percentage of transactions submitted to the system can be handled 
optimistically (without multi-server agreement) at significantly faster turnaround times and with a 
very small percentage of “undones”. 
 
The figures and tables display results when 200 transactions were generated at a rate of 5 
transactions per second. There are 200 resources of each type available initially. The cost bound 
is 1.16. Transactions include requests for resources, returns of resources and new donations (i.e. 
additions). Requests and returns range from 3 to 9 resources per transaction. Donations range 
from 3 to 10 resources per donation. Tests were done on two platforms: a four node platform with 
all servers (including transaction generator) at Rowan (R); and a six node platform including 
Rowan, Richard Stockton and UWI (R+RS+UWI). 
 
In Figure 2, of the 200 transactions 18 are donations totaling 136. There is one resource type of 
200 resources available initially. On the R platform 159 transactions are done optimistically and 4 
are undone. On the R+RS+UWI platform 182 transactions are done optimistically and 25 are 
undone.  
 
During these tests on the R platform, pessimistic processing times (PT) range from 29 
milliseconds to 288 milliseconds, optimistic processing times (OT) range from 1 millisecond to 
20 milliseconds. The average PT to RT ratio is 18. The R+RS+UWI platform is subject to the 
vagaries of the Internet and the vast geographical expanse. The PT times range from 2.6 seconds 
to 10 minutes, OT times range from 1 millisecond to 1 second. The average PT to RT ratio is 
117000 (see Table 3). 
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Figure 2. Tests were done on two platforms: a four node platform with all servers (including 
transaction generator) at Rowan (R); and a six node platform including Rowan, Richard Stockton 
and UWI (R+RS+UWI); 200 transactions were generated at a rate of 5 transactions per second. 

 
Table 3. Pessimistic (PT) and Optimistic (OT) times from tests in Figure 2 

 
 Min Max Ave 

PT/OT 
ratio 

R 
PT 

29 
msec 

288 
msec 

18 

R 
OT 

1 
msec 

20 
msec 

 

R+RS+UWI 
PT 

2.6 
sec 

10 
min 

117000 

R+RS+UWI 
OT 

1 
msec 

1 
sec 

 

 
In Figure 3 there are 3 resource types each with 200 resources initially. There are 28 donations 
totaling 189, 172 and 181 for resource types 1, 2 and 3 respectively. On the R platform 161 
transactions are done optimistically and 2 are undone. On the R+RS+UWI platform 172 
transactions are done optimistically and 10 are undone. 
 
During these tests on the R platform, PT times range from 29 milliseconds to 255 milliseconds, 
OT times range from 1 millisecond to 21 milliseconds. The average PT to RT ratio is 19. The 
R+RS+UWI platform is subject to the vagaries of the Internet and the vast geographical expanse. 
The PT times range from 3 seconds to 8 minutes, OT times range from 1 millisecond to 258 
milliseconds. The average PT to RT ratio is 111000, (see Table 4). 
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Figure 3. There are 3 resource types each with 200 resources initially. There are 28 donations 
totaling 189, 172 and 181 for resource types 1, 2 and 3 respectively. On the R platform 161 
transactions are done optimistically and 2 are undone. On the R+RS+UWI platform 172 
transactions are done optimistically and 10 are undone 

 
Table 4. Pessimistic (PT) and Optimistic (OT) times from tests in Fig. 3 

 
 Min Max Ave PT/OT 

ratio 
R 
PT 

29 
msec 

255 
msec 

19 

R 
OT 

1 
msec 

21 
msec 

 

R+RS+UWI 
PT 

3 
sec 

8 
min 

111000 

R+RS+UWI 
OT 

1 
msec 

258 
msec 

 

 
6. HANDLING FAILURE 
 
Our failure handling model addresses only the case of a node that can no longer be reached. 
Failing to reach a node may be due to that node’s failure, communication link failure, or an 
unacceptably long response time. Such a failure handling model is workable in COPAR since the 
transactions handled and the information maintained by the system can tolerate certain margins of 
error.  
 
If a node cannot be reached due to node or communication link failure then the pessimistic 2PC 
processing will fail. However optimistic processing will continue at all operating nodes until the 
cost bound at those nodes is zero. The objective will be to restart pessimistic processing only if a 
majority of the initial group of nodes can be reached. 
 
The restart of pessimistic processing among the majority uses the concept of the “distinguished 
partition”. That is, the network is now partitioned and processing is allowed to continue in a 
favored partition. This favored partition is called the “distinguished partition”. Voting schemes in 
which nodes possess read/write votes are often used to determine that “distinguished partition” 
(see [21] and [9]). 
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Our “distinguished partition” for pessimistic processing will be the partition with the majority of 
the initial group of nodes. The restart will use the current permanent/pessimistic resource counts 
and generate new temporary/optimistic counts for the new reachable pool of nodes. 
 
For example, given the following 4-node situation in Table 5: 
 

Table 5. The current state at 4 nodes 
 

Nodes  
1 P11 = 100 

T11 = 29 
2 P21 = 100 

T21 = 29 
3 P31 = 100 

T31 = 29 
4 P41 = 100 

T41 = 29 
   
After some processing, assume that each node has allocated 4 resources and this has been 
processed pessimistically, therefore the new situation is Table 6: 
 

Table 6. The new state after allocating 4 resources 
 

Nodes  
1 P11 = 84 

T11 = 25 
2 P21 = 84 

T21 = 25 
3 P31 = 84 

T31 = 25 
4 P41 = 84 

T41 = 25 
 
Assume that node 4 can no longer be reached, but it is still operable. That node can continue to 
process requests until T41 = 0. Pessimistic processing can restart with nodes 1, 2 and 3 with a P 
value of 84 and 3 being the number of nodes. 
 
Currently the system is controlled by a transaction generator, which can be viewed as a single 
point of failure. In the future transaction handling should be separated from system management. 
The system manager will handle system start-up, initialization, monitoring, restart, etc. The 
transaction handlers should exist at all nodes. In the meantime the transaction generator assumes 
the role of the monitor of the system. 
 
We would like the two-phase commit processing to recover from the failure of a participating 
node. Therefore we are proposing the following pseudo two-phase commit sequence.  
 
In phase one, after a time-out before receiving all votes, the coordinator will count the number of 
votes to determine if it heard from a majority of the initial set of participants. If it did not hear 
from a majority the transaction will be aborted. If it heard from a majority it will start phase two 
with the majority as the group of participants.  
 
In phase two, after a time-out before receiving all commit responses, the coordinator will 
determine if it heard from a majority of the initial set of participants. If it did not hear from a 
majority the transaction will be aborted. If it heard from a majority the coordinator will complete 
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the commit sequence. The subsequent processing round will start phase one with this new group 
of participants. 
 
If the transaction generator times out on a coordinator it will assume that the coordinator is no 
longer reachable. The transaction generator will determine if a majority of the initial set of nodes 
is still operable. If a majority is operable the transaction generator will select a new coordinator 
and restart transaction processing with the new group of nodes. If a majority is not operable the 
transaction generator will wait until a majority of nodes come back online. 
 
As a proof of concept we ran some tests of COPAR that simulated a node failure during 
transaction processing. We did this in the following way. Whenever a server is notified that a 
transaction has been selected for pessimistic processing, that server increments a counter that was 
initially zero. When that counter reaches 50 the server checks the notification message to 
determine if the sender was a specified server s. If it is s then s is classified as inactive and is 
dropped from the two-phase commit pool. The pessimistic processing continues with the pool 
reduced by one server. 
 
However, since server s is in reality still active it will continue optimistic processing until it 
empties its child queue or until its cost bound is less than or equal to zero. At this point the 
transaction generator does not know that server s is no longer in the two-phase commit pool and 
so the generator can continue to send new transactions to server s. 
 
In order to prevent this, the generator increments a counter whenever it generates a new 
transaction. When that counter reaches 25 the generator stops sending transactions to server s. 
Transactions that should have gone to s are sent alternately to its downstream and upstream 
neighbor. In the tests 200 transactions are generated. Therefore the counter values must be less 
than 200. Since the selection of a coordinator/parent is pseudo-random and since we do not keep a 
history of the interactions between servers then our choice of the counter values are somewhat 
arbitrary, and it is intended primarily to ensure that new transactions are not sent to server s after 
it has been dropped from the pessimistic two-phase pool. 
 
In the tests discussed below a server on the Rowan(R) LAN is dropped during the processing. In 
Figure 4, of the 200 transactions 18 are donations totaling 136. There is one resource type of 200 
resources available initially. On the R platform 157 transactions are done optimistically and 1 is 
undone. On the R+RS+UWI platform 182 transactions are done optimistically and 25 are undone. 
Notice the similarity between these results and those displayed in Figure 2 where the only change 
here is in the dropped server. 
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Figure 4. A server on the Rowan(R) LAN is dropped during the processing. Results are similar to 
case when no server is dropped. 
 
During these tests on the R platform, pessimistic processing times (PT) range from 29 
milliseconds to 222 milliseconds, optimistic processing times (OT) range from 1 millisecond to 
17 milliseconds. The average PT to RT ratio is 21. The R+RS+UWI platform is subject to the 
vagaries of the Internet and the vast geographical expanse. The PT times range from 2.6 seconds 
to 8.8 minutes, OT times range from 1 millisecond to 991 milliseconds. The average PT to RT 
ratio is 117000 (see Table 7). 
 
Notice that whereas the numbers of completions are similar to the case when all servers were 
operable (see Table 3), there are differences in completion times when a server is dropped. It is 
expected that the pessimistic processing should decrease after a server was dropped. On the R 
platform max PT dropped from 288 milliseconds to 222 milliseconds, and on the R+RS+UWI 
platform max PT dropped from 10 minutes to 8.8 minutes. 
 

Table 7.  Pessimistic (PT) and Optimistic (OT) times from tests in Fig. 4 
 

 Min Max Ave PT/OT 
ratio 

R 
PT 

29 
msec 

222 
msec 

21 

R 
OT 

1 
msec 

17 
msec 

 

R+RS+UWI 
PT 

2.6 
sec 

8.8 
min 

97251 

R+RS+UWI 
OT 

1 
msec 

991 
msec 

 

 
In Figure 5, of the 100 transactions 9 are donations totaling 66. There is one resource type of 200 
resources available initially. The results of two tests on the R+RS+UWI platform are displayed. 
In both tests a Rowan server was dropped after about 50 transactions. In the test labeled “more” 
the distribution of transactions was such that the remote UWI server (about 2000 miles away from 
the generator) got 50% more transactions than in the test labeled “less”. In each case 91 
transactions are done optimistically and 0 is undone. The difference in the distribution of 
transactions does not affect the numbers completed. 
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Figure 5. The results of two tests on the R+RS+UWI platform are displayed. In both tests a 
Rowan server was dropped after about 50 transactions. In the test labeled “more” the distribution 
of transactions was such that the remote UWI server got 50% more transactions than in the test 
labeled “less”. In each case 91 transactions are done optimistically and 0 is undone. 
 
During these tests on the “less” platform, pessimistic processing times (PT) range from 2.8 
seconds to 4 minutes, optimistic processing times (OT) range from 1 millisecond to 835 
milliseconds. The average PT to RT ratio is 47389. On the “more” platform the PT times range 
from 4.4 seconds to 6 minutes, OT times range from 2 millisecond to 1.4 seconds. The average 
PT to RT ratio is 45674 (see Table 8). On the “more” platform the far-distant UWI server 
performed the coordinator role more often than on the “less” platform. Therefore the nature of the 
two-phase commit would generate a longer max PT time. However to the satisfaction of the users 
of the system the maximum optimistic processing time is 1.4 seconds with 0 undone. 
 

Table 8.  Pessimistic (PT) and Optimistic (OT) times from tests in Fig. 5 
 

  Min Max Ave PT/OT 
ratio 

Less 
PT 

2.8 
sec 

4 
min 

47389 

Less 
OT 

1 
msec 

835 
msec 

 

More 
PT 

4.4 
sec 

6 
min 

45674 

More 
OT 

2 
msec 

1.4 
sec 

 

 
7. CONCLUSION 
 
We feel that we have met the main objectives that we had set for COPAR. It targets applications 
where there is need for very fast receipt and distribution of resources over possibly wide 
geographical areas, e.g. a very wide disaster zone. COPAR provides a high level of availability. 
There is very fast turnaround time on the processing of transactions. The validation is quick thus 
minimizing the need to undo an optimistic result. There is a simple failure handling scheme 
which permits all reachable nodes to continue optimistic processing and a “distinguished 
partition” to continue pessimistic processing. 
 
There is wide geographical distribution of replicas covering a range of approximately 2000 miles. 
Data integrity is preserved through the pessimistic two-phase commit and the choice of an initial 
cost bound. It is our view that the design embodies simple but workable concepts. All nodes 
handle their child queues optimistically (independently) and their parent queues pessimistically 
(two-phase commit).  
 
However there is further work to be done. Three main tasks are (1) improving the handling of 
failure, (2) separating the system manager from the transaction manager and (3) implementing 
multiple transaction generators with interfaces that run on mobile devices. 
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