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ABSTRACT 
 
AdaBoost is an important algorithm in machine learning and is being widely used in object detection. 
AdaBoost works by iteratively selecting the best amongst weak classifiers, and then combines several weak 
classifiers to obtain a strong classifier. Even though AdaBoost has proven to be very effective, its learning 
execution time can be quite large depending upon the application e.g., in face detection, the learning time 
can be several days. Due to its increasing use in computer vision applications, the learning time needs to 
be drastically reduced so that an adaptive near real time object detection system can be incorporated. In 
this paper, we develop a hybrid parallel and distributed AdaBoost algorithm that exploits the multiple 
cores in a CPU via light weight threads, and also uses multiple machines via a web service software 
architecture to achieve high scalability. We present a novel hierarchical web services based distributed 
architecture and achieve nearly linear speedup up to the number of processors available to us. In 
comparison with the previously published work, which used a single level master-slave parallel and 
distributed implementation [1] and only achieved a speedup of 2.66 on four nodes, we achieve a speedup of 
95.1 on 31 workstations each having a quad-core processor, resulting in a learning time of only 4.8 
seconds per feature. 
 
1. INTRODUCTION 
 
One of the challenging research topics in object detection in recent years has been face detection. 
Many approaches to reliable face detection have been attempted e.g., [1-4]. A survey on face 
detection techniques presented in [3] classifies recent work into four major categories: First, 
knowledge-based methods where human knowledge is the basis for face determination. Second, 
feature invariant approaches where facial feature structures are easy to find even in difficult 
conditions, such as poor lighting. Third, template matching methods where storing faces is 
important for matching purposes. Lastly, appearance-based methods which rely on faces training 
set to be learned before being able to detect faces. 

 
In this paper, we focus on the method used in the last category. Viola and Jones have used this 
method in [4] and their algorithm has proven to be very successful in real time face detection. For 
learning of the face detection classifier, Viola Jones’ algorithm uses AdaBoost [5] on a training 
set of approximately 5000 faces and 10,000 non faces.  Since the training set and the number of 
possible features used in learning a classifier is quite large, running time of AdaBoost can be very 
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high and the time to complete training of one feature can be on the order of several minutes. Thus 
depending on the total number of features desired, the learning time of the algorithm can be 
several days. For example, to obtain a 200 feature classifier, it takes about one day on a modern 
workstation. Thus for applications, where we would like the object detection to be adaptive, this 
training time needs to be greatly reduced. An example where this is highly desirable is identifying 
a particular model of a car when it gets stolen, and the traffic cameras need to detect only that 
model. Since there are tens of thousands of make model and year of cars, waiting for several days 
until a classifier is ready would not be an option.  

 
Parallel and distributed processing can be employed for speeding up of the AdaBoost algorithm. 
With the wide availability of multicore workstations and high speed network of workstations, we 
can take advantage of the computing power available. Software frameworks targeting the 
efficient use of multiple cores within a workstation have been recently developed for both 
Windows and Unix/Linux environments e.g., Task Parallel Library [6] allows creation of light 
weight threads where the cost to launch a thread is only 50 assembly language instructions as 
opposed to approximately 200 instructions for a regular thread. Further, web services frameworks 
based on scalable WS* standards are available where efficient distributed implementation can be 
successfully developed. In this paper, we develop a hybrid parallel as well as distributed 
implementation of the AdaBoost algorithm exploiting both the multiple cores in a machine via the 
Task Parallel Library, as well as multiple machines via a novel hierarchical web services based 
distributed implementation to achieve significant reduction in training time. 

 
1.1. Related Work 
 
A recent work at a parallel and distributed implementation of AdaBoost has been reported in [1]. 
Their system consists of a client computer and a server pool. The parallelization of AdaBoost is 
accomplished by using feature blocks. They employ four computing nodes in the distributed 
model and thus achieve a speedup of only 2.66. 
 
Another parallel implementation of face detection has carried out on GPUs in [7] and have 
demonstrated the improvement in face detection time of the Haar feature based Adaboost 
algorithm to about 30 frames per second (FPS) using CUDA on the GeForce GTX 480 GPU. The 
main problem with their work is that they focused on the object detection time, not the classifier 
training time, so if the training dataset is updated, the training process will be repeated again. Our 
main focus in this paper is the parallelization of training of the Haar feature classifier to make 
training process near real-time such that any changes in the feature types or the training dataset 
can be handled in a short retraining time. 
 
The reminder of this paper is organized as follows. In section 2, we provide a brief background 
on the AdaBoost algorithm before presenting our parallel and distributed approach in section 3. 
Section 4 provides the experimental results. Conclusions are presented in section 5. 
 
2. ADABOOST ALGORITHM 
 
One of the main contributions of Viola and Jones is the integral image [4]. The benefit of using 
integral image is to speed up the computation of rectangular features used in AdaBoost. We 
review the calculations in the integral image below and then describe the AdaBoost algorithm. 
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2.1. Integral Image 
 
To get the integral image value on position x, y, the summation of the all pixels values located on 
top and to the left of x, y is taken. Figure 1 explains this concept.  
 

 
 
 
 
 
 
 
 
 
 

Figure 1. Summation of all pixels on top and to the left of x,y is the integral image value at x,y 
 

The following equation explains the computations to get the integral image:   
 

,ݔ)݅ (ݕ =  ෍ ,ᇱݔ)݋ (ᇱݕ
௫ᇲஸ௫,௬ᇲஸ௬

 

 
where ݅(ݔ, ,ݔ)݋ represents the integral image, and (ݕ  .represents the original image (ݕ

              x 
 
 
 
                y 
 
 
 
 
 

Figure 2. Calculating the integral image in a rectangular region. 
 

For obtaining the integral image in the dark rectangle in Figure 2 only, the following equation 
is followed: 

(݈݁݃݊ܽݐܿ݁ݎ ݇ݎܽ݀)݅ =  4 + 1 − (2 + 3) 
 

2.2. Extracted Feature Types and Selection  
 
The features extraction in Viola Jones’ algorithm are based on Haar basis functions [4, 8]. Five 
types of features have been used in the original algorithm as shown in Figure 3. 
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Figure 3. Five rectangular features. Figure (a) shows two rectangles horizontal and vertical features, figure 
(b) shows three rectangles horizontal and vertical features, and figure (c) shows a four rectangles feature. 

 
To calculate the value of each one of the features, the sum of pixels located in the white side of 
the rectangle are subtracted from the dark side [4]. The window size used for training and 
detecting purposes in face detection is 24x24. For scaling, the starting point is the smallest size of 
a rectangular feature, e.g. in three rectangle feature type, it is 3x1 pixels, in a two rectangle 
feature type, it is 2x1 pixels, etc.. Each rectangular feature is scaled up until reaching total 
window size of 24x24. As a result, the total number of features for each type is: 
 

 For three rectangle feature type, 27,600 features.    
 For two rectangle feature type, 43,200 features.  
 For four rectangle feature type, 20,736 features. 

 
The total number for all features combined is going to be:  
 
Three rectangles horizontal + three rectangles vertical + two rectangles horizontal + two 
rectangles vertical + four rectangles = 27600 + 27600 + 43200 + 43200 + 20736 = 162,336 
features. During the learning phase, all of these features are going to be computed for all faces in 
the training set. The set of faces which we use for training purpose is the same one that has been 
used by Viola and Jones for face detection [4]. The size of each image is 24x24. There are 4916 
faces and 7960 non-faces. Thus, the total number of all possible features in all training images is 
2,090,238,336 (i.e., number of training images multiplied by features per image). 
 
Viola and Jones have used AdaBoost to combine weak classifiers into a stronger classifier [5]. 
The conventional AdaBoost algorithm works by assigning good features relatively higher weight 
and the poor ones a smaller weight to determine the best weak classifier [4]. The main goal of a 
weak classifier is to get the optimal threshold among positive and negative examples for any 
rectangular feature. This technique has been known as the decision stump. The selected threshold 
minimizes the number of misclassified examples. The decision of a weak classifier is 1 or 0, i.e., 
positive or negative. The following equation explains the way a weak classifier works. 
 

ℎ(ݔ, ݂, ,݌ (ߠ = ൜1, (ݔ)݂݌ ݂݅ < ߠ݌
0,         ݁ݏ݅ݓݎℎ݁ݐ݋

 
where p is either 1 or -1, ߠ is the threshold, and f is the feature. 
 
2.3. AdaBoost Algorithm used by Viola and Jones 
 
 Suppose there are N numbers of images as training set. Each image is labelled as 0 for 

negative images, and, 1 for positive images, as shown in table 1. 
 

Table 1. Example of images and labels. 
 

Images xଵ xଶ xଷ  x୒ 
Label 1 0 0  1 

 
 Initializing the weight for each image in the first round as shown in the following table: 

Table 2. Example of images and labels and weights. 



International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.3, May 2013 
 

33 
 

 
Images wଵ,୶భ wଵ,୶మ wଵ,୶య  wଵ,୶౤ 
Label 1 0 0  1 
Weight 1

2l 
1

2m 
1

2m  1
2l 

 
Where l is the total number of positive images i.e., faces, and m is the total number of 
nonfaces. 
 

 For t =  1 to T: 
 
1. Normalizing the weight of each image in each round as the following:  

w୲,୶౟ = 
୵భ,౮౟
୵౩౫ౣ

 , where wୱ୳୫ is the sum total of the weight of all images in the same round. 
2. Calculating the error of all features, until getting the feature has the minimum error. The 

selected feature is the best weak classifier in t୲୦ round. 
 
ϵ୲ = min୤,୮,஘ ∑ w୶౟หh(x୧, f, p, θ) − y୶౟ห୶౟  

3. Based on the minimum error (ϵ୲), which is determined by f୲,  p୲ , and θ୲ , get h୲(x), where:  
h୲(x) =  h(x, f୲, p୲ , θ୲) . 

4. As preparation for the next round, the weight should be updated:  
w୲ାଵ,୶౟ =  w୲,୶౟β

ଵିୣ౮౟ 
where e୶౟ = 1, if x୧ is misclassified, e୶౟ = 0 otherwise, and β୲ = ஫౪

ଵି ஫౪
 . 

 
 At the end, after going through all rounds, the strong classifier is determined as the following: 

 

C(x) = ൞ 1, ෍α୲

୘

୲ୀଵ

h୲(x) ≥  
1
2 ෍α୲

୘

୲ୀଵ
0, ݁ݏ݅ݓݎℎ݁ݐ݋                         

 

where α୲ = log  
ଵ
ஒ౪

  
 

3. OUR PARALLEL AND DISTRIBUTED WEB SERVICES- BASED ADABOOST 
ARCHITECTURE 
 
The original AdaBoost determines the best weak classifier in each round based on the minimum 
classification error. It needs to go through all features and determine which feature yields the 
minimum error. Since there are a large number of features, the execution time during the learning 
phase is high. Our parallel approach speeds up the execution time by efficiently parallelizing the 
AdaBoost algorithm. We implement a three way approach to get results in shortest possible time. 
We run main computational part of AdaBoost in parallel using Task parallel Library (TPL). Task 
parallel library is a built in library in Microsoft .NET framework. The advantage of using TPL is 
noticed in multi-core CPUs, where the declared parallel workload is automatically distributed 
between the different CPU cores by creating light weight threads called tasks [6].  
 
To further improve the execution time of AdaBoost, we use web services to run parallel Adaboost 
on multiple workstations in a distributed manner. Our first level architecture does workload 
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division based on the feature type.  Since there are five feature types, we use five workstations at 
level 1. As shown in figure 4, total of six machines are used, i.e., one master and five slaves. To 
achieve further scalability, computation of each of the feature types is further expanded to a 
second level using web services.  Figure 5 shows twenty one PC’s being used, in a two-level 
hierarchy, Master, Sub-Master, and Slaves. 

 

 
 

Figure 4. One hierarchal level for Web Services and Parallel AdaBoost, based on Master and five Salves 
(Total of six Pc’s) 

 

 
 

Figure 5. Two hierarchal level for Web Services and Parallel AdaBoost, based on Master and five Sub-
Master and 3 Salves for each Sub-Master (Total of twenty one Pc’s)  

 
3.1. The Parallel AdaBoost Algorithm 
 
Three approaches for speeding up execution are implemented in the AdaBoost algorithm: 
 Parallel execution. 
 Web Services and Parallel execution on one hierarchal level.   
 Web Services and Parallel execution on two hierarchal levels. 
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3.3.1. Parallel execution 
 
All features are grouped based on type, such as, three rectangle horizontal, three rectangle 
vertical, two rectangle horizontal, two rectangle vertical, and four rectangle. Each group is 
uploaded to the system memory in parallel. Once all of these have been loaded, then the 
AdaBoost rounds from 1 to T are started. Since the goal is to find the feature has the minimum 
error in each group in parallel in each round, five features are selected from five groups. Among 
them, the feature that has the least minimum error is picked and based on that the weight is 
updated for the next round of AdaBoost algorithm. Since selecting a minimum error feature runs 
in parallel, the execution time time is reduced by a factor of five. 
 
3.3.2. Web Services and Parallel execution on one hierarchal level 
 
Each group of features is distributed to a separate PC. Since five groups exist, five PC’s are used 
for feature calculations, and a master coordinates the five PC’s as shown in figure 4. The parallel 
and distributed pseudo code for this approach is described below. 
 
Pseudocode of one level master and five slaves Parallel Adaboost 
 
 Given example images (ݔଵ, ,(ଵݕ … , ௡ݔ) , ௜ݕ ௡) whereݕ = 0,1 for negative and positive examples 

respectively. 
 Prepare one master workstation and five slaves. 
 Each slave is assigned to one particular feature type. 
 (slave 1, Three rectangles Horizontal) 
 (slave 2, Three rectangles Vertical) 
 (slave 3, Two rectangles Horizontal) 
 (slave 4, Two rectangles Vertical) 
 (slave 5, Four rectangles) 

 On slave’s workstations: Initialize all images on each slave.  
 On master workstation:  
 Initialize weights ݓଵ,௜ =  ଵ

ଶ௠
, ଵ
ଶ௟

 for  ݕ௜ = 0,1 respectively, where ݉ and ݈ are the number of 
negatives and positives respectively. 

 For ݐ = 1, … , ܶ ∶ 
1. Normalize the weights, ݓ௧,௜  ←  ௪೟,೔

∑ ௪೟,೔
೙
ೕషభ

 so that ݓ௧  is a probability distribution. 

2. Send the weights to all slaves. 
3. On each slave:  

a. For each feature,݆, train a classifier ℎ௝ which is restricted to using a single feature. 
The error is evaluated with respect to ݓ௧ , ௝߳ =∑ ௜௜ݓ |ℎ௝(ݔ௜) −  .|௜ݕ

b. Send the classifier,ℎ௧, with the lowest error ߳௧, to master workstation. 
4. On master workstation:  

a. Amongst the received classifiers from each slave, choose the classifier,ℎ௧, with 
the lowest error ߳௧. 

b. Update the weights: ݓ௧ାଵ,௜=ݓ௧,௜ߚ௧
ଵି௘೔ where ݁௜ = 0 if example ݔ௜is classified 

correctly, ݁௜ = 1 otherwise, andߚ௧ = ఢ೟
ଵିఢ೟

. 
 The final strong classifier is: 
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 ℎ(ݔ) = ቊ1, ∑ (ݔ)௧ℎ௧ߙ ≥ ଵ
ଶ
∑ ௧்ߙ
௧ୀଵ

்
௧ୀଵ

0,                           ݁ݏ݅ݓݎℎ݁ݐ݋
 

where ߙ௧ = log ଵ
ఉ೟

 
 
3.3.3. Web Services and Parallel Execution on two Hierarchal Levels 
 
The previous technique divided the work based on feature type. Now we further distribute the 
calculations in a feature type to another set of machines in the next hierarchical level as shown in 
figure 5.   
 
Pseudocode of Two level Master, five sub-master, and N slaves 
 

 Given example images (xଵ , yଵ), … , (x୬, y୬) where y୧ = 0,1 for negative and positive 
examples respectively. 

 Prepare one master workstation, five sub-masters, and twenty five slaves. 
 Each sub-master and its slaves are assigned to one particular feature type. 
 (sub-master 1 and 5 slaves, Three rectangles Horizontal) 
 (sub-master 2 and 5 slaves, Three rectangles Vertical) 
 (sub-master 3 and 5 slaves, Two rectangles Horizontal) 
 (sub-master 4 and 5 slaves, Two rectangles Vertical) 
 (sub-master 5 and 5 slaves, Four rectangles) 

 On all slaves’ workstations: Initialize all images on each slave.  
 On master workstation:  
 Initialize weights wଵ,୧ =  ଵ

ଶ୫
, ଵ
ଶ୪

 for  y୧ = 0,1 respectively, where m and l are the 
number of negatives and positives respectively. 

 For t = 1, … , T ∶ 
1. Normalize the weights, w୲,୧  ←  ୵౪,౟

∑ ୵౪,౟
౤
ౠషభ

 so that w୲ is a probability distribution. 

2. Send the weights to all sub-masters, and then sub-master sends them to its slaves. 
3. Sub-masters divide the features between their slaves, where each slave 

responsible for some parts of the features. 
4. On each slave:  

a. For each feature,j, train a classifier h୨ which is restricted to using a single 
feature. The error is evaluated with respect to w୲, ϵ୨ =∑ w୧୧ |h୨(x୧) − y୧|. 

b. Send the classifier,h୲, with the lowest error ϵ୲, to the assigned sub-master 
workstation. 

c. Each sub-master choose the classifier,h୲, with the lowest error ϵ୲ amongst 
their slaves and send it to the master. 

5. On master workstation:  
a. Amongst the received classifiers from each sub-master, choose the 

classifier,h୲, with the lowest error ϵ୲. 
b. Update the weights: w୲ାଵ,୧=w୲,୧β୲

ଵିୣ౟ where e୧ = 0 if example x୧is classified 
correctly, e୧ = 1 otherwise, and β୲ = ஫౪

ଵି஫౪
. 

 The final strong classifier is: 
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 h(x) = ቊ1, ∑ α୲h୲(x) ≥ ଵ
ଶ
∑ α୲୘
୲ୀଵ

୘
୲ୀଵ

0, otherwise                          
 

where α୲ = log ଵ
ஒ౪

 

 
3. EXPERIMENTAL RESULTS 

 
We developed four variations of the AdaBoost algorithm, as follows: 

 
 Sequential algorithm. 
 Parallel on one machine that only uses TPL. 
 Web Services and Parallel execution on one hierarchal level.   
 Web Services and Parallel execution on two hierarchal levels. 
 
Table 3 shows a comparison of the different approaches we implemented. These results show a 
significant improvement in speedup as compared to the previous work reported in [1]. We obtain 
a speedup of 95.1 as compared to a speedup of 2.6 reported in [1]. Figure 6 shows the parallel 
execution time of our implementation as the number of slaves is increased. With 31 machines, an 
execution time per feature of 4.8 second is achieved. 
 

Table 3. Comparison of all used approaches (Times are in seconds). 
 

 Uploading time to 
memory – done 
one time only 
(seconds) 

Average execution 
time for each 
round (seconds) 

Speed-up (with 
respect  to 
sequential 
execution) 

Sequential alg. On one PC 1780.6 456.5 ---- 
Parallel alg. on one PC 330.7 116.1 3.9 
Parallel and distributed one-level 
architecture on 6 PC’s 

92.7 24.6 18.6 

Parallel and distributed two-level 
architecture on 21 PC’s 

30.3 6.4 71.3 

Parallel and distributed two-level 
architecture on 26 PC’s 

35.4 5.2 87.8 

Parallel and distributed two-level 
architecture on 31 PC’s 

31.7 4.8 95.1 
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Figure 6. Parallel execution time based on total number of slaves workstations 
 
To be able to predict the speedup for any number of machines available, we develop the 
following predictive equation for calculating parallel execution time based on the number of 
nodes in the last level attached to one sub-master node in the middle level (see figure 6 and 7).  
 

݊݋݅ݐݑܿ݁ݔ݁ ݈݈݈݁ܽݎܽܲ = (0.2 ∗ ݊) + ൬
0.5

1000൰ ∗ (
݉
݊ ) 

 
Where ݊ is the number of nodes attached to a one sub-master node, and ݉ is the 
maximum number of features allocated to one sub-master node. 
 
It is noticed that increasing number of nodes in the last level beyond 7 per feature type is not 
going to further help in speeding up execution. Since communication overhead in the network is 
going to dominate. Table 4, 5 and 6, and figure 6 explain that. 
 

 
 

Figure 7. Real and predictive parallel execution time based on total number of slaves workstations in the 
last level 
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Table 4. The result of the predictive equation based on number of nodes attached to one sub-master node. 
 

Number of nodes Execution time per round (seconds) 
1 21.8 
2 11.2 
3 7.8 
4 6.2 
5 5.3 
6 4.8 
7 4.5 
8 4.3 
9 4.2 

10 4.1 
 
 

Table 5. Overhead on the one level network using master and 5 slaves only. 
 

 Average overhead on network per round (mille 
seconds) 

4 rectangle node 251.04 
3 rectangle vertical node 257.8 
3 rectangle horizontal node 384.8 
2 rectangle vertical node 253.3 
2 rectangle horizontal node 356.61 

 
Table 6. Overhead on the two levels network using master, 5 sub-master, and 25 slaves. 

 
 Average overhead on 

network per round (mille 
seconds) 

4 rectangle node 280.2 
3 rectangle vertical node 283.43 
3 rectangle horizontal node 334.82 
2 rectangle vertical node 294.86 
2 rectangle horizontal node 410.3 

 
5. CONCLUSIONS  
 
We have developed a hybrid parallel and distributed implementation of AdaBoost algorithm that 
exploits the multiple cores in a CPU via light weight threads, and also uses multiple machines via 
web service software architecture to achieve high scalability. We also develop a novel 
hierarchical web services based distributed architecture for maximal exploitation of concurrency 
in the AdaBoost algorithm. We demonstrate nearly linear speedup upto the number of processors 
available to us, and can accomplish the learning of a feature in the AdaBoost algorithm within a 
few seconds. This may be particularly useful in applications where the classifier needs to be 
dynamically adapted to changing training set data e.g., in car model detection. In comparison with 
the previously published work, which used a single level master slave parallel and distributed 
implementation [8], and only achieved a speedup of 2.66 using four nodes, we achieve a speedup 
of 95.1 on 31 workstations each having a quadcore processor, resulting in a learning time of only 
4.8 seconds per feature. Our future work involves developing a learning framework that can adapt 
to different object detection needs in a near real time manner. 
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