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ABSTRACT 

 

One of the most significant challenges in Computing Determinant of Rectangular Matrices is high time 

complexity of its algorithm. Among all definitions of determinant of rectangular matrices, Radic’s 

definition has special features which make it more notable. But in this definition, C(NM) sub matrices of the 

order m×m needed to be generated that put this problem in np-hard class. On the other hand, any row or 

column reduction operation may hardly lead to diminish the volume of calculation. Therefore, in this paper 

we try to present the parallel algorithm which can decrease the time complexity of computing the 

determinant of non-square matrices to O(N�). 
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1. INTRODUCTION 
 

Determinant is one of the basic concepts in linear algebra and applied statistics that have major 

applications in various branches of mathematics and engineering. Computing the determinant of a 

matrix is a classical problem, which is addressed in normal forms of matrix studies [1-4] and 

computational number theory [5].  
 

In principle, determinant is only defined for square matrices [6]. There is usable and clear 

definition for the calculation of square matrices determinant. A parallel algorithm for the 

calculation of �	 × 	� square matrix determinant is presented with time complexity	�(�) [7]. But, 

extracting data from physical phenomena and real world applications generally leads to produce 

non-square matrices [8-10].  
 

So far, many definitions for determinant of non-square matrices are given. Most of the works that 

has been done, focusing on the definition and calculation the determinant of non-square matrices 

by dividing them into square blocks [11][12] .[13]. In reference [12] Radic proposed an efficient 

definition for determinant of non-square matrices that has most of the important properties of 

square matrices determinant. Also, some other properties of Radic’s determinant and its 

geometrical interpretations, involving polygons in the plan R2 and polyhedral in R3 are given 

in[12][14-18]. 
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In [19], non-square matrices are converted to square matrices by summarizing, that leads to miss 

some part of data.   
 

The determinant of non-square matrix is used in retrieving images with different sizes [8]. Also, 

there are some works on video retrieval and video shot boundary detection and image processing 

by using determinant of non-square matrix [8][20-23]. Thus providing an effective solution for 

calculating the determinant of non-square matrices can be very valuable and helpful. 
 

In paper [24] a parallel algorithm based on pointer jumping technique is proposed to calculate the 

determinant of non-square matrices of order	2 × �. But despite the successful work that has been 

done for the definition of non-square matrices determinant, yet there isn’t any efficient algorithm 

to compute this determinant. 
 

According to Radic’s definition for the determinant of a non-square matrix	m × n, it should be 

calculated the determinant of C(nm) square matrices from the order of	m × m. The square matrices 

are obtained by combination of non-square matrix columns. Hence, the calculation of non-

matrices determinant is NP-hard. Some researchers [14] have tried decrease rows or columns of a 

non-square matrix to convert it into a square matrix. But normally any change in rows or columns 

of non-square matrices increase computation and column operations.  
 

According to above explanation and proven theorems [12] currently, the only effective solution to 

compute the determinant of non-square matrices by acceptable time complexity is parallel 

algorithms. 
 

To paralyze the algorithm, at first, the dependency between each Radic’s sub-square matrices 

should be omitted. Secondly, each of these determinants also needs to be computed in parallel. 
 

In this paper, we proposed a parallel algorithm to calculate the determinant of non-square 

matrices based on Radic’s definition with O(n�) time complexity. 
 

Problems and motivations are considered in Section 2. In Section 3 the Radic’s definition are 

analyzed in details. Section 4 includes the proposed method to compute each arbitrary elements of 

Dictionary order independently and in Section 5 a parallel algorithm for computing Raidc’s 

determinant is presented. The complexity of proposed algorithm is perused due to the hardware 

architecture In Section 6. Section 7 clarifies our conclusions. 
 

2. PROBLEMS AND MOTIVATIONS 
 

Radic's definition [12] for calculating the determinant of non-square matrices has numerous 

significant properties and advantages in comparing to other definitions. Specially, it has almost all 

the properties of determinant of square matrices [12].  

 

According to Radic’s definition, it is evident that the determinant of a non-square matrix can be 

computed as sum of specially signed square sub matrices. These sub matrices is obtained by 

calculating specific permutation of columns of non-square matrix. Although this definition is easy 

to compute and understand, it has exponential time complexity. In other words, computing the 

det(�) requires to compute determinants of � ���� square sub matrices of order	� × �, which 

lead to exponential time complexity. Regarding to the previous works, it is obvious that applying 

column and row operations for computing the determinant of non-square matrices is inefficient 

[25]. In addition, due to the dependency between determining square sub matrices, it is 

impossible to design an efficient parallel algorithm based on this definition.  
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In this paper we propose a novel approach for parallel production of square sub matrices which 

reduces the time complexity to O(m × (n − m)).  
 

3. DETAILED ANALYSIS OF RADIC’S DEFINITION 
 
At first, we will clarify some preliminary concepts and then assess Radic’s definition due to these 

concepts. 
 

Definition 1: ascending sequence  
 

A sequence of elements of a partially ordered set such that each member of the sequence is less 

than the following one. So, for set � = {1,2,3,… , �}, each sub set � = {a!, a�, … , a"} is an 

ascending sequence if condition ∀(a!, a�, … , a") ∈ A	and	(m < �)		'�(		('! < a� < ⋯ < a") 
is satisfied. 
 

Definition 2: dictionary order 
 

Suppose {�!, ��, … , �*} is an n-tuple of sets, with respective total orderings {<!, <�, … , <*}. The 

dictionary ordering <+ 	of �! × �� × …× �* is then  

 ('!, '�, … , '*) <+ (,!, ,�, … , ,*) ⟺ (∃� > 0)(∀1 ≤ �)('3 = ,3)⋀('5 <5 ,5). That is, if 

one of the terms '5 <5 ,5	and all the preceding terms are equal. 
 

Theorem 1: 
 

Regarding to def.1, the maximum number of m-tuple sub sequences of ascendant set A ={a!, a�, … , a6} where m < �, is equal to �nm�. 

 

Proof:  
 

Putting the minimum element in the first place (as a! in set A), we would have n − 1 choice for 

the remaining m− 1 places. In the same way, by selecting a�,	there will be n − 2 selection for 

the last m− 1 places, and finally by putting '67"8! in the first place, there will be remained m− 1 choices for m− 1 places. In other word, all the possible selections can be shown as 

follow. 
 

1: p!:;< , =�, … , =5>??@??A
�67!57!�

  

A={a!, a�, … , a67"8!, … , a6BCCCDCCCE
"

} 2: p!:;F , =�, … , =5>??@??A
�67�57!�

  

… … 

n-m+1: p!:;GHIJ< , =�, … , =5>??@??A
�"7!57!�

  
 

In this case, all ascending sequences that can be produced is equal 

 

�n − 1m − 1� + �n − 2m− 1� +⋯+ � mm− 1� + �m − 1m− 1� = �nm�.� 
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According to the dictionary order and ascending sequences definition, it’s obvious that, for m < �, the first element of	A = {1,2,… , n} is [1,2, … ,m], which we entitled First Member. Also, 

the last element in this sequence will be [n −m + 1, n − m+ 2,… , n] and the remaining sub 

ascending sequences will be in this interval. 
 [1,2,… ,m] < [1,2, … ,m + 1] < ⋯ < [n −m+ 1, n − m + 2,… , n]  
 

Now, according to Theorem 1, the sequences can be numbered from 0 to �nm� − 1. Also, 

according to the latest member of ascending sequences the maximum value of each place is 

determined. For example, the maximum value which the m
th
 place can be obtained, is n, But due 

to the need to establish the condition a"7! < a", the value of (m-1)th place cannot exceed n-1. 
 

In the following, we present Radic's definition for determinant of non-square matrices.  
 

Definition 3. Let � = ['3,N] be an � × � matrix with � ≤ �. The determinant of �, is defined as: 
 

det(�) = ∑ (−1)P8Q(RS T'!N< ⋯ '!NU⋮ ⋱ ⋮'5N< ⋯ '5NU
X!YN<Z⋯ZNUY*  , (1) 

 

where [!, [�, … , [5 ∈ ℕ, ] = 1 + 2 +⋯+� and ^ = [! +⋯+ [5. If � > �, then we define det(�) = 0. 
 

Now, according to Definition 3 is observed that the following sub square matrices produced in 

Radic’s definition is in accordance with the dictionary order. So, if an efficient algorithm can be 

represented for the computation of dictionary order elements, therefore Radic’s determinant can 

also be calculated with greater efficiency. 
 

4. COMPUTATION OF DICTIONARY SEQUENCE ELEMENTS   
 

In this section, we attempt to compute each arbitrary elements of Dictionary order independently. 

In other word, by giving a q where 0 ≤ q < �nm�, we try to calculate the qth element in the 

sequence. Due to this purpose, a novel definition entitled combinatorial addition is presented and 

table 1 is formed by the elements of Pascal's triangle. 

 

		[            	1 1 = 1  1 = 2  …  1 = � − � − 1  1 = � − �  

 

[ = 0  �10�  �20�  …  �� − � − 10 �  �� − �0 �  

[ = 1  �21�  �31�  …  �� − � − 21 �  �� −� − 11 � 

… …  …  …  …  …  

[ = � − 2  �� − 1� − 2�  � �� − 2�  …  �� − 3� − 2�  �� − 2� − 2�  

[ = � − 1  � �� − 1�  �� + 1� − 1�  …  �� − 2� − 1�  �� − 1� − 1�  

 

 

Table1 : Pascal's triangle 
 

As you can see in Table 1, each (j, i)th entries in the table is obtained from `1 + [[ a. 

According to Table 1and as it mentioned in theorem 1, the weight of each element in the 

Ascending sequence is equal the last column of the table. 
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�n − 1� − 1�1
, �n − 2� − 2�2

, � n − 3� − 3� ,3 	… , � n − k + 1� − c + 1� ,k − 1
� n − k� − c� ,k …	 , �n −m0 �m  

 

Now, if �� − c� − c� < d ≤ �� − c + 1� − c + 1�, m− k + 1	element of the First Member will change. We 

use Table 1 to calculate the amount of the change. To this, according Table 1, we must go to left 

in the j
th
 row where �� − c� − c� is located. As can be seen in Table 1, the first element at the left 

side of the start point is �� − c − 1� − c − 1�. 

 

Until condition d ≥ �� − c� − c� +⋯+ �� − c − =� − c � is satisfied, we continue the steps to the left. 

 

Then the numbers of steps, which is moved to the left side in j
th
 row, will be added to the value of 

last m-k locations in the First Member. The new value of d is calculated from the following 

equation. 

d ← d − ∑ �� − c − 1� − c �g3hi  .  

 

Then until d	 = 	0, the algorithm is continued from (� −� − =)th column by the new value of d. 

 

Example 1: for set � = {1, 2, … , 8}, the five-member ascending sequences in dictionary order is 

shown in table 2.  

 

 
 

 
 

Table 2: all five-member subsets 

 

For m = 5	and	n = 8, we have table 3. 
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1 1 1 1 

1 2 3 4 

1 3 6 10 

1 4 10 20 

1 5 15 35 

≈  

 1 = 0  1 = 1  1 = 2  1 = 3  

`m + nn a  

[ = 0  �00�  �10�  �20�  �30�  

[ = 1  �11�  �21�  �31�  �41�  

[ = 2  �22�  �32�  �42�  �52�  

[ = 3  �33�  �43�  �53�  �63�  

[ = 4  �4

4
�  �5

4
�  �6

4
�  �7

4
�  

 

Table 3a                                                                           table 3b 

 

We assume q = 49. In this case, according to table 3, the weight of each place in the First Member 

would be as follows. 

 

�7

4
�

1

�6

3
�

2

�5

2
�

3

�4

1
�

4

�3

0
�

5
  

 

Since �74� < d < �85�, in the fifth row (j = 4) we will proceed to the left, but because �6

4
� +

�7

4
� > 49 is not acceptable, so we stopped at p = 1. Therefore, p = 1 and the new q is equal to 

q = 49 − �7

4
� = 14	and a unit will be added to the fifth last places. 

 
6 5 4 3 2  

1 1 1 1 1 +

6 5 4 3 2  

 

Till this step, ascending sequence is	[2, 3, 4, 5, 6]. 
 

Because we went one step ahead in the previous stage, we continue the algorithm from 

column	� − � − = = 8 − 5 − 1 = 2. According to Table 3, for q = 14 we have	�53� < d < �64�. 

Since we start moving from the fourth row and third column, which equals to �5

3
�. Then, we 

have	q ≥ �5

3
� + �4

3
� and p=2. So, two units are added to the last four places. 

 
6 5 4 3 2  

2 2 2 2  +

8 7 6 5 2  

 

Since, the new value of q is	q = 14 − r�5

3
� + �4

3
�s = 0, the algorithm has finished and 49

th
 

element in the sequence of dictionary order is generated. 

 �tu = [2,5,6,7,8]  
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It is proven for any arbitrary d, using combinatorial addition the whole dictionary ordered 

elements are produced. 

 

Theorem 2: Using combinatorial addition, by adding arbitrary d to First Member of the 

dictionary order, exactly dvw element in the dictionary order for �	 < � will be generated. 

 

Proof: We will show this theorem using mathematical induction 

 

First step k = 1: 

 

To produce the second ascending sequence from the First Member, regarding to Combinatorial 

Addition, just it needs to add a unit to the first place. 

 �i = [1,2,3,… ,� − 1,�]  
�! = x1,2,3,… ,� − 1,� + 1BDE

yh!
z  

 

This is the second element in dictionary order. In other words, only one location was changed. 

 

Inductive assumption: 

 

Suppose using combinatorial addition to add d units to First Member. Thus, the ascending 

sequence 1,2,3, … , '57y8!, '57y , '57y7!, … , '5BCCCCCDCCCCCE
y

 is produced, which is exactly the dvw 

element in dictionary order. This sequence is obtained by changing at most c places of First 

Member. 

 

Inductive rule: 
 

It should be shown that adding d + 1 units to First Member, the (	d + 1)vw element in the 

dictionary order will be generated. 

 

First case: Suppose by adding d + 1 to First Member, just c places have changed. Regarding the 

inductive assumption, since only c places were changed, therefore, it is exactly the (	d +
1)vwelement in the dictionary order. 

 1,2,3,… , '57y8!, '57y , '57y7!, … , '5BCCCCCCDCCCCCCE
y

  

 

Second case: by adding q to First Member, if the ascending sequence  1,2,3,… ,� − c, � − c + 1,… , �BCCCCCCDCCCCCCE
y

 is generated, it will be impossible to increase any of the last c 

places. Because, all places achieve to their highest possible value. According to the dictionary 

order, it’s clear the (	d + 1)vw element is 1,2,3,… ,� − c + 1,� − c + 2,… ,� + 1BCCCCCCCCCDCCCCCCCCCE
y8!

. 
 

We will show Combinatorial Addition exactly generated the same sequence. According to Table 

1, the value is equal to  

 d = |y8*7(58!)y7! } + |y8*7(58�)y7! } +⋯+ | yy7!}BCCCCCCCCCCCCDCCCCCCCCCCCCE
*75

  

If we add one unit to both sides then we will have 
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 d + 1 = |y8*7(58!)y7! } + |y8*7(58�)y7! } +⋯+ | yy7!}BCCCCCCCCCCCCDCCCCCCCCCCCCE
*75

+ 1  

 

In this equation, the right side is equal to 

 |y8*7(58!)y7! } + |y8*7(58�)y7! } +⋯+ | yy7!} + 1 = |y8*75y }  

 

According to the above equation we have  

 d + 1 = |y8*75y }  

 

Defined as Combinatorial Addition, the (c + 1)vw place has increased a unit and other elements 

subsequently increased. So, the following ascending sequence is obtained. 

 1,2,3,… ,� − c + 1,� − c + 2,… ,� + 1BCCCCCCCCCDCCCCCCCCCE
y8!

  

This sequence is exactly (	d + 1)vw element in the dictionary order 

 

5. PARALLEL ALGORITHM FOR COMPUTING RAIDC’S DETERMINANT 

 
In this section, we present an efficient algorithm to produce the square sub matrices of definition 

(3) in parallel. 

 

The algorithm is able to receive the value of d and for arbitrary � and � produce the dvw 

sequence in the dictionary order. Pseudo code for this algorithm is shown in Figure 1. 
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For i = 1 To (n - m+ 1) 

        A(1, i) = i 

For i = 1 To m 

        A(i, 1) = 1 

 k = n - m+ 1 

 For i = 2 To m 

       For j = 2 To k 

           A(i, j) = A(i, j - 1) + A(i - 1, j) 

 j = 1 

 For i = 1 To m 

       B(i) = i 

 Sum = 0, p = 0, i = k 

 While A(j, k) <= q 

              j = j + 1 

     j = j - 1 

     i = k 

    While Sum <= q 

           Sum = A(j, i) + Sum 

           p = p + 1 

           i = i - 1 

    Sum = Sum - A(j, i + 1) 

    p = p - 1 

    B(m - j) = B(m - j) + p 

    For h = m - j To m - 1 

       B(h+ 1) = B(h) + p 

    q= q - Sum 

    j = 1 

    k = k - p 

    p = 0 

    Sum = 0 

  Wend 

B(m) = B(m) + q 

 

Fig 1: Pseudo code of generating arbitrary sequence  

This algorithm can be implemented in various granularities. This means whatever the number of 

processors is further, the granularities can be smaller. And we will have larger granularities if the 

number of processors is less. In other words, if the number of processors is k, the number of 

granularities will be 
�*5�
y . It means the first processor starts from �i to ��~U�

� 7!and the next portion 

form ��~U�
�
	 to ��×�~U�

� 7! is for the second processor. In the same way, the last processor calculates 

�(y7!)×�~U�
�

 to ��*5�7!. Pseudo-code for producing ascending sequence from a specific element 

has been shown in figure 1. 

 

��]		��� = 1	S�	 �*5�
y − 1  

								�(1) 	= 	�(1) 	+ 	1  								��	�(1) 	> 	�	�ℎR�  												�(1	 − 	c) 	= 	�(1	 − 	c)	+ 	1  												�ℎ1�R	�(1	 − 	c) 	> 	�	 − 	c  																		c	 = 	c	 + 	1  																	�(1	 − 	c) 	= 	�(1	 − 	c)	+ 	1  											�R�(  											��	(c	 < 	�)	�ℎR�  
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																��]	�	 = 	1	 − 	c	��	�	 − 	1  																				�(�	 + 	1) 	= 	�(�)	+ 	1  															c	 = 	1  										��(	��  						��(	��  R�(	
 

Figure 1: dictionary sequence 

 

6. ALGORITHM ANALYSIS DUE TO THE HARDWARE ARCHITECTURE 

 
The proposed algorithm has the ability to run on different architectures. Parallel Random Access 

Machine (PRAM) is a shared memory abstract machine. In this architecture shared memory plays 

an important role. 

 

On Concurrent Read Concurrent Write (CRCW) memory, the highest performance of the 

algorithm can be achieved. In this case, if we have ���� processors, each processor is only run the 

algorithm, which is shown in Figure 1, once to obtain the corresponding square matrix with �|�(� −�)} time complexity. 

 

According to the algorithm presented in [7], if we have �� processors, the determinant of each 

� ×� square matrix is calculated with �(�). Therefore, if we have �� × ���� processors with 

a CRCW memory, this algorithm can calculate the determinant of  � × � non-square matrix 

in	�(�(� − �) + �) ∈ �|�(� − �)}. 

 

If the memory is Concurrent Read Exclusive Write (CREW), the time required to sum the results 

of all processors in tree structure will be equal to ��� ����. we know that ����! ∈ �(�����). 
Thus the determinant of the non-square matrix will be calculated at �(�(� −�) + �����) ∈�|�(� −�)}. 

 

In Exclusive Read Exclusive Write (EREW) memories, there is a burden to read matrices. If 

enough memory is available, the matrix can be copied in a tree structure in ��� ���� time 

complexity. Then, it will be accessible for all processors. In this case, the algorithm complexity is �(�(� − �) + 2�����) ∈ �|�(� − �)}. Given the above description it has been shown that 

the time complexity of the proposed algorithm is �(��). 
 

It’s obvious the proposed algorithm in cloud computing architecture and other architectures in 

which processors are connected through the network tolerates the overhead of network too. So it’s 

time complexity will be �(�� + �RS��]c_��R]ℎR'(). 
 

7. CONCLUSION  
 

Using Parallel algorithms is an effective method for reducing the time complexity. However, in 

most cases, increasing the number of processors does not increase productivity and just reduces 

the required time. But given that the cost of producing complex hardware with many processors is 

declining sharply, therefore the parallel algorithm can have appropriate efficiency. 
 

On the other hand, time is an important factor in reducing the response time of real-time systems, 

and it plays a key role in the success of such systems. Note that, also in the machine vision, time 

is one of the important factors; the proposed algorithm can be very efficient and effective. 
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8. FUTURE WORK 
 

In recent years, researchers interest in Cloud computing and distributed processing. Since the 

proposed algorithm can be implemented in distributed systems, implementation and computing 

network overhead in these systems can be considered as future researches. 
 

With regard to applications of the determinant of matrix in image and video processing, making a 

proper hardware and implementing the proposed algorithm can be a suitable solution in computer 

vision. 
 

There are other definition for determinant of non-square matrices, these definition can be 

investigated whether they can be parallelize or not and be compared with proposed algorithm in 

this paper.     
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