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ABSTRACT 

  
Clients in mobile cellular networks lack computing resources to execute complex and data-intensive 

applications. So the mobile clients purchase tickets from ticket engines installed at stationary servers that 

are rich in resources. Clients upload computation, resource intensive jobs or applications along with the 

ticket to the stationary servers. The tickets store the client validity information, deadline before which the 

stationary servers should execute the job and forward the results to the destination cell, the priority of 

execution of the job and the run-time history information about the jobs (like the amount resources the job 

required when it was run before). For simplicity, the stationary servers are assumed to be the base stations. 

The base stations then schedule the jobs based on the information in the ticket. If the base station at which 

a job is submitted determines that it will not be able to execute and forward the job to the destination cell 

before the deadline, the base station forwards it to a supervisory host which can be compared to a base 

station controller in GSM networks. The supervisory host then schedules the job to any peer base station 

which can handle the job and forward to the destination before the deadline. The design was simulated 

using Java. The servers were simulated as shared memory multiprocessor systems. It was determined that 

on the average there is a 15-60% decrease in turn around time for the jobs executed based on the ticket-

based scheduling and load sharing (TB-SLS) model when compared with that of the FIFO or RR models. 

Also, the percentage deadline guarantee with the ticket model was 30-65% while that of the FIFO and RR 

models is lower. The simulation was performed on both homogeneous and heterogeneous systems of 

servers and clients. 

 

KEYWORDS 
 
Ticket, Resource Scheduling, Load Sharing, Mobile Computing, Algorithm Design 

 

1. INTRODUCTION 

 
Two important trends of network communication are currently visible [18]. The network service 

model in the realm of wired networks is evolving from a best-effort-only model into a scalable 

multiple service model and hence offering the possibility of significantly enhanced performance 

to network applications. Simultaneously wireless and mobile communication networks are 

becoming more robust and ubiquitous. Even though many researches have addressed these two 

trends individually, more research is required to address the convergence of these two trends. 

Wireless mobile networks are characterized with frequent network disconnections, widely 

varying bandwidth between wired and wireless links, frequent server hand-off and limited 
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computing power of the mobile devices. The problem of resource scheduling and load sharing in 

mobile computing environments is more complicated than that in distributed systems [10]. 

Mobile computers change their position from time to time, and their platforms are not only 

heterogeneous but also dynamic.  

 

Traditional methods of resource scheduling and load sharing cannot be employed in mobile 

computing environments without the support of new software or changes. The differences 

between the hardware characteristics of the mobile computers and those of stationary ones 

suggest that mobile computers should take advantage of the resources of the stationary computers 

[10]. To achieve better performance, mobile computers should delegate tasks to more powerful or 

lightly loaded stationary hosts. Also, one can obtain better responses when computationally 

intensive applications are executed on a more powerful foreign stationary host than on the mobile 

computer itself. Communication links between mobile computers in a wireless network are slow 

and unreliable [11]. Performance can be improved if communication between mobile computers 

can be reduced. For example, consider a case where a long job on mobile computer M1 has to 

often communicate with another mobile computer M2 via stationary hosts S1 and S2. To reduce 

communication between M1 and S1, the job may be submitted to run on S1 instead of M1.  

The use of tickets to access various services has become as a well-established concept in 

everyday life. A ticket is a piece of information that represents a user’s rights to access a certain 

service provided by a certain service provider. This general concept of tickets can be extended for 

service access in the context of communication systems. But, however the physical realization of 

tickets in this case is different: a string of bits [5]. The following are the main advantages of using 

tickets for accessing services [5]: (i) Flexibility: Clients can choose services that in a way satisfy 

their needs and match their personal requirements. Hence, by buying appropriate set of tickets, 

one can easily construct personalized service profiles for the clients. Also, clients need not engage 

in long-term contractual relationships with service providers. (ii) Scalability: A ticket can contain 

all the necessary information that would enable a service provider to decide whether it should or 

be able to provide the service or not. In other words, service providers need not run long distance 

protocols with some trusted agent of the accessing user (for authentication). Thus a ticket-based 

service approach is more suitable for mobile communication systems where users roam and 

contact service providers in foreign domains. (iii) Privacy: A user only needs to demonstrate that 

he is a legitimate holder of the ticket and need not reveal his real identity. A trusted agent can 

issue tickets and handle payments on behalf of users. Thus, a ticket-based mechanism along with 

a trusted agent can protect the privacy of the users efficiently. 

 
 

Figure 1: Four-layered Mobile Cellular Network Architecture 
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This paper proposes a broader use of tickets, than in earlier works, for resource scheduling, load 

sharing and billing in mobile computing environments. Tickets combine the features of credit 

card and workload information submitted to the service provider. We consider a four-layered 

micro-cellular network architecture, as shown in Figure 1, consisting of Mobile Hosts (MHs), 

Mobile Support Stations (MSSs), Supervisory Hosts (SHs) and a Super Supervisory Host (SSH). 

The single SSH manages a group of SHs, which in turn manage a group of MSSs, also called base 

stations, with each cell having an MSS. Clients buy tickets from the MSS for service and resource 

access. Each MSS is assumed to be a shared memory multi processor system. MHs (also called 

clients) upload tickets with their database and computation-intensive applications and submit to 

an MSS. More than one MH can run the same application (for e.g. internet search). A job refers to 

an instance of an application. The jobs at an SSH, SH and MSS may be respectively from a peer 

SH, peer MSS and MH. All job executions are assumed to occur only at the MSSs. The SSH and 

SHs are involved only in resource scheduling and load sharing.   

 

2. LITERATURE REVIEW 

Mobile computing is an emerging computing environment that incorporates both wireless and 

high-speed networking technologies [4]. Users equipped with mobile devices like personal digital 

assistants (PDAs) and palm-top computers will have access to a wide variety of services available 

over several national and international communication networks. To receive or access these 

services, mobile users need to be connected to wired (fixed) networks through wireless (mobile) 

networks. In this section, we review several works focused towards the convergence of these two 

networks and that would lead to a generalized service architecture of wireless networks with 

mobile hosts. 

2.1 Load Balancing in Homogeneous Broadcast Distributed Systems 

The basic resources in any computing system, especially distributed and networked systems are 

the processors. But, these resources are not effectively and efficiently used [14]. For example, 

even though powerful processors of a system are not fully exploited, certain users of the system 

have to wait for long periods for completion of their background computational jobs [11]. Livny 

and Melman [13] calculated the probability that at least one job is waiting for service at one 

processor while at least one processor is idle. Their probability expression is given by: Pwi = (1-

P0
N
)(1-P0

N
-(1-P0)

N
) where, P0

i
 is the probability that i processors are idle; P0 is the probability that 

a processor is idle and N is the number of processors (N>1). The idle waiting condition indicates 

that it is possible to reduce the average job response time. To achieve improved performance, one 

needs to limit excessive communication among tasks and evenly distribute the workload among 

the computers. But, communication costs increases as processor utilization is uniform and tasks 

are evenly distributed in a system. Thus, the goals of limiting communication and balancing jobs 

are conflicting to one another, leading to tradeoffs in obtaining (near) optimal system 

performance [1]. 

2.2 Static vs. Dynamic Load Sharing 

According to Nishikawa and Steenkiste [15], load sharing can be either dynamic or static, and the 

load sharing problem can be solved by statically or dynamically scheduling jobs among 

computers. In static load sharing, the task and data distribution are determined at compile time. 

Static load sharing is effective if the workload can be sufficiently well described before migration 

decisions are made. Rosing and Weaver [17] proposed that a compiler could do the task 

distribution possibly with input from the programmer. Job or task migration decisions are also 

made based on the assumptions about the jobs that are to be executed: execution time, current 
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load of the execution environment, transfer times and communication costs. But in a practical 

environment, this information is usually not known in advance and hence static load sharing is 

not ideal for systems where the workload fluctuates rapidly [11]. Also, another drawback with the 

static load sharing approach is that it uses only the information about the average system behavior 

but not the current state of the system. In dynamic load sharing, job migration decisions are based 

on the current state of the system, and hence rapid system state changes can be readily captured. 

Livny and Melman [13] proposed that if the Pwi in equation (1) can be reduced by transferring 

tasks from one processor to another, the expected turn around time for the tasks in the system 

would be reduced. Thus, if the current state of the system can be observed, then by maintaining a 

balanced load, performance improvement can be achieved. 

  

2.3 Comparison of Process, Object and Program Migrations 

Different forms of migration mechanisms could be employed in different situations to handle load 

sharing. Current distributed computing systems facilitate some forms of migration e.g., program, 

process or object migration, aiming to achieve better system performance. For example, the 

Galaxy [18] and the V4 [6] distributed systems support process migration. Mach [2] supports task 

migration and Emeralds [9] supports object migration. 

Even though process and object migrations are attractive mechanisms for load sharing, the 

heterogeneity of a distributed system is increased with the joining and leaving of the mobile 

computers. Also, software facilities to support process and data migration do not adapt well to 

such heterogeneous dynamic environments [10]. On the other hand, program migration or job 

transfer mechanism offers the following facilities, which are attractive in load sharing [11] to: 

• Collect statistical information about system workload 

• Migrate programs written in any language 

• Migrate both source and object code 

• Invoke remote programs 

• Migrate data 

Therefore, we use job transfer mechanism for load sharing in this paper. 

 

2.4 Load Sharing with Abstract Mobile Ticket Engine (AMTE) 

Le et. al [10] proposed the use of an Abstract Mobile Ticket Engine (AMTE), in conjunction with 

program, data or object migrations, for load sharing in mobile computing environments. The 

AMTE is platform independent and can be easily added to any computer. The engine allows 

mobile computers to purchase unique abstract tickets (similar to a credit card) from a stationary 

host for use of foreign network resources. Mobile tickets can be purchased, used and reused 

facilitating the system and the mobile computer to work together on a use-based payment 

arrangement. The fields in the ticket include a globally unique ticket identification (combination 

of the unique IP number of the host which issues the ticket and a sequence number unique to that 

host), data and time of purchase and expiry, the place the ticket was issued, the place the ticket 

was last used, the intended destination (optional), the class, etc. The information maintained by 

the engine and stored in the ticket is sufficient for the system to keep track off mobile computers. 

Mobile computers are assumed registered at some stationary computer that can be reached by 

using its IP address.  

The concept of AMTE can be extended to distributed and network systems that enable mobile 

computers to use the resources not provided by the mobile computer’s home server. AMTE can 

be installed at the stationary base stations (MSSs) in a cellular network. More over, an AMTE can 

act as a client or a server depending on the type of service requested by the mobile user. A request 
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for service can be of different types: (1) buying an abstract mobile ticket for using foreign 

resources, (2) reconnecting with the network using the previously purchased ticket, (3) getting the 

results of the jobs submitted previously, (4) submitting jobs, etc. 

In the above ticket model, the tickets were mainly used to track mobile computers and the AMTE 

handles the problem of load sharing and accessing foreign resources. Peer servers have an 

agreement on sharing of resources. We have enhanced the design of the tickets in order to achieve 

better load sharing and remote resource scheduling. The ticket design, in this paper, combines the 

features of a credit card and workload information submitted to a server.      

 

2.5 Ticket Acquisition Models 

 
Buttyan and Hubaux [5] discuss three different types of ticket acquisition models: (i) Outlet 

model: In this model, the user directly acquires the ticket from the service provider. The 

advantage of the outlet model is its simplicity, but it incurs considerable overhead in using 

complicated protocols to determine the optimal service provider that offers the best price and the 

best quality, or the combination of the two. (ii) Kiosk model: According to this model, a special 

service provider called the kiosk, sells the tickets for various service providers. Users do not have 

to contact each service provider if they need a ticket, but they can contact a kiosk, where 

information about the offers of several service providers is available. The disadvantage of the 

kiosk model is that it requires infrastructure (kiosk) to be built up and the users still need to 

decide themselves, which requires resources. (iii) Agency model: In the agency model, agencies 

buy tickets, for users, from the service providers. The advantage of this model is that users can 

obtain the best tickets in an easy way by allowing the agency to contact the service providers and 

find an optimal offer. 

In this paper, the MSS acts as the kiosk and the clients can use a ticket for wide variety of 

services offered by different service providers. Hence, applying the above classification of tickets 

and ticket acquisition models, we can classify the tickets in this paper as of type t4 and their 

acquisition model is a modified version of kiosk where the MSS or base stations of a cell itself 

acts as service providers. 

 

2.6 History-driven Dynamic Load Sharing 

Dynamic load sharing is likely to be suitable on systems where the workload fluctuates rapidly 

[12]. History-driven dynamic load sharing shows significant improvements [3] over conventional 

schemes, which assign jobs in a random, a fixed, or a worst order (worst ordering refers to an 

ordering in which the jobs are assigned to the busiest workstation first). But, it incurs a huge 

storage overhead in establishing a run-time history database at each MSS. Instead the tickets can 

be designed to maintain a small database pertaining to the applications of the MH. These tickets 

are passed along with the job in the mobile network. Since clients can submit the tickets at any 

MSS in the network, there is a distinct advantage in maintaining the run-time information at the 

tickets rather than at the MSS. Also, at run-time, application characteristics pre-dominate system 

characteristics, and identical processors are likely to be used through out the network, both of 

which support maintaining historical information in the tickets. 

 

3. TICKET DESIGN 

In this paper, we enhance the structure of tickets and propose their broader use, than in earlier 

works, for resource scheduling, load sharing and billing in mobile computing environments. A 

ticket has many fields, which contain information required for routing the results of computation 
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through the network and also for load sharing within a MSS. Figure 2 shows the different fields in 

the ticket, as designed in our previous work [19]. These fields are explained below: 

 

• Ticket Id: The ticket id is unique to each ticket. It consists of four parts as shown in   Figure 2. 

The first part identifies the SH whose identity is unique in the entire network, the second part 

identifies the MSS which is unique in a cell, the third part refers to the IP address of the 

mobile host in its home cell and the final part represents the serial number of the ticket. 

• Time of issue: The time when the ticket was issued. 

• Expiration time: The time when the validity of the ticket expires. 

• Account Balance: When clients buy the ticket, the payment is credited to this field of the 

ticket. When they use computing resources, the executing MSS debits this field accordingly. 

• Application Id: Each application submitted by the host, is given a unique identification. 

• Job Id: A job is an instance of an application. A ticket may contain multiple instances (jobs) 

of an application. The MSS assigns a unique job id. The job id is used to identify the result at 

the destination station. 

• Transaction Id: The MSS assigns a transaction id to the job for billing and communicating 

with the peer MSSs and the SH. The peer MSSs refer to the home MSS for billing using this 

transaction id. The transaction id assigned to a job at an MSS is unique. The transaction id is 

used to identify a job in the priority list during resource scheduling and load sharing any time 

at an MSS.  

• Job Status: Job status could be Active (‘A’), Suspended (‘S’), Waiting (‘W’) or Historical 

(‘H’). Active jobs are those currently being run at the MSS. Each client may have more than 

one active job. Submitted jobs can also be suspended or waiting on a resource. They may 

become active later. Jobs that were run recently and which are likely to recur are tagged as 

historical. The MSS sets this field. 

• Destination: The clients specify their intended cell or destination. The results of the 

computation will be routed to the MSS at the destination. 

• Output Data Expiration Date: The client and the MSS agree upon an expiration date for the 

results. After the expiration date, the destination MSS may purge the results of execution in 

its database. 

• Deadline: The deadline before which the MSS should finish executing a job. Some jobs e.g., 

weather predictions, may be time-critical. The client specifies the deadline. 

• Arrival Time: The user can also specify the expected time of arrival at the destination. The 

results of the executed job should be available by this time. 
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Figure 2: Ticket Structure (adapted from [19]) 

 

• Priority: The following priorities for the execution mode are assigned to jobs by the 

submitting client: Emergency, Urgent, Regular and Ordinary mode in descending priority. 

The billing rate for jobs with different priorities is different. 

• Serial Time: The serial execution time of the job in its last run. The MSS updates this field. 

The client may also specify an expected value of serial time, particularly for the first run. 

• Parallel Time: The parallel time of a job if it was run on a multiprocessor system. The MSS 

updates this field. The client may also specify an expected value of parallel time, particularly 

for the first run. 

• Number of Processors: The number of processors used when the application was last run on a 

multiprocessor system. The MSS updates this field. The client may also specify an expected 

value for the number of processors, particularly for the first run. 

• Disk Usage: This field represents the amount of disk space that the application used when it 

was last run or the expected disk usage. Either the MSS or the client updates this field. The 

client may specify an expected value of disk usage, particularly for the first run. 

• Memory Usage: This field represents the amount of memory that the job used when it was 

last run or the expected memory usage. Either the MSS or the client updates this field. The 

client may specify an expected value of memory usage, particularly for the first run. 

• Time Last Executed: This field tells the time at which the job was last executed. The results of 

the different applications in the ticket are purged using the Least Recently Used (LRU) 

algorithm, which uses this field. 

 

4. LOAD SHARING, SCHEDULING AND BILLING 

4.1 Cellular Mobile Network Architecture 

In this section, we explain the cellular network architecture used in this work. We basically 

expand the cellular network architecture proposed in [4]. We had given a brief overview of the 

architecture in Section 1. The reader is suggested to refer to Figure 1 in Section 1 for further 

reading in this section. 
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We consider a four-layered cellular network architecture. The entire network is divided into 

multiple cells. Each cell is controlled by a mobile support station (MSS), which is similar to the 

base station in GSM networks. The mobile hosts (MHs) or clients constitute the bottom-most 

layer of the network. Each MH has a home cell and a home MSS with which it is registered. The 

MH is assigned an IP address unique in the home cell. The MH is also free to move from one cell 

to another with the support of “hand-shake” mechanism between the MSSs in the two cells. When 

an MH enters an alien cell, it registers with the MSS in the alien cell after the required identity 

validation. For simplicity, we assume the validation mechanism that is used in the MobileIP 

protocol. The MH is assigned a new foreign address that is unique in the alien cell. The MH can 

also use its home IP address to correspond with the MSS in its home cell. The MSS-MH link is 

wireless. All the MSSs are connected to each other and constitute the second layer of the network. 

An MSS is assigned a unique id in the network. We assume that the AMTE, described in section 

2.4, can be installed at an MSS. MHs or clients can buy the tickets from the MSS. Clients can buy 

more than one ticket from an MSS and can also buy tickets from more than one MSS. We also 

assume that the MSS acts as the stationary host, providing the services requested (job execution, 

job forwarding, results storing) by the clients. Each MSS is assumed to be a shared memory 

multiprocessor system.  

The supervisory hosts (SHs) constitute the third layer. The SH, similar to the base station 

controller in GSM networks, controls multiple cells. An MSS is connected to the SH that controls 

its cell. An SH is assigned a unique id in the network. The super supervisory host (SSH) 

constitutes the top-most layer in the network. All the SHs are connected to the SSH. The SSH 

regulates the operation of the entire network in co-ordination with the SHs. In this paper, we 

assume that the MSSs are the only stationary hosts that execute the jobs submitted by the clients. 

The SSH and SHs perform only load sharing and resource scheduling of the jobs, which is also 

performed by the MSSs in addition to job execution. 

4.2 Load Sharing and Scheduling Algorithm 

We propose a new load sharing and scheduling (LSS) algorithm that is to be executed at each 

MSS upon receiving a ticket from a client. The algorithm is shown in Figure 3 and explained in a 

step-wise fashion.  

 

Procedure LSS 

1. Check ticket validity. 

2. If valid, assign Job Id and Transaction Id. Otherwise, set the above fields in the ticket to 

–1, implying invalid ticket and return the ticket to the client and exit. 

3. The client uploads the job(s) to the ticket and sets the Status field of relevant jobs to 

either Active, ‘A’. 

4. The MSS computes the net priority of the jobs submitted. 

                  Net Priority = {(Priority)Origin + (Priority)Mode }* Deadline 

5. Schedule job based upon non-decreasing order of Net Priority. 

6. If the MSS can meet the job’s deadline, set the Status field on the ticket as Active and 

return a receipt to the ticket with the Job Id and Transaction Id assigned in Step 3. 

Otherwise, forward the ticket with the job to the SH and return a copy of the ticket to the 

client with the Status field set to Suspended, ‘S’. (Note: In forwarding, MSS merges 

small resource requests into blocks of larger requests).  

end LSS 

 

 

Figure 3:  Load Sharing and Scheduling (LSS) Algorithm (adapted from [19]) 
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Step 1: To execute a job or multiple jobs, a client first sends the ticket to the ticket engine at the 

MSS. Each MSS maintains a ticket database to keep track off the tickets bought, the balance 

amount on the ticket, the date of purchase and expiry of the ticket, etc. If the MSS Id in the Ticket 

Id field matches with that of the MSS (i.e., the client has bought the ticket from the MSS), the 

MSS checks for a valid entry for the Ticket Id field in its ticket database. If a match is found, the 

ticket is considered valid. If the Ticket Id field in the ticket refers to a different MSS Id (Ticket Id 

field includes the MSS Id from which the client buys the ticket), then the MSS contacts a peer 

MSS identified by the MSS Id in the Ticket Id field and requests for authentication. The peer MSS 

does a similar ticket database search as explained previously, and confirms whether it is a valid 

ticket or not.  

Step 2: Depending upon the number of jobs requested, the MSS stamps the validated tickets with 

new job id(s) and transaction id(s) and returns the ticket to the client. Invalid tickets are returned 

stamped with a job id and transaction id of –1 and cannot be used for job submission. 

Step 3: The client uploads the job(s) to the validated ticket. If there is no matching application for 

the job uploaded, the client treats the job as a new entry into the ticket and specifies the expected 

values for the number of processors, serial time, parallel time, disk usage and memory usage in 

appropriate fields in the ticket. The client marks the status field of the job(s) to be submitted as 

‘A’ (Active Status). The client specifies a destination MSS and the deadline before which the job 

should have been executed and the results available at the destination MSS. The client also 

specifies the priority for the execution mode of the jobs. Jobs can be executed in four different 

modes (in decreasing value of priorities): Ordinary, Regular, Urgent and Emergency modes. If the 

priority is not specified, jobs are by default executed in Ordinary mode. The client then submits 

the job(s) along with the ticket to the MSS. 

Step 4: The MSS adds the information (all the fields relevant to the job in the ticket) about the 

newly submitted jobs to a Job_Fields database. The MSS computes the transmission delay that 

would be incurred in transferring the results of execution of the job to the destination MSS. The 

MSS updates the deadline field for the job in the Job_Fields database with the difference between 

the current deadline and the transmission delay. The MSS then computes the net priority of the 

submitted jobs. The net priority is given by: Net Priority = {(Priority)Origin + (Priority)Mode }* 

Deadline. The priority due to origin is computed using the Ticket Id. If the MSS Id in the Ticket 

Id field matches with that of the MSS (i.e., the client has bought the ticket from the MSS), then 

the client is treated as a home client and assigned a higher priority. If the MSS Id in the Ticket Id 

field does not match with that of the MSS (i.e., the client has not bought the ticket from the 

MSS), then the client is treated as an alien and assigned a lower priority. Figure 4 shows the 

numerical values of priority due to origin and priority due to execution mode. The net priority 

thus computed combines the features of the Earliest Deadline First (EDF) and Highest Priority 

First schemes and is suitable for soft real-time systems. Jobs with lower net priority value are 

invoked first. 

 

Table 1: Priority Information in Tickets 

 Modes Priority 

 

Origin 

Origin 

Priority 

                Ordinary 4 Peer 

MSS 

2 

Regular 3 Home 

MSS 

1 

Urgent 2 

Emergency 1 
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Step 5: The MSS maintains a sorted list of jobs (called net_priority list) based on increasing 

values of net priority. Each processor in the MSS is assumed to handle only one job at a time. 

The job with the lowest net priority is the first one to be assigned a processor for execution.  

Step 6: If the MSS can meet the job’s deadline, it sets the Status field on the ticket as Active and 

returns the ticket to the client with the Job Id and Transaction Id assigned in Step 3. The MSS 

immediately forwards the job to its SH if it cannot afford to complete the execution of the job 

before the updated delivery deadline or does not own sufficient resources (memory and 

processors) to execute the job. The Status field in the jobs forwarded to the SH is set to 

Suspended. If the MSS lacks resources, it may sometimes act as an agent by collecting all the jobs 

submitted and sending them to the SH for distribution to peer MSSs. 

 

4.3 Rescheduling 

The MSS maintains a sorted list of jobs (called job_execution list) that are currently executing, in 

the order of their earliest finish time. A job once scheduled at an MSS is not pre-emptable. Once 

the resources are exhausted, the MSS attempts to do a rescheduling process before sending the 

unexamined jobs (jobs that are not yet considered for scheduling) in the net priority list to the SH. 

If after the completion of a job or jobs in the execution list, an unexamined job in the net_priority 

list can be still executed and its delivery deadline guaranteed, then that job is designated to be in 

the Waiting (‘W’) state and is not forwarded to the SH. The job is scheduled to execute once the 

currently running job(s) (with which the former is compared during rescheduling) finish 

execution. Jobs that cannot be executed at the MSS even after rescheduling, are immediately 

forwarded to the SH. A significant feature of our resource scheduling algorithm is that the MSS at 

which the job is submitted is immediately able to determine whether it can handle the job; 

otherwise it forwards the job to the SH. In other words, Steps 5 and 6 of LSS and rescheduling 

can be executed without any appreciable delay (by a simple “dequeue” operation into the 

net_priority and job_execution lists) and thus the deadline guarantee of the jobs not affected. 

Rescheduling comes with a drawback. Since the jobs selected for execution after rescheduling, 

have a higher wait time, the turn around time of the jobs also increases. But rescheduling 

guarantees that the deadline of the job can be met and excessive transmission delays due to job 

forwarding can be avoided. If after the initial scheduling (steps 5 and 6 of LSS), all the 

unscheduled jobs were forwarded to the SH, then there may be a chance that certain jobs are 

executed beyond their deadline at the peer MSSs. We see this as a trade off between the turn 

around time and the deadline guarantee. 

 

4.4 Scheduling and Load Sharing at the SH 

The SH has “read” access to information on the availability of resources (memory and 

processors) at its constituent MSSs. The SH maintains a sorted list (called the MSS_Resource list) 

in increasing order of the amount of free resources (number of free processors and unused 

memory) available at each of its constituent MSSs. The SH also maintains a sorted list (called the 

SH_net_priority list) based on the net priority of the jobs sent by its constituent MSSs. The SH 

schedules the jobs in the SH_net_priority list to the MSS, which can finish the job at the earliest 

and can guarantee the delivery deadline of the job at the destination MSS. The delivery deadline 

of the job varies with different MSSs since the transmission delay in the SH-MSS-destination 

MSS links vary. If there exists more than one candidate MSS, which can provide the deadline 

guarantee and the same earliest finish time, the job is assigned to the MSS that has relatively 

higher resources than the other candidate MSSs. If none of the MSSs are able to provide the 

deadline guarantee, the job is forwarded to the SSH.  
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4.5 Scheduling and Load Sharing at the SSH 

The SSH has “read” access to the information on resource availability of all the MSSs in the 

network. A scheduling procedure similar to that described for SH is adopted. But in this case, 

even if there exists no candidate MSS satisfying the deadline guarantee, the job is scheduled to 

the MSS that can complete the job at the earliest. This approach will suit for soft real-time 

applications and also for hard real-time applications with slight flexibility in deadline. 

 

4.6 Billing 

The home MSS bills the mobile clients for the workload handled using the Account Balance field 

of the tickets. Higher bills incur for jobs with higher priorities. Peer MSSs communicate among 

themselves to consolidate financial transactions using transaction ids and job ids.  MSSs that 

execute and forward the results to the destination, debit certain amount from the Account Balance 

field of the ticket. 

In a homogeneous system where all the MSSs possess identical resources to handle jobs, the 

ticket-based job forwarding and load sharing model proposed in this paper distributes the load 

evenly in the network irrespective of the MSS at which the jobs are submitted. If an MSS is 

unable to execute and finish a job before the deadline, it immediately forwards the job to its SH, 

which distributes the job to peer MSSs. If the SH is unable to find an MSS that could execute and 

finish the job before the deadline, it forwards the job to the SSH. The SSH has a global view of 

resource availability in the network and finds a suitable MSS to execute the job and at the same 

time maintaining the deadline guarantee. Thus, the ticket model distributes the workload evenly 

leading to equal earnings for all the MSSs. 

In a heterogeneous system, MSSs vary in their resource content. The ticket-based job forwarding 

and scheduling model is equally well applicable for heterogeneous systems. The MSSs are loaded 

relative to their potential of handling the jobs and an MSS is not overloaded with jobs that it 

cannot handle. Thus, the ticket model distributes the jobs in the network depending on the 

capacity of an MSS and hence leads to earnings proportional to the availability of resources at an 

MSS.  

  

5. SIMULATIONS 

Both the ticket and FIFO models are subjected to the same set of experimental data at simulation 

conditions explained below in Sections 5.1 through 5.4. For each set of maximum deadline 

condition, the runs are made for a T-1 link and for an OC-3 link and in each case with 5, 25 and 

50 processors at each MSS. The percentage deadline guarantee and the turn around time for the 

jobs in the ticket model and the FIFO model are measured. The percentage of jobs in the ticket 

model whose turn around time is less than that in the FIFO model is then calculated. 

 

5.1 Simulation Environment 

We simulated the four-layered micro-cellular network architecture using a mobile test bed 

consisting of cells adjacent to each other, with one MSS controlling a cell. MHs are registered as 

home clients to an MSS. An MH can be a home client in more than one cell. The MSS – SH – 

SSH, MSS – MSS links are assumed connected as in conventional wired networks. The MSS – 

MH link is wireless. Free space propagation channel is assumed. The MHs roam in all directions 

at a predefined average speed and a reflecting boundary model is assumed. The jobs and the 

results of execution are forwarded respectively to the target MSS (the MSS that could execute the 

job) and destination MSS via the MSS – SH – SSH – SH – MSS route.  
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The MSSs are assumed to be shared memory multiprocessor systems. The experiments are 

simulated in both homogeneous and heterogeneous environments. In the case of a heterogeneous 

environment, the number and speed of processors at each MSS varies and is less than a fixed 

maximum value (5, 25, 50). The total shared memory at each MSS varies from 500MB to 5GB. 

The speed of the processors at the MSS is varied using a speed factor whose value ranges from 

0.01 to 1. It is assumed that the execution time of jobs listed in the tickets is based on a speed 

factor of 1. The execution time of a job at an MSS is calculated as the execution time of the job as 

listed in the ticket divided by the Speed factor of the processors at the MSS. 

In the case of a homogeneous environment, all the MSSs use the same fixed number of 

processors (5, 25, 50) with identical speed factor. The total shared memory at each MSS is fixed 

(2GB). The size of the unexecuted applications and that of the results of the applications are each 

less than or equal to 100MB. The execution time of the applications is less than or equal to 5 

hours. 

In addition to simulating the ticket-based scheduling and load sharing model, whose operation 

was explained in the previous sections, we also simulated a First-In First-Out (FIFO) based 

scheduling model for the submitted jobs at each MSS. In the FIFO model, the MSS never 

forwards the jobs for execution to any other peer MSS. Regardless of the priority and deadline of 

the jobs, the MSS executes the jobs on a first-come first-serve basis. 

5.2 Simulation Parameters and Performance Measurement 

We study the performance of the ticket model with respect to the percentage deadline guarantee 

and percentage of jobs with lower turn around time when compared to that in a FIFO model. The 

percentage deadline guarantee is percentage of the submitted jobs whose results of execution are 

delivered to the destination MSS before their deadline. The turn around time is the difference 

between the delivery time at the destination MSS and the initial submission time at an MSS. The 

performance of the two models is studied by varying the following parameters: 

(1) Client arrival rate: We assume the client arrival rate into the network is in a Poisson 

distribution. Each client can submit more than one job (maximum 6 jobs per ticket) at an 

MSS. The mean arrival rate of the clients is varied from 10 to 90 clients per hour over a time 

period of 24 hours (a day).  

(2) Link speed: The speed of the wired links is 1.544Mbps (for T-1 link) and 155Mbps (for OC-3 

link).  

(3) Number of processors: In the case of a heterogeneous system, the maximum number of 

processors at any MSS used is 5, 25 and 50. For example, if the maximum number of 

processors at an MSS is fixed as 5, then the number of processors at an MSS can vary 

randomly from 0 to 5. In the case of a homogeneous system, the number of processors is the 

same at all the MSSs and the values are 5, 25 and 50. 

(4) Shared memory: All the MSSs are assumed to be shared memory multiprocessor systems. In 

the case of a heterogeneous system, the memory at the MSS is varied from 500MB to 5GB. 

For example, one MSS in the system can possess 1GB of memory while another system can 

possess 3.2GB of memory. In the case of a homogeneous system, all the MSSs are assumed 

to possess 2GB of memory. This could be any value but we chose 2GB since it is 

approximately the average of the range of memory used in the heterogeneous system 

considered. 
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(5) Maximum deadline: All jobs submitted in the network are associated with a deadline for 

completion. The simulation is run for 4, 6 and 9 hours of maximum deadline of the jobs 

submitted. 

 

5.3 WAN Switching and Link Speeds 

There are mainly two types of switching in wide area network (WAN) links: circuit switching and 

packet switching [16]. Circuit switching is ideal when data must be transmitted quickly, must 

arrive in sequencing order and at a constant arrival rate. Thus, circuit switching networks are used 

while transmitting real-time data such as audio and video. Packet switching networks are more 

efficient and robust for data that is bursty in its nature and can tolerate some amount of delay. 

Since the performance of our ticket model is measured with reference to the percentage deadline 

guarantee and percentage of jobs with lower turn around time than a FIFO model, we consider the 

MSS-MSS, MSS-SH, SH-SSH links as circuit switched.  

We simulate the MSS-MSS links as T-1 links and OC-3 links. T-1 links [7] are the most 

commonly used digital lines in the US, Canada and Japan. T-1 links use copper wires and span 

distances within and between major metropolitan areas. The links carry 24 pulse code modulation 

(PCM) signals using time division multiplexing (TDM) at an overall rate of 1.544 million bits per 

second (Mbps). OC-3 links [7] are a type of Synchronous Optical Network (SONET) links that 

transmit digital signals on optical fiber. Optical fiber carries much more information than 

conventional copper wire and is not subject to electromagnetic interference and signal 

retransmission. OC-3 links operate at a data rate of 155Mbps, almost 100 times the speed of T-1 

links. We study the performance of the ticket and FIFO models with respect to these two links 

having wide difference in their bandwidths. 

 

 

 

5.4 Delay Calculations 

 
The delay in a circuit switched network is the sum of the link propagation delay, the serialization 

delay, the transmission delay and the queuing delay [8]. We assume that the MSS-SH and MSS-

MSS links under the control of a particular SH are pre-established. Hence, the connection set up 

cost is constant and need not be considered in delay calculations. The link propagation delay is 

the time a transmitted bit needs to travel from one end of a link to the other end. It is dependent 

only on the speed at which signals travel on the transmission medium and the length of the link. 

Speed of light is 3*108 m/sec and the speed of signals in most guided media is 2*108 m/sec [8]. 

Hence, even for a transmission between nodes that are 2*10
5
 km apart, the link propagation delay 

is only a second, which we assume does not significantly affect the deadline guarantee and the 

percentage of jobs with lower turn around time. The queuing delay is dependent on the length of 

the queues at the routers. Even though the queuing delay is a very dynamic quantity, we have no 

resources to compute the queuing delay at the routers. Hence, we assume that the network is not 

loaded very heavily which would otherwise cause a significant queuing delay at the routers. 

Transmission delay is the time it takes to transmit all the bits of a packet onto a link. The 

transmission delay is only dependent on the transmission size and the transmission rate. In 

circuit-switched networks, the transmission delay is experienced only at the first node and not at 

intermediate nodes. The serialization delay or the insertion delay is the amount of time it takes to 

place the bits of a packet on the transmission wire. The serialization delay is a function of the size 

of the packet and the speed of the port. We assume the packet size to be the maximum 

transmission unit (MTU) size (1500 bytes) used in conventional networks. The serialization delay 
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for a T-1 link is 5µs per byte while that of an OC-3 link is 0.05µs per byte. We assume the 

maximum size of the application or the results of the application to be 100MB. Hence, the 

serialization delay is appreciable and is experienced at each hop. Considering all the above said 

features of the delays, we compute the delay in the network to be the sum of the transmission and 

serialization delays.     

 

5.5 Results for Homogeneous Systems 

From the simulation results for homogeneous systems, it can be inferred that for a network with 5 

processors at each MSS (i.e., limited resources), the percentage of jobs with a lower turn around 

time (in the ticket model than in the FIFO model) decreases as the network traffic increases. But 

for a network with 25 and 50 processors at each MSS (i.e., sufficient and/or excessive resources), 

the percentage of jobs with a lower turn around time does not vary significantly with the network 

traffic. One can also observe that in most of the results, an OC-3 link yields a slightly higher 

percentage of jobs with lower turn around time when compared to that of a T-1 link. Similar to 

the case of heterogeneous systems, it can be inferred from the results that the percentage deadline 

guarantee in the ticket model decreases as the network traffic increases and for a fixed client 

arrival rate, increases as the maximum number of processors at an MSS increases, the latter being 

as expected. The parameters representing the vertical bars in Figures 4 through 9 represent the 

link bandwidth (T-1 or OC-3, in Mbps) and the number of processors at each MSS. 

 

     

Figure 4: Simulation Results for Homogeneous Systems (Maximum Deadline: 4 Hours) 

 

Similarly, the type of link (T-1 or OC-3) does seem to cause variation in the percentage deadline 

guarantee. In most of the results observed, an OC-3 link provides better deadline guarantee than 

that by a T-1 link. This is attributed to higher serialization and transmission delays for a message 

in a T-1 link when compared to that in an OC-3 link. Similar to the case of heterogeneous 

systems, in the case of a FIFO model, it can be inferred that the percentage deadline guarantee 

decreases as the network traffic increases, which is also observed in the ticket model. It can also 

be observed that the type of link (T-1 or OC-3) has a significant effect on the percentage deadline 

guarantee for the FIFO model. As expected, an OC-3 link yields a higher percentage deadline 

guarantee than that of a T-1 link.  

 

      

Figure 5: Simulation Results for Homogeneous Systems (Maximum Deadline: 6 Hours) 
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Figure 6: Simulation Results for Homogeneous Systems (Maximum Deadline: 9 Hours) 

 

5.6 Results for Homogeneous Systems 

From the simulation results for heterogeneous systems, it can be inferred that the percentage of 

jobs with a lower turn around time (in the ticket model than in the FIFO model) decreases as the 

network traffic (related to the client arrival rate) increases and for a fixed client arrival rate, 

increases as the maximum number of processors at an MSS increases, the latter being as 

expected. Also, it is interesting to observe that in majority of the runs, the type of link (T-1 or 

OC-3) does not significantly cause variation in the percentage of jobs with a lower turn around 

time. Similarly, it can be inferred from the results that the percentage deadline guarantee in the 

ticket model decreases as the network traffic increases and for a fixed client arrival rate, increases 

as the maximum number of processors at an MSS increases, the latter also being as expected. The 

type of link (T-1 or OC-3), as expected, does seem to cause variation in the percentage deadline 

guarantee. In most of the results observed, an OC-3 link provides better deadline guarantee than 

that by a T-1 link. This is attributed to higher serialization and transmission delays for a message 

in a T-1 link when compared to that in an OC-3 link.  

 

       

Figure 7: Simulation Results for Heterogeneous Systems (Maximum Deadline: 4 Hours) 

 

     

Figure 8: Simulation Results for Heterogeneous Systems (Maximum Deadline: 6 Hours) 

 

      

Figure 9: Simulation Results for Heterogeneous Systems (Maximum Deadline: 9 Hours) 

 

In the case where the maximum deadline of the applications is 9 hours, while the maximum 

execution time of applications is 5 hours, one can observe only a marginal increase in the 
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percentage deadline guarantee when compared to the results for the other two deadlines. In the 

case of a FIFO model, it can be inferred that the percentage deadline guarantee decreases as the 

network traffic increases, which is similar that observed in the ticket model. Also, one can 

observe that at lower client arrival rates, an increase in the number of processors increases the 

percentage deadline guarantee (but not significantly when compared to that of a ticket model).  

 

6. CONCLUSIONS AND FUTURE WORK 

For both homogeneous and heterogeneous systems, comparing the performance of both the ticket 

and the FIFO models, one can observe that the percentage deadline guarantee in the ticket model 

is higher than that in the FIFO model for all the combinations of the simulation parameters. And 

as expected, higher the resource availability, higher the percentage deadline guarantee in the 

ticket model than that in the FIFO model. We have assumed that the jobs executed at the MSS are 

independent. In other words, the execution of a job once scheduled at an MSS is not dependent on 

any other job currently being executed or waiting to be executed in other MSSs or is not 

dependent on the resources of any other MSS. Future work should address inter-application 

dependencies. Load sharing among the peer MSSs can be performed based on different objective 

functions such as reduced resource usage, reduced transfer cost, etc. without affecting the 

priorities and the deadline requirements contained in the ticket. Also, a job once assigned to an 

MSS is assumed to be non-preemptable prior to completion. Future work should be on systems in 

which jobs once assigned to an MSS for execution can be preempted prior to completion. In other 

words, context switching must be considered.  
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