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ABSTRACT 

 In multi input multi output antenna systems, beamforming is a technique for guarding against the 

negative effects of fading. However, this technique requires the transmitter to have perfect knowledge of 

the channel which is often not available a priori. A solution to overcome this problem is to design the 

beamforming vector using a limited number of feedback bits sent from the receiver to the transmitter. In 

the case of limited feedback, the beamforming vector is limited to lie in a codebook that is known to both 

the transmitter and receiver.When the feedback is strictly limited, important issues are how to quantize 

the information needed at the transmitter and how much improvement in associated performance can be 

obtained as a function of the amount of feedback available.In this paper channel quantization schema 

using simple approach to codebook design (random vector quantization)is illustrated. Performance 

results show that even with a few bits of feedback, performance can be close to that with perfect channel 

knowledge at the transmitter. 
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1. INTRODUCTION 

Multiple-input multiple-output (MIMO) systems, which use multiple antennas at both 

transmitter and receiver, provide spatial diversity that can be used to mitigate signal-level 
fluctuations in fading channels [2].When the channel is unknown to the transmitter, diversity 

can be obtained by using space-time codes [3],[2].When channel state information (CSI) is 

available at the transmitter, however, diversity can be obtained using a simple approach known 

as transmit beamforming and receive combining. Compared with space-time codes, 

beamforming achieves the same diversity order as well as additional array gain, thus it can 

significantly improve system performance. This approach, however, requires knowledge of the 

transmit beamforming vector at the transmitter. In practice, CSIT must be provided to the BS by 

some form of feedback. 

CSIT feedback schemes are a very active area of research (see for example [13] and the special 

issue [14] for a fairly complete list of references). In brief, we may identify three broad families: 

1) open-loop schemes based on channel reciprocity and uplink training symbols, applicable to 

Time-Division Duplexing (TDD); 2) closed-loop schemes based on feeding back the 

unquantized channel coefficients (analog feedback); 3) closed-loop schemes based on explicit 

quantization of the channel vectors and on feeding back quantization bits, suitably channel-

encoded (digital feedback). 

 

When the uplink and downlink channels are not reciprocal (as in a frequency division duplexing 

system), this necessitates that the receiver informs the transmitter about the desired transmit 

beamforming vector through a feedback control channel. The beamforming techniques proposed 
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for narrowband channels can be easily extended to frequency selective channels by employing 

orthogonal frequency division multiplexing (OFDM). The combination of MIMO and OFDM 

(MIMO-OFDM), converts a broadband MIMO channel into a set of parallel narrowband MIMO 

channels, one for each subcarrier [10]. Transmit beamforming can be performed independently 

for each subcarrier of MIMO-OFDM. In non-reciprocal channels, this means requires that the 

MIMO-OFDM receiver calculates and sends back to the transmitter the optimal beamforming 

vector for every subcarrier. Practically, the feedback rate can be managed by using limited 

feedback techniques where the beamforming vectors are quantized using a beamforming 

codebook designed for narrowband MIMO channels [17]. For MIMO-OFDM’s structures 

different approaches are possible. In this paper, joint beamforming, that consists in the 

extension to the transmitter side of the classical receive beamforming, is used. We focused this 

analyse on the impact of limited CSI on the transmitter  on the performance of such system. 

This paper is organized as follows. In Section 2 we present the basic system model in brief. 

Section 3 introduce channel quantization limited feedback model, random vector quantization is 

presented in section 4. Finally in Section 5 some simulation results and conclusions are 

presented. 

2. SYSTEM MODEL 

In adaptive Beamforming, an array of antennas is exploited to reach maximum reception in a 

specified direction: the idea is to estimate the signal arrival from the desired direction (in the 

presence of noise) while signals of the same frequency from other directions are not accepted 

[2]. This can be achieved by varying the weights of each of the antennas used in the array. This 

spatial separation aims to separate the desired signal from the interfering signals. In adaptive 

beamforming the optimum weights are computed using complex algorithms based upon 

different criteria.  

The communication over a frequency selective MIMO channel with NT transmits and NR 

receive antenna can be represented in multi-carrier fashion as: 

 

Where k denotes the carrier index , N is the number of carriers, 1Tn
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∈� is a zero-mean circularly symmetric complex Gaussian noise vector with arbitrary 

covariance matrix Rk .Since transmit beamforming is used at each carrier, the transmitted signal 

is: 

 

Where bk is the transmit beamvector and xk is the transmitted symbol at the k
th
 carrier [2].The 

receiver also uses beamforming: 
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transmitted is constrained in its average transmit power as: 

 

where PT is the power per block-transmission. Employing limited feedback in coherent MIMO-

OFDM communication systems requires cooperation between the transmitter and receiver. At 

1 (1)k k k ky H s n k N= + ≤ ≤

1 (2)
k k k

s b x k N= ≤ ≤

ˆ 1 (3)H

k k k
x a y k N= ≤ ≤

{ }2 2

1 1

(4)
N N

k k t

k k

E s b P
= =

= ≤∑ ∑



International Journal of Wireless & Mobile Networks (IJWMN) Vol. 3, No. 2, April 2011 

41 

 

the reception, the estimate of the forward link channel matrix H is used to design feedback that 

the transmitter uses to adapt the transmitted signal to the channel.  

There are two approaches to design feedback: quantizing the channel or quantizing properties of 

the transmitted signal. For most closed-loop schemes, either method can be employed. It will be 

apparent, however, that channel quantization offers an intuitively simple approach to closed-

loop MIMO, but lacks the performance of more specialized feedback methods 

3. CHANNEL QUANTIZATION 

The basic idea behind closed-loop MIMO is to adapt the transmitted signal to the channel. One 

approach to limited feedback is to employ channel quantization, which is illustrated in Fig. 1. 

This problem is reformulated as a Vector Quantization problem (VQ) by stacking the columns 

of the channel matrix H into a Mr × Mt dimensional complex vector hvec. The vector hvec is then 

quantized using a VQ algorithm. 

A vector quantization works by mapping a complex valued vector into one of a finite number of 

vector realizations. The mapping is usually designed to minimize some sort of distortion 

function such as the average mean squared error (MSE) between the input vector and the 

quantized vector.  

 

 

 

 

 

 

 Figure 1.  Limited feedback linear precoded MIMO system 

Sending a quantized version of the forward link channel from receiver to transmitter gives the 

transmitter more flexibility to choose among different space-time signaling techniques. 

Intuitively, one might expect that a random selection of matrices in the codebook F is likely to 

result in a large subspace distance between any pair of matrices in the codebook. This intuition 

is valid for a large number of antennas Mt, and is related to the fact that two vectors with i.i.d. 

components become orthogonal (with probability one) as the length becomes large. In the case 

of a random MIMO channel with i.i.d. components, the columns of the optimal precoding 

matrix are eigenvectors of the channel covariance matrix, which are isotropically distributed. 

These considerations motivated the Random vector quantization (RVQ) scheme proposed in [7], 

in which the elements of the codebook F are independently chosen random unitary matrices 

(i.e., Fk*Fk = I for each k).When used for beamforming in a MISO channel, RVQ is 

asymptotically optimal in the sense that it achieves the maximum rate over any codebook. 

 

Furthermore, the achievable rate can be computed for both MISO and MIMO channels [7]. Here 

asymptotic means for a large system in which the number of antennas Mr and Mt each go to 

infinity with fixed ratio (or in the MISO case Mt goes to infinity), while also fixing B/MtM, the 

number of feedback bits per dimension.  
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3.1.  Digital Channel Feedback Model  

At the beginning, each receiver quantizes its channel to B bits and feeds back the bits perfectly 

to the access point. When each mobile has a single antenna (N=1), vector quantization is 

performed using a codebook C that consists of 2
B
 M-dimensional unit norm vectors 

1 2
{ , }BC w w� L .Each receiver quantizes its channel vector to the quantization vector that 

forms the minimum angle to it [4] [5]. Thus, user ι quantizes its channel to ˆ
ih , chosen according 

to: 

1 2

2

, ,

ˆ arg min sin ( ( , ))
B

i i
w w w

h h w
=

= ∠
L

 
and feeds the quantization index back to the transmitter.  

In this work we use random vector quantization (RVQ), in which each of the 2B quantization 

vectors is independently chosen from the isotropic distribution on the M-dimensional unit 

sphere [6]. Each receiver is assumed to use a different and independently generated codebook, 

and we analyze performance averaged over the distribution of random codebooks. 

When Ν > 1, the quantization codebook consists of matrices and the distance metric can be 

appropriately defined. Furthermore, random quantization corresponds to choosing the 

quantization matrices independently from the set of all unitary matrices.  

 

3.2. Linear Precoding 

After receiving the quantization indices from each of the mobiles, the AP uses linear precoding 

to transmit data to the mobiles. When N = 1, we consider the simple strategy of zero-forcing 

beamforming (ZFBF). Since the transmitter does not have perfect CSI, ZFBF is performed 

based on the quantizations instead of the channel realizations. When ZFBF is used, the transmit 

vector is defined as  
1

M

i ii
x v s

=
=∑  where each σι �is a scalar (chosen complex Gaussian with 

power P/M) intended for the ι-th receiver, and and vι 2 CΜ  is the beamforming vector for the ι-th 

receiver. The beamforming vectors v1,…, vM are chosen as the normalized rows of the matrix 
1
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The achievable long-term average rate is the expectation of log (1+ΣΙΝΡι) over the distribution 

of the fading and RVQ. When Ν > 1, ZFBF can be generalized to block diagonalization [9]. 

4. RANDOM VECTOR QUANTIZATION 

In [12], authors analyzed, with limited channel knowledge at the transmitter, the channel 

capacity with perfect channel knowledge at the receiver,. Specifically, the optimal beamformer 

is quantized at the receiver, and the quantized version is relayed back to the transmitter. Given 

the quantization codebook 1 2
{ , }BC w w= L , which is also known a priori at the transmitter, and 

the channel H, the receiver selects the quantized beamforming vector to maximize the 

instantaneous rate, [11] 
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where 2
1 nρ σ= is the background signal-to-noise ratio (SNR). The (uncoded) index for the rate-

maximizing beamforming vector is relayed to the transmitter via an error-free feedback link. 

The capacity depends on the beamforming codebook V and B. With unlimited feedback (B→ 

∞) the w(H) that maximizes the capacity is the eigenvector of H*H, which corresponds to the 

maximum eigenvalue. 

We will assume that the codebook vectors are independent and isotropically distributed over the 

unit sphere. It is shown in [12], that this RVQ scheme is optimal (i.e., maximizes the achievable 

rate) in the large system limit in which (B,Nt,Nr)→∞ with fixed normalized feedback B = B/Nt 

and ¯ Nr = Nr/Nt. (For the MISO channel Nr = 1). Furthermore, the corresponding capacity 

grows as log(ρNt), which is the same order-growth as with perfect channel knowledge at the 

transmitter. Although strictly speaking, RVQ is suboptimal for a finite size system, numerical 

results indicate that the average performance is often indistinguishable from the performance 

with optimized codebooks [12], [14]. 

 

5. SIMULATIONS RESULTS: 

In this section, we evaluate the impact of working with limited feedback; witch is more 

practical, on system’s performance, especially on the bit error rate.  We consider only the case 

of one user (mono-user system). That means there is no need to user selection algorithms and 

the is no interference .Fig 2 shows the system’s performance when there is two antenna in the 

transmitter and only one antenna on the reception (MISO system). 
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Figure 2.  Nt=2, Nr=1 (with perfect channel knowledge) 

Results show that for Nt = 2 and Nr=1, the Bit error rate with perfect channel knowledge at both 

the transmitter and receiver is larger than the rate with random vector quantified feedback. And 

this is perfectly expected so the blue curve is considered as the ideal case 
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Figure 3.  Nt=2, Nr=2 

In Figure 3, we consider MIMO system with two antennas both in the transmitter and the 

receiver, using the same parameters. Results are better here so red curve witch represents 

quantified feedback is more close to the ideal case. 

In other hand, we consider the case where we use channel estimation in figure 4, we consider 

the case when all training sequences are dedicated for estimation i.e. there is no data blocs. We 

show estimation’s result for orthogonal phase shift sequences, 

In fact we can easily remark degradation of performance between the two figures, this of course 

can be explained by the addition of two types of error: error due to channel estimation 

transmitted by feedback and the second error called quantization error. 
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Figure 4.  Nt=2, Nr=1 (with channel estimation) 

3. CONCLUSIONS 

This paper outlines a general framework for enabling limited feedback in closed-loop MIMO-

OFDM systems. We review the application of limited feedback to MIMO communication. 

Numerical examples illustrate that relatively little feedback can provide substantial performance 

improvements. 



International Journal of Wireless & Mobile Networks (IJWMN) Vol. 3, No. 2, April 2011 

45 

 

Channel estimation error and channel evolution will definitely compromise expected 

performance improvements, but simulations and experimental results are required to determine 

how “recent” the feedback bits must be to maintain satisfactory performance. 

More work is also needed in the area of limited feedback applications in MIMO-OFDM 

systems. In fact, a more practical technique is to feed back information on a select subset of 

tones and then use interpolation techniques. Other applications of limited feedback such as for 

multi-user MIMO channels are promising areas for investigation. 
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