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Abstract
Understanding the nature of traffic has been a key concern of the researchers particularly over the last
two decades and it has been noticed through extensive high quality studies that traffic found in different
kinds of IP/wireless IP networks is human operators . Despite the recent findings of real time human
behavior in measured traffic from data networks, much of the current understanding of IP traffic
modeling is still based on simplistic probability distributed traffic. Unlike most existing studies that are
primarily based on simplistic probabilistic model and traditional scheduling algorithms, this research
presents an analytical performance model for real time human behavior queue systems with intelligent
task management traffic input scheduled by a novel and promising scheduling mechanism for 4G-LTE
system. Our proposed model is substantiated on human behavior queuing system that considers real time
of traffic exhibiting homogeneous tasks characteristics. We analyze the model on the basis of newly
proposed scheduling scheme for 4G-LTE system. We present closed form expressions of expected
response times for real time traffic classes. We develop a discrete event simulator to understand the
behavior of real time of arriving tasks traffic under this newly proposed scheduling mechanism for 4G-
LTE system . The results indicate that our proposed scheduling algorithm provides preferential treatment
to real-time applications such as voice and video but not to that extent that data applications are starving
for bandwidth and outperforms all other scheduling schemes that are available in the market.

1. INTRODUCTION
In the Internet, Quality of Service (QoS) management allows different types of traffic to

contend inequitably fornetwork resources. Bandwidth is the key heuristic to manage real life
network utilities like video and voice overremote locations. Three main QoS frameworks such
as IntServ, DiffServ and MPLS have been introduced to providedifferential treatment to a
variety of applications available in real time service internet [1] . The differentiation ofmultiple
classes of traffic is fundamentally relied on these frameworks that utilize various queuing and
schedulingcombinations for separating different traffic classes. Further, the traffic separation is
categorized under specificparameters like bandwidth, delay, jitter and packet-loss rate. The
different arrangements of these parameters can bebundled under variety of queuing and
scheduling methods. It is therefore vital to QoS frameworks that modelingof traffic behavior
through network domains is accurate so that resources can be optimally assigned.

Understanding the nature of traffic has been a key concern of the researchers particularly
over the last twodecades and it has been noticed through extensive high quality studies that
traffic found in different kinds ofIP/wireless IP networks is human operators [2] . Despite the
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recent findings of real time human behavior inmeasured traffic from data networks, much of the
current understanding of IP traffic modeling is still based onsimplistic Poisson distributed
traffic. In this paper, we add to a more realistic modeling of network domains throughthe
following main contributions: (1) the presentation of an analytical approach and closed form
expressions tomodel the accurate behavior of multiple classes of wireless IP traffic based on a
human behavior queuing systemunder real time assumptions, (2) the derivation of expected
waiting times of corresponding human behavior trafficclasses and formulation of an embedded
intelligent task management and (3) the detailed simulation results to giveexact QoS parameter
bounds to validate the analytical framework.

We have analyzed the traditional scheduling schemes based on real time human behavior
queuing system, whereasin current study, we analyze the newly proposed scheduling scheme to
guarantee tight bound QoS to all kind of trafficin human behavior service wireless internet. The
rest of the paper is structured as follows. Section II summarizesrelated work. The Real Time
Human Behavior Queue Model have been discussed in Section III. The simulationand analysis
results are given in Section IV. Finally, Section V concludes this work.

2. RELATED WORK
Queuing theory is the backbone of telecommunication systems. The major concern about

internet traffic is: howburstiness (commonly known as human behavior operations) behavior
can be managed in real time spans. Theexperimental queuing analysis and simulation studies
with human behavior packet data arrival traffic have beenperformed in [3] and [4] respectively.
These studies merely indicate that providing hard and tight bound guaranteesfor different QoS
parameters such as maximum delay, delay-jitter and cell-loss probabilities in the presence
ofhuman behavior traffic is nontrivial especially if the coefficient of variation of the marginal
distribution is large.The readers are referred to [5, 6] to get a detailed overview of other
queuing based results available in the presenceof human behavior traffic. The core limitation of
these findings is based on the fact, that FIFO logic has beenconsidered to understand the
behavior of traffic, which can’t be used to provide differential treatment to multipleclasses of
traffic with different QoS time constraints.

The desire to dispense divergent QoS guarantees to different classes of customers in wireless
Internet is leadingto the use of priorities in tenns of allocation of resources. Multiple priority
based classes are supported by the IProuters and ATM switches. The authors in [7] have used
human-in-the-loop (analytical) Model to provide numericalresults for two different classes of
traffic input based on Real Time Task Release Control Process (RT-TRCP). Anotable
discrepancy of RT-TRCP is the estimation of large set of parameters. It has been shown that
Real Time TaskRelease Control Process (RT-TRCP) can prioritize each class in its own buffer
[8]. The flow control managementbased on the computation of probability of various types of
traffic classes has been discussed in [9]. The otherwork related to this study can be found in
studies [10, 11] . Unfortunately, in related work, the issue of providingQoS guarantees to the
end-user based on tight bound QoS parameters has not been properly addressed.

In addition, we refer the readers to [12, 13] regarding the work that has been carried out in
terms of IP networkperformance evaluation. The analysis conducted in [12, 13] has two main
disadvantages; first the reported queuingmodels did not employ human-in-the-loop
phenomenon for network traffic input and second, they have only usedsingle class of traffic for
conducting analysis by neglecting the performance affect of other subsequent traffic classes.To
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overcome the limitations of related work, they presented a novel analytical framework [14, 15]
based on realtime human behavior queuing system, that contemplates task management of
human behavior traffic. In the relatedwork, they analyzed the traditional scheduling schemes
such as priority and round robin. It is well known thattraditional scheduling schemes can’t
provide the required QoS to all types of traffic found in modem wirelessnetworks. Hence, in
this current study, we analyze real time human behavior model on the basis of a novel andmost
promising scheduling mechanism titled as, ”Best Scheduling Algorithm (BSA)” and find exact
packet delaysfor the corresponding classes of human behavior traffic. The results indicate that
BSA completely outperforms alltraditional and other available scheduling schemes. To date, no
closed form expressions have been presented forreal time human behavior model with such
scheduling mechanism.

3. REAL TIME HUMAN BEHAVIOR QUEUE MODEL
The basic elements of Real Time Human Behavior Queue Model are its actions, which

represent activities carriedout by the systems being modeled, and its operators, which are used
to real time descriptions.

Time point

A time point is a time instant with respect to the global clock of the system; it does not have
duration. It specifiesthe starting and stopping times of an action. Using a time point, we can
instruct the system to generate an actionat a particular point in time. Time point progresses
consistently in all parts of the system. More formally, the timepoint is defined by using a
discrete time domain, which contains the following properties:∀ ∃ ′ < ′ ∧ ∀ ′′ ∶ < ′′ ⇒ ′ ≤ ′′

We assume a fixed set of clocks = { , … , } . The special time point , which is called
the start time point, always has the value 0.

Time Constraint

An action can exist for a period of time; this duration is called the time constraint of the action.
A time constrainthas a starting and an ending point. It consists of a lower-bound and an upper-
bound time point, where the lowerboundtime point enables an action in a module, and the
upper-bound time point disables the action at that pointin time. Formally, we define a time
constraint in the following:= {[ , ] | ∀ ∈ }with 0 ≤ ≤ .

Timed Action

A timed action is a tuple < , , >consisting of the type of the action α, the rate of the action
and temporalconstraint of the action . The type denotes the kind of action, such as

transmission of data packets, while therate indicates the speed at which the action occurs from
the view of an external observer. The rates are used todenote the random variables specifying
the duration of the actions. The actions can be defined in different types ofprobability
distribution function such as human behaviors distribution. Moreover, each transition is also
boundedby a temporal constraint.
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Real Time Single Server Queue Model

Consider the following single-server queue model. Tasks arrive periodically, at rate , i.e.,
a new task arrives every 1/ time units. The tasks are identical and independent of each other
and each task brings units of work, where is an independent identically distributed (i.i.d.)
random variable whose probability distribution is with bounded support [ , ] for
some > 0 and ≤ . In the rest of the paper, we will assume this bounded support
assumption on without explicitly repeating it. Let be the mean of with respect to .
Let be the Dirac delta distribution centered at . We will use the distribution for the
scenario when the tasks are homogeneous. Note that the task arrival process under
consideration is deterministic. We briefly discuss the implications of stochastic inter arrival
times in Section. The tasks must be serviced in the order of their arrival. We next state the
dynamical model for the server, which specifies the state-dependent service times for the
server.

3.1 Real Time Server Model

Let ( ) ∈ [0,1] be the server state at time , and let : → 0,1 be such that( ) is 1 if the server is busy at time , and 0 otherwise, where is the set of real numbers.
The evolution of ( ) is governed by a simple first-order model( ) = ( ) ( ) , (0) = (1)

where > 0 is a time constant that determines the extent to which past utilization affects the
current state of the server, and ∈ [0,1] is the initial condition. The quantity ( ) bounded
by time interval [ , ] denotes the utilization ratio of the server, i.e., the fraction of the recent
history when the server was busy. Physically, ( ) represents the perceived workload of the
operator based on its recent utilization history within the time interval [ , ] . Equation (1)
can be considered to be the continuum limit of the discrete time exponential moving window
average by rewriting the time derivative in (1) from first principles( + Δ ) ≈ 1 − Δ ( ) + Δ ( ) . (2)

A simple moving window average model has been proposed in [16] for computing the
utilization ratio. For other models of human mental workload, we refer the reader to [17]. The
time constant corresponds to the inverse of the sensitivity of the operator to its recent
utilization history: larger correspond to lower sensitivity and smaller correspond to higher
sensitivity. Note that the set [0,1] is invariant under the dynamics in (1) for any > 0 and
any : → {0,1} .

The service times bounded by time interval [ , ] are related to the state ( ) through a map: [0,1] → , where is the set of positive real numbers. If a task is allocated to the
server at state , then the amount of time required to perform unit work is given by ( ) .
Therefore, if the amount of work associated with a task allocated to the server at state is ,
then the service time on that task is ( ) . This linear decomposition of the total service time
within time interval [ , ] into the amount of work associated with the task and the rate of
performing work with respect to the initial server state is an approximation to a more realistic
scenario where the rate of performing work also depends on the amount of work such a model
has been proposed in [4]. The linear decomposition that we use is reasonable especially for



International Journal of Wireless & Mobile Networks (IJWMN) Vol. 5, No. 2, April 2013

99

small heterogeneity in the tasks. In our framework, the controller cannot interfere with the
server while it is servicing a task. Hence, the only way in which the server state can be
controlled is by scheduling the beginning of service of tasks after their arrival. Such controllers
are called task-release controllers and will be formally characterized later on. In this paper, we
assume that ( ) is positive valued, continuous, and convex. Let : = { ( )| ∈[0,1]}, and : = { (0), (1)}

The solution to (1) is ( ) = / (∮ (1/ ) ( ) / + ) . This implies that the
server state ( ) is increasing when the server is busy, i.e., when ( ) = 1 , and decreasing
when the server is not busy, i.e., when ( ) = 0 . Note that ( ) is not necessarily
monotonically increasing in , since it has been noted in the human factors literature [18] that,
for certain cognitive tasks demanding persistence, the performance [ which in our case would
correspond to the inverse of ( ) ] could increase with the state when is small. This is
mainly because a certain minimum level of human behavior mental arousal is required for good
performance. A well-known empirical law capturing such characteristics is the Yerkes-Dodson
law [18] . A loose experimental justification of this server model in the context of human-in-
the-loop systems is included in the related work [19], where ( ) for that setup was found to
have a U-shaped profile. We will use that particular ( ) from [19] for various numerical
illustrations in this paper. We provide further experimental evidence for this model in Section .
It is important to note that the U-shaped relationship between the service time and the
operator’s utilization, as would be dictated, for example, by the Yerkes-Dodson law, falls
within our assumptions on ( ) within time interval [ , ] but it is not essential. In
particular, our assumptions on ( ) also allow it to be monotonically increasing, decreasing,
or even constant over ∈ [0,1] .

3.2 Real Time Task Release Control Policy

We now describe task release control policies within the time interval for the Real
Time Human Behavior queue. Without explicitly specifying its domain, a task release
controller u acts like an ON-OFF switch at the entrance of the queue, e.g., see Fig. 1. In short,

is a task release control policy if ( ) ∈ { , } for all > 0 , and an outstanding task
is assigned to the server if and only if the server is idle, i.e., when it is not servicing a task and= . Let be the set of all such task release control policies. For a given > 0 and ,
let ( , , , , , ) be the queue length, i.e., the number of outstanding tasks, at time t,
under task release control policy ∈ , when the task arrival rate is and the server state
and the queue length at time = 0 are and , respectively. For brevity in notation, we
will sometimes use the short hand notation ( ) to denote the queue length at time under
task release control policy when the other parameters are clear from the context. Note that
we allow to be quite general in the sense that it includes control policies that are functions of, , ( ), , , , bounded by the time interval [ , ] etc.

Figure  1: Real -Time Task Release Control Architecture
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3.3 Define Human Behavior Stabilizable Arrival Rate

We now formally state the problem. Define the maximum stabilizable arrival rate within time
interval [ , +∞] for policy as ( , , ): == { : lim → ∞ ( , , , , , )< +∞∀ ∈ [0,1], ∈ . .
The quantity ( , , ) will also be referred to as the throughput under policy within

time interval [ , ] . The maximum stabilizable arrival rate over all policies, or simply the
real time throughput, is defined as ∗ ( , ): = ∈ ( , , ) . For a given > 0
and , a task release control policy is called maximally stabilizing if, for any ∈[0,1], ∈ , lim → ∞ (( , , , , , ) < +∞ for all ≤ ∗ ( , ) within time
interval [ , +∞] almost surely. The primary objective in this paper is to compute the real time
throughput and design a corresponding maximally stabilizing task release control policy for the
dynamical queue whose server state evolves according to (1), and where ( ) is positive,
continuous, and convex.

In this paper, we extensively focus on a specific class of task release control policies threshold
policies. For a given ∗ ∈ [0,1] , the ∗ -threshold policy is defined as

∗( ) = ,( ) ≤ ∗, .
We prove that an appropriate threshold policy is maximally stabilizing when the tasks are
homogeneous and utilize the threshold policies in the time interval to prove bounds on the real
time throughput when the tasks are heterogeneous.

3.4 Simple Bounds on the Real Time Throughout

We start by deriving simple bounds on the real time throughput.

Proposition II.1: For any > 0 and , we have that ∗ ( , ) ∈ [( (1)) , ) ]
Proof: The time between the start of service of successive tasks consists of two parts: the

time to actively service a task, and the time when the server is idle, as governed by the task
release control policy. The upper bound on the throughput is obtained by neglecting the idle
times and by assuming that the server spends the least amount of time to service every task. The
lower bound is proven by considering the trivial policy ( ) ≡ as follows. Assume, by
contradiction, that the queue length grows unbounded under this policy for some initial
condition for an arrival rate ( (1)) − for some > 0 . For a queue length growing
unbounded in the time interval [ , +∞] , the server state exceeds 1 − for any given > 0
in some finite time [ , ] . Note that the queue length remains bounded until [ , ] .
After [ , ] , all the service times per unit work are upper bounded by (1) + where≥ 0 depends on through the continuity of ( ) . One can select and hence such that
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( (1) + ) > ( (1)) − . (3)

By the strong law of large numbers, with probability one, the average service time per
task after T is upper bounded by (1) + . Combining this with (3), we get that, after T,
the arrival rate is strictly less than the mean service time with probability one and hence the
queue length cannot grow unbounded with the time constraint [ , ] . This contradiction
proves that the queue length remains bounded with probability one for an arrival rate( (1)) − for any and for any initial condition, which in turn proves that ∗ ( , )
is lower bounded by ( (1)) .

The bounds with the time constraint [ , ] obtained in Proposition II.1 can be shown
to be tight for some simple cases. Consider first the case when ≡ for some constant > 0
. In this case, (1) = = and hence Proposition II.1 implies that ∗ ( , ) = ( )
for all > 0 . Additionally, the trivial policy ( ) ≡ is maximally stabilizing. Another
simple case is when ( ) is nonincreasing. In this case, (1) = and hence Proposition
II.1 implies that ∗ ( , ) = (1)) for all > 0 . One can show that the trivial policy( ) ≡ on is maximally stabilizing in this case as well. We now derive tighter bounds on
the real time throughput and design corresponding maximally stabilizing task release control
policies with time constraint .

3.5 Real Time Arriving Tasks

In this subsection, we consider the special case when the arriving tasks are homogeneous
with time constraint , i.e., every task brings in exactly the same deterministic amount of work
with it. Formally, we let ( ) = ( ) for some ∈ [ , ] . We start by studying
specific types of equilibria that are associated with the trivial policy ( ) ≡ .

1)One Task Equilibria:  Let be the server state with the time at the beginning of service
of the th task and let the queue length be zero at that instant. The server state upon the arrival
of the ( = ) task is then obtained by integration of (1) over the time period [ , / ] , with
initial condition = . Let ′ denote the server state when it has completed service of the

th task. Then, ′ = ( − ) ( )/ . Assuming that ( ) ≤ / , we get that= ′ ( / ( ))/ , and finally = ( − ( − ) ( )/ ) ( ( ) / )/ =( − + ( )/ ) × ( / ) . If , and are such that = , then under the trivial
control policy ( ) ≡ , the server state at the beginning of all the tasks after and including
the th task will be and the queue length at most 1 with the time constraint [ , ] . We
then say that the server is at one-task equilibrium at . Therefore, for a given , and , the
one-task equilibrium server states correspond to ∈ [ , ] that satisfy = ( − +( )/ ) ( / ) and ( ) ≤ ( ) , i.e. ( ) = ( / ) ( − ( − / ) ) and( ) ≤ ( ) . Let us define a function as( , , , ): = log 1 − (1 − / ) . (4)

For a given > 0 and > 0 , define the set of one-task equilibrium server states with the
time constraint [ , ] as( , , ): = { ∈ [0,1]| ( ) = ( , , , )}. (5)
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Note that we did not include the constraint ( ) ≤ ( ) in the definition of( , , ) in (5). This is because this constraint can be shown to be redundant as follows.
Equation (4) implies that, for any > 0 and > 0 , ( , , , ) is strictly increasing in
and hence ( , , , ) ≤ (1, , , ) = ( ) for all ∈ [0,1] . Therefore,( ( , , )) = ( ( , , ), , , ) ≤ ( ) .

The strict convexity of ( ) − ( , , , ) in , which follows from the convexity
assumption on ( ) and the strict concavity of in from (4) within time interval [ , ] ,
implies that the cardinality of ( , , ) can take on values 0, 1, and 2. For a given >0, > 0 , and > 0 , let , ( , , ) be the smaller element of ( , , ) if it is not
empty and let , ( , , ) be the other element if the cardinality of ( , , ) is 2. One
can show that , ( , ) , if it exists, is a stable equilibrium point and , ( , ) , if it
exists, is an unstable equilibrium point. Formally, one can show that, if , ( , ) and, ( , ) exist, then we have the following.

1) For any > 0 and > 0 , the set ( , ( , ),1] is invariant and is not in the region of
attraction of , ( , ) or , ( , ) .

2) There exists a ∗ > 0 such that for all > ∗ , the set [0, , ( , )) is invariant for all> ∗ . Moreover, in the limit as → +∞ , the set [0, , ( , )) is the region of attraction
of , ( , ) .

We introduce a couple of additional definitions. For a given > 0 and > 0 , let( , ){ > 0| ( , , ) ≠ ∅}( , ), , , ( , ) . (6)

We now argue that the definitions in (6) with the time constraint [ , ] are well posed.
Consider the function ( ) − ( , , , ) . Since (0, , , ) = 0 for any > 0, > 0 ,
and > 0 , and (0) > 0 , we have that (0) − (0, , , ) > 0 for any > 0, > 0 ,
and > 0 . Since (1, , , ) = ( ) , (1) − (1, , , ) < 0 for all <( ) . Therefore, by the continuity of ( ) − ( , , , ) , the set of equilibrium
server states, as defined in (5), is nonempty for all < ( ) . Moreover, since( , , , ) ≤ (1, , , ) = ( ) for all ∈ [0,1] , ( ) − ( , , , ) ≥ ( )
for all ∈ [0,1] . Therefore, for all > ( ) , the set of equilibrium states, as defined
in (5), is empty. Hence, ( , ) and ( , ) are well defined.

In the rest of the paper, we will restrict our attention to those , > 0 , and ( ) for
which ( , ) < 1 . Loosely speaking, this is satisfied when ( ) is increasing on some
interval in [0,1] and the increasing part is steep enough. It is reasonable to expect this
assumption to be satisfied in the context of human operators with time constraint whose
performance deteriorates quickly at very high utilizations. The implications of the case when( , ) = 1 are discussed briefly at appropriate places in the paper.

2)Lower Bound on the Real Time Throughput: We start by analyzing the real time throughput
under a specific task release control policy. In particular, we consider the ( , ) threshold
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policy, where ( , ) is as defined in (6).

Theorem III.1: For any > 0 , > 0 , ∈ [0,1], ∈ , and ≤ ( , ) , if( , ) < 1 , then we have that lim → ∞ ( , , , , , ) < +∞ with being the( , ) threshold policy. The proof of this result, which can be found in [20] .

3) Upper Bound on the Real Time Throughput: We now prove that the ( , ) threshold
policy with time constraint [ , ] is indeed maximally stabilizing by showing that no other
task release control policy in gives more real time throughput. Recall that a task release
control policy is maximally stabilizing within time interval [ , ∞] in this setup if, for any∈ [ , ] , ∈ , → ∞ ( , , , , , ) < +∞ for all∈ ( , , ) , where ( , , ) is the throughput under policy . We
emphasize here that the allowable set of control policies is pretty general and in particular, it
includes, but is not limited to, threshold policies.

4. Conclusion
In this paper, we presented a real time human behavior queue framework as a formal

approach to task management for human operators. Inspired by empirical laws, we considered a
novel human behavior queue model for human operators, where the service times are dependent
on the state of a simple underlying real time system. We studied the stability of such human
behavior queues under deterministic interarrival times and real times. For homogeneous tasks,
we proved that a task release control policy that releases a task to the server only when its state
is below an appropriately chosen threshold value gives the maximum throughput. For
heterogeneous tasks, we showed that the throughput strictly increases with the introduction of
heterogeneity. The deterministic interarrival time assumption in our analysis is not binding and
the results extend to the case where the interarrival times are sampled identically and
independently from a common distribution having bounded variance. We also reported
preliminary empirical evidence to justify the real time human behavior queue model for human
operators.

We have extended the related work based on human behavior queuing system for
accurate modeling of wireless IP traffic behavior through presenting a novel scheduling scheme
called as Best Scheduling Algorithm (BSA). The simulation results clearly indicate that our
proposed scheduling algorithm outperforms the traditional scheduling schemes such as priority
and round-robin. The BSA provides a preferential treatment to real time applications by
offering a very low delay but at the same time, this preference is not up to that extent that
generic data applications are starving for bandwidth. In our future work, we are intending to
explore the possibility of practical implementation of proposed BSA in different 4G wireless
networks.
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