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ABSTRACT

In ad-hoc networks, the nodes are primarily decentralized in nature. The absence of a central controller  
because  of  the  decentralization  characteristic  of  these  impromptu  networks  results  in  autonomous  
operations for each of the individual users. In such networks, the decisions taken by the users are based  
on perceived measures or statistics which are collected dynamically. Decision taken by one node affects  
and influences the other nodes. The scenario of such a network can be optimized using the principles of  
game theory. The final model of the scenario can be formulated as a non-cooperative game. Algorithms 
based on this model are devised for ad hoc networks. Applications of such algorithms include pricing  
schemes  for  distributed  beamforming,  bandwidth  allocation  as  well  as  power  control  games.  
Asynchronous Distributed Pricing is a virtual pricing scheme for transmitting power optimization in ad  
hoc networks. In this algorithm, the difference between the value of a given performance metric and the  
price paid to attain it determines a user’s payoff and the network objective is to maximize the sum of all  
users’  payoff.  However,  the  determination  of  the  utility  function  essentially  determines  the  global 
convergence of the sum of all users’ payoff. Supermodularity conditions are fundamental constraints for  
global convergence of utilities in a pricing game which have been previously defined. This paper obtains  
suitable utility functions satisfying the aforementioned constraints. This paper also demonstrates that  
performance characteristics of different utilities vary considerably under similar network parameters.  
This paper also assesses the optimality of utility functions under Signal-to-Interference-plus-Noise ratio  
as well as Signal-to-Interference ratio based calculations and also explores the difference in performance  
characteristics obtained by the addition of a significant value of noise variance in the Asynchronous  
Distributed Pricing algorithm.

KEYWORDS

Game Theory, Asynchronous Distributed Pricing, Distributed Resource Allocation, Supermodularity

  

1. INTRODUCTION

In the emerging ad-hoc technology,  a central controller is often absent and operation is thus 
based  mostly  on  the  cooperation  between  the  nodes,  which  being  devoid  of  a  fixed 
infrastructure,  have  limitations  mostly  on  their  battery  power  which  must  be  judiciously 
consumed  for  transfer  of  data  packets.  Resource  allocation  is  hence,  being  addressed  in  a 
distributed framework with power allocation being the most important component of it. Mostly, 
ad hoc networks find applications in emergency operations and military environment. Figure 1 
shows an ad-hoc network and compares it with a traditional cellular network.
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. Figure 1. i) Ad-hoc Network, ii) Traditional Cellular Network

Mitigating interference is  particularly important  in wireless ad hoc networks because of the 
absence of a central controller or resource manager. Coordination amongst the nodes in such a 
network is  not  always  necessarily cooperative.  A challenge is  then to  provide a  means  for 
coordination to  allocate  available  resources,  defined  in  frequency,  space,  and time,  at  each 
transmitter to avoid interference wherever possible. 

Asynchronous  Distributed  Pricing  (ADP)  scheme  addresses  this  problem  by  designing 
autonomous  allocation  methods  in  each  transmitter,  based  on  the  exchange  of  virtual 
interference prices. User demands for service and associated priorities depend on a Quality of 
Service (QoS) metric. It is known as the utility of the network. The network objective is then the 
sum utility over all users. This objective is flexible enough to accommodate a wide range of 
performance metrics through an appropriate assignment of utility functions.

This game  theoretical  approach  to  Quality-of-Service  (QoS)  based  distributed  resource 
allocation acts as a preferable alternative to the centralized scheme owing to its advantages of 
reduced overhead and information exchange. The fundamental objective of this research was to 
compare the convergence performance of a distributed algorithm,  Asynchronous Distributed 
Pricing (ADP), for various utility functions and Quality-of-Service (QoS) metrics. It was found 
that the choice of QoS metric determines the different types of performance curves. This study’s 
current model implementing ADP has derived that the choice of QoS metric determines the sum 
utility analytics. 

2. RELATED WORK

Game theory is,  primarily, a study of mathematical models in order to optimize conflicts and 
cooperation in an interactive decision making  situation.  Algorithms  for finding solutions of 
complex interactions among intelligent rational  decision makers as defined in [1]  consist  of 
various levels of analytical paraphernalia. Rationality, as defined in terms of the players in the 
game or users/nodes in a wireless network demands a strict adherence to a strategy based on 
perceived or measured results.  Game theory models individual,  independent decision makers 
whose actions potentially affect all other decisions. Hence, the performance of ad hoc networks, 
in  which each node can be treated as  a  rational,  independent,  selfish player,  can be easily 
analyzed  using game  theory.  Game  theoretic  analysis  of  ad hoc  networks  has  been  widely 
applied and used for power control and waveform adaptation in the physical  layer,  medium 
access  control  as  well  as  routing  in  the  network  layer  besides  others  [2,  3].  The  pricing 
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algorithms have been used for resource allocation games ranging from bandwidth allocation, 
distributed beamforming, interference pricing algorithms to power control games using virtual 
currency in [4-7]. Other applications include flow and congestion control and resource sharing 
in peer-to-peer networks [21 – 22].  In this paper we deal with the problem of network entities 
chosen for a power control game aiming at efficient resource allocation in ad hoc networks.

The three  basic  elements  of  a game  set  are:  rational  decision makers,  actions  and utilities. 
Rational decision makers are the players in the game who are expected to make decisions based 
on the rules set by the algorithm in the game in a way so as to gain maximum utility in the 
game. The alternative courses available to each of the decision makers in order to gain specific 
utilities accordingly are the actions. The action set chosen determines the final game outcome. In 
order to optimize the game outcomes, a programmer of a wireless network can design the rules 
of the algorithm in such a way so as to ensure that the players choose the action sets deriving the 
maximum utilities.  In a typical  game,  the mathematical  entities known as utilities represent 
desirable outcomes of the game. Higher utilities ensure more desirable outcomes. Games in a 
wireless network are designed around factors such as a player preferring lower bit error rates, 
lower transmitting powers and higher signal to noise ratios. In real networks, these goals mostly 
remain  in  conflict.  Hence,  the  most  intriguing  facets  of  game  theory  applications  are  the 
preference relationships. 

When the wireless spectrum is shared by two or more than two users, interference management 
using efficient resource allocation becomes one of the most important issues as illustrated in [8]. 
Centralized power allocation, for instance, cellular downlink, is an approach which creates a lot 
of overhead in the network. However, in ad hoc and mesh networks, distributed approaches are 
preferred which allocate power using limited information exchange. One particular subtype of 
game theory is the non-cooperative game theory. In this model the users are assumed to interact 
using a predefined mechanism while acquiring individual, distinct and well defined interests. 
Such users formulate strategies in order to maximize their own utilities without being concerned 
about the overall stability or global utility of the whole system or in this case, the wireless ad 
hoc network. In such a scenario, the algorithm as the hardwired programming level is designed 
so as to form a game based on rules which ensure fair play, i.e., maximum global utility without 
individual  incentives.  This  game  theoretical  model  basically  consists  of  fields  in  applied 
mathematics  such  as  normal  and  extensive  form  games,  incomplete  information,  Nash 
equilibrium, and forward and backward induction. Hence, non-cooperative game theory can be 
used to solve this physical layer issue of adjusting transmitting power levels in order to adjust 
interference  in  the  network  keeping  it  below a  threshold  level  beyond  which  interference 
becomes a significant problem [9, 10].

Within  the  game  theoretic  framework,  the  entities  in  the  wireless  network  are  as  follows: 
players of the game are the nodes, i.e., transmitter-receiver pairs; utility function for the game is 
the performance metric or quality-of-service (QoS) metric of the users and strategy of the game 
is the algorithm or approach adopted for the network. The strategy in a power game for wireless 
networks  is  devised  in  such  a  way that  the  sum utility  for  all  the  players  of  the  game  is 
maximized  within the  least  number  of  iterations.  This  strategy can either  be  centralized or 
distributed. Our paper considers efficient resource allocation in ad hoc networks and hence, we 
deal with distributed algorithms. Shi et al. in [11] have shown that Asynchronous Distributed 
Pricing (ADP) converges within the least possible number of iterations as compared to previous 
distributed algorithms.

However, one important entity in the ADP is the choice of utility function because it determines 
the convergence of the algorithm.  At Nash equilibrium of a game, both the power and price 
player chose not to deviate. The convergence of ADP algorithm, thus, can be ascertained by 
showing that the best response updates of the game converge. Nash equilibrium may or may not 

31



International Journal of Wireless & Mobile Networks (IJWMN) Vol. 3, No. 3, June 2011

exist in all arbitrary games and even if it does exist, best response updates need not converge to 
it. However, for the class of supermodular games defined and explained in [12], best response 
updates  converge  even  when  the  algorithm  for  power  or  price  update  is  arbitrarily 
asynchronous. ADP has been proved to contain a global optimum for supermodular games in 
[13].

Schmidt  et.  Al in [12] have proved that the coefficient of relative risk aversion decides the 
convexity of a utility function and hence, its choice to be used in the algorithm. However, this 
paper shows that the noise parameter when incorporated significantly changes the performance 
characteristics for various utilities lying within stated constraints of coefficient of relative risk 
aversion. In this paper, we deal with the rate of convergence of the algorithm for a significant 
noise  variance  and  compare  the  characteristics  for  Signal-to-Interference-Ratio  (SIR)  and 
Signal-to-Interference-plus-Noise-Ratio (SINR) based calculations.

In the following sections, the problem of the distributed wireless resource allocation game is 
formulated  as  a  non-cooperative  game,  the  mathematical  model  for  the  problem within  an 
assumed system framework is defined and the final results of the research are presented and 
explained.

3. PROBLEM FORMULATION

Asynchronous  Distributed  Pricing  is  a  distributed  algorithm  and  hence,  each  node  acts 
autonomously  and  each  node  updates  its  utility  asynchronously  according  to  the  network 
statistics. The network objective in this problem is to find a global optimum solution for the 
maximum sum utility over all users. This objective accommodates a wide range of QoS metrics. 
This can be done by assigning the utility functions accordingly.

Let us first consider the characteristics of this problem which makes it apposite to be used as a 
non-cooperative game theoretical problem.

1. Each user makes its own decision autonomously based on ‘selfish’ utilities.

2. The users’ utilities, i.e., SINR and SIR, are functions of their own payoffs.

3. Payoffs of the players are functions of their own transmit levels which are controlled 
according to the algorithm used.

4. Increase in the transmitting power level of a node/user decreases the SINR/SIR of other 
nodes/players, thus creating conflict of interests in the game.

5. Nodes  prefer  lower  transmitting  power  levels  for  a  fixed  SINR/SIR  and  higher 
SINR/SIR for a fixed transmitting power level.

The  primary  convergence  rule  for  such  game  models  depends  upon the  existence  of  Nash 
equilibrium. Basically, Nash equilibrium is defined as a joint strategy in a game where no player 
can increase its own utility by deviating unilaterally. Mathematically,

Strategy s ∈ S is a Nash equilibrium if ui (s) ≥ ui (sˆi , s−i) ∀ sˆi ∈ Si,∀ i ∈ N.
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In networks offering different levels of QoS, network performance will be directly influenced by 
the users’ decisions about the level of service to request. Network profitability or some social 
welfare goal such as the sum of users’ payoffs can be maximized by designing virtual pricing 
algorithms. Virtual price is the cost paid by the users in order to increase their own utilities 
while degrading the utilities of other users. Each user’s QoS choice may, thus, be influenced not 
only by the pricing policy but also by other users’ behavior.  The problem can naturally be 
treated under as a game defined by the operating point predicted by its Nash equilibrium. 

Pricing can be treated as a game between a network service provider and a finite set of nodes. 
Different users have different QoS requirements. Each user must choose its own strategy and 
level of QoS. For example,  price or cost can be dependent on a number  of  factors such as 
battery power, transmission power and throughput, specific to a problem [21]. In priority-based 
networks, strategy may be the priority levels a user requests for her traffic.  Let us take the 
example  of  networks  supporting  delay;  it  ensures  a  strategy  of  minimum  bandwidth.  The 
tradeoff is that the higher the level of QoS requested, the higher the price to be paid by the user. 
The network service provider drafts the Nash equilibrium by setting the rules of the game and 
designing its pricing structure.

A user’s payoff is the difference between how much a user values a given QoS and how much is 
the price paid for it. Rationally, optimum strategy of each user is derived by the maximization 
of this payoff, given all other users’ service choices remain.  Every receiver declares its own 
interference  price  in  the  network which  indicates  the  marginal  decrease  in  utility  due  to  a 
marginal  increase  in  interference associated with a  particular  Degree of  Freedom (DoF).  A 
transmitter selects power according to a best response, which maximizes its utility minus the 
cost of interference incurred. Users iterate between price and power updates until the algorithm 
has converged. Convergence signifies that when the best response using the payoff function is 
obtained, the transmitted powers and interference prices do not change in subsequent iterations. 
Moreover, ADP algorithm’s superiority lies in its advantage of fast convergence. While gradient 
based algorithms may take around 80 iterations to converge, ADP takes only 2-4 as proved in 
[14, 15].

In [16], it has been stated that SIR and SINR balancing is fundamental for characterization of 
QoS feasible region in wireless network problems. Although convergence analysis in previous 
papers  [14-16]  has  revolved  around  supermodular  games  only,  we  have  observed  that  the 
utilities lying within the constraint defining supermodular games also vary in their performance 
characteristics.  The  amount  of  concavity  of  a  function determines  its  usability  in  the  ADP 
algorithm but an important question to explore is the variation of the convergence parameters 
with varying utility functions as well as SIR and SINR based calculations. 

In the next section, the system framework in which the ad hoc network is simulated is discussed 
and illustrated along with a detailed mathematical model of the algorithm.

4. SYSTEM FRAMEWORK AND MATHEMATICAL PERSPECTIVE

We consider the following assumptions for the problem. Each “user” in the network is a single 
transmitter/receiver pair. Each transmitter uses the same bandwidth. Each receiver is interested 
in the signal from its associated transmitter only. The disturbance to the message signals comes 
from all other transmitters which constitute the interference. In addition to interference, all the 
receivers experience equal amount of background noise. The conditions of the wireless channel 
are reflected in the channel gains between each transmitter and each receiver. 
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We have considered a system of 3 transmitter-receiver pairs with channel matrices hij where i is 
the receiver and j is the transmitter. The system model is shown in Fig 2.

. Figure 2.  System framework

We assume perfect channel estimation for all the nodes in our model. The channel is modeled as 
a lossy channel for SINR calculations and SIR calculations. Each user needs to know adjacent 
channel gains and interference prices only.  This decreases the overall  information exchange 
overhead.  User’s  QoS are preferences given by a utility function ui (Ri (P))  where ui (·)  is 
increasing, twice differentiable and sufficiently concave function of Ri. Sufficient concavity is 
defined in [14] which is modeled in supermodular games relies on the constraint that the utility 
must neither be non-concave nor too concave. 

Common QoS metrics used to perceive a user’s performance in a network are the received SIR 
and  SINR.  ADP  algorithm utilizes  a  virtual  currency  scheme  to  localize  the  optimization 
problem  faced  in  maximizing  the  sum  utility  of  the  network,  by  allowing  the  nodes  to 
autonomously solve the power optimization problem constrained by the strategy of the game 
and maximum of the principal entity which is the transmitting power in a power game. 

The resulting payoff function for power optimization suggested by the algorithm is,

where ∏ is the net payoff, ui is the utility function, ∏j is the price announced by the jth receiver, 
hji is the cross channel gain between the  ith transmitter and the  jth receiver and  Pi  is the power 
transmitted by the ith transmitter.

The interference price is a virtual quantity which is the marginal cost of a user’s own utility per 
unit interference as is given by:
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The choice of utility function is essential for the convergence of the algorithm. In [17], J. Yuan 
and W. Yu have shown that the ADP power game becomes supermodular if the coefficient of 
relative risk aversion factor lies between 1 and 2, resulting in a global optimum solution for the 
sum utility. 

We chose two main utility functions, which satisfy the necessary condition of supermodularity, 
log(x) with CRk(x) = 1 and -1/x with CRk(x) = 2 and compared their performance with that of 
the rate utility log(1+x) for which CRk(x) < 1. However, in [18] it has been shown that rate 
utilities  also  converge  subject  to  a  few  constraints  on  the  ADP  algorithm.  We  consider  a 
diagonally dominant channel and the convergence thus obtained is a local optimum which may 
be multiple depending upon the test cases considered. Also, we compared the results of the 
utilities for both SIR and SINR service metrics.

4.1. Case I: u(x)=log(x)

As the optimization problem is solved locally, for individual nodes, the variable parameter is Pi

where  

Maximizing (3), the condition for power update in ADP algorithm is,

It is notable that the interference price broadcasted by the user is equal to the interference power 
seen by it.  Price of SINR based utility functions is  calculated as the inverse of the sum of 
interference power and the noise variance at the receiver .

4.2. Case II: u(x)=-1/x

Re-writing (1) in terms of the local variable Pi

35

(2)

(3)



International Journal of Wireless & Mobile Networks (IJWMN) Vol. 3, No. 3, June 2011

where  

Maximizing (4),

.

The parameter ai incorporates the noise variance factor in case of SINR based utility function. 
The interference price of the user is found to be independent of its interference power and noise, 
and is given by:

When choosing SIR as a service metric for measuring the performance of a system and for 
power optimization, it is to be noted that the solution arising from the algorithm may not be 
universal. The resulting SIR, being a ratio of powers which are optimized by the algorithm, may 
not be unique. In a three user system, if the solution of the SIR based algorithm gives rise to 
three powers P1, P2 and P3, then the set of powers kP1, kP2 and kP3, where k is a constant, also 
give the same SIR. Therefore, the converged value of transmission powers obtained through one 
utility function may differ from that obtained from another, depending on the initial state of the 
algorithm.

In case of SINR based utility functions, the solution obtained through the algorithm is unique, 
owing to the noise variance factor in the denominator of the service metric. The existence of the 
noise  variance  parameter  increases  the  number  of  iterations  required  for  convergence. 
Comparing the sum utilities after convergence of SIR based and SINR based algorithms, it is 
evident  that  SINR  based  utility  functions  give  a  better  performance  than  their  SIR  based 
counterparts, due to the incorporation of the noise variance parameter, though consuming larger 
time.

In this paper, we have already mentioned that the utilities of the final game change considerably 
when the payoff metric is changed. The proof of the research has been proved mathematically in 
the previous section and the final section discusses the results of the simulations performed in 
order to establish our mathematical derivations and verifications. The next section elaborates the 
test cases which were developed to perform the necessary simulations. 

5. TEST CASES

To evaluate the performance of SIR based and SINR based utility functions in ADP algorithm, 
we chose the following test cases:

Table 1.  Test Cases for Simulation.

Case QoS Metric Utility function
1 Signal-to-Interference Ratio (SIR) u(x)=log(x)

u(x)=-1/x
2 Signal-to-Interference-plus-Noise-

Ratio(SINR)
u(x)=log(x)
u(x)=-1/x
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In order to compare the performance of the two cases,  we assumed that  the algorithm was 
initiated by the same set of arbitrary powers, prices and channel gains.

Simulation results have been recorded and interpreted in the next section which is followed by 
the conclusions and future scope of this paper.

6. OBSERVATIONS AND RESULTS

The simulation of the ADP algorithm for the test cases mention in the previous section found 
that the algorithm converged for all the test cases. The negation of noise variance parameter 
leads to premature convergence of the algorithm thereby reducing the sum utility of the system. 
At the same time  it  is  also observable from Fig.  2  that  the SIR based -1/x utility function 
provided a much better compared to that of SIR based log(x),  which was very close to the 
solution attained through the rate utility function.

When choosing SIR as a service metric for measuring the performance of a system and for 
power optimization, the solution arising from the algorithm may not be universal. The resulting 
SIR, being a ratio of powers which are optimized by the algorithm, may not be unique. In a 
three user system, if the solution of the SIR based algorithm gives rise to three powers P1, P2 and 
P3,  then the set of powers  kP1,  kP2 and  kP3,  where  k is a constant,  also give the same SIR. 
Therefore, the converged value of transmission powers obtained through one utility function 
may differ from that obtained from another, depending on the initial state of the algorithm. 

. Figure 2.  Comparison of rate utility, SIR based log(x) and-1/x utility function

The inclusion of noise variance parameter by SINR based utility functions allowed the ADP 
algorithm to converge to a relatively higher sum utilities as compared to both the rate utility 
function log(1+SIR) and SIR based utilities. It is evident from Fig. 3 that the solution of the 
power game using the two chosen utility functions log(x) and -1/x, exhibiting supermodularity, 
converged to a globally optimum solution. 
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. Figure 3.  Comparison of rate utility, SINR based log(x) and-1/x utility function

This globally optimum solution is  better than that  obtained through the rate utility function 
log(1+SINR). It can also be observed that the -1/x sum utility curve attains values closer to the 
optimal  solution  when  compared  with  log(x)  sum  utility.  In  case  of  SINR  based  utility 
functions, the solution obtained through the algorithm is unique, owing to the noise variance 
factor in the denominator of the service metric. The existence of the noise variance parameter 
increases the number of iterations required for convergence. 

Figures 2 and 3 provide a comparative study of SINR and SIR based -1/x and log(x) utility 
functions respectively. -1/x utility function provides a much better convergence when compared 
with log(x) utility function. The implementation of log(x) utility function in ADP algorithm is a 
popular technique for obtaining a sufficiently concave function of sum of utilities [19], owing to 
its close association with the rate-utility function corresponding to the Shannon capacity of the 
channel. However, we observe that the -1/x utility function gives a better sum utility than log(x) 
in SIR based calculations although it converges to a value similar to log(x) in the SINR based 
calculations. In the comparison between the sum utility curves of ADP algorithm using SINR 
based and SIR based utility functions, it is notable that SINR based utility functions offer better 
performance.  But  comparing individual  utility functions with SIR and SINR arguments,  the 
ADP  algorithm using  SINR  based  utility  functions  require  larger  number  of  iterations  for 
convergence; whereas ADP algorithm using SIR based utility functions, converge faster.

7. CONCLUSIONS

QoS based distributed resource allocation is preferred over to the centralized scheme for ad hoc 
networks. Advantages of distributed algorithms are their abilities to exist and operate without 
the  requirement  of  a  central  controller  along  with  the  significantly  reduced  overhead  and 
information exchange. Using the Asynchronous Distributed Pricing (ADP) algorithm, this paper 
and found that  the  choice  of  QoS metrics  and the  utility  functions  drives  the  performance 
characteristics of the convergence curves. Moreover, our model implementing ADP derives that 
using SINR based utility functions provides a much better sum utility when compared to SIR 
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based utility functions in lossy channels. Comparing utility functions log(x) and -1/x, this paper 
finds that  -1/x provides a much higher  sum-utility and convergence.  The advantage of  SIR 
based utility functions lies in its faster convergence although to a relatively poorer solution with 
respect to SINR based utility functions. SINR, when used as a metric in the rate utility function 
of log(1+SINR) for the ADP algorithm, is observed to converge to a locally optimal solution, 
due to the non-uniqueness of the set of powers obtained in the solution. This result is consistent 
with the previous papers which base this observation on the coefficient of relative risk aversion. 
Hence, this paper finds that while SIR leads to quicker convergence, the inclusion of the noise 
variance parameter  in  the  SINR,  allows the  ADP algorithm to converge to  a  higher  utility 
globally optimum solution. Additionally, -1/x utility function results in higher sum utilities and 
therefore, provides better convergence performance as compared to log(x) utility or rate utility 
log(1+x) functions. The future scope of this work lies in interference management in the given 
channel conditions in order to ensure higher convergence utilities.
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