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ABSTRACT 

Simple cycles are the easiest cycles to reveal in Low-Density Parity Check (LDPC) codes. All minimum 

matrices of simple cycles with the same length will be equivalent after row or column permutations .In 

this paper，we analysis the structure of simple cycles and show all figures of minimal matrices of simple 

cycles. Firstly, we introduce a more general definition of cycle and investigate simple cycles in LDPC 

codes. Secondly, we present the number of simple cycles of arbitrary length and all the minimal matrices 

of simple cycles. Finally, we have proved that the number of all minimal matrices of 2k-simple cycles 

is 3    ,.
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1. INTRODUCTION 

The performance of Low-density parity-check (LDPC) codes of finite length may be strongly 

affected by their cycle property such as girth and stopping sets [1], etc. Here the girth is the 

minimum length of cycles in the Tanner graph of a given parity-check matrix. In most cases, it 

is difficult to analyze explicitly these factors of randomly constructed LDPC codes and predict 

their performance. One advantage of quasi-cyclic LDPC (QC-LDPC) codes based on circulant 

permutation matrices is that it is easier to analyze their code properties than in the case of 

random LDPC codes. Recently, several coding theorists proposed some classes of QC-LDPC 

codes with algebraically strong restriction on the structure and analyzed their properties more 

explicitly [5], [6], [7], [8]. Gao Xiao and Zhang Nan had analyzed balanced cycle properties of 

QC-LDPC codes and propose a method to determine the B-girth of a QC-LDPC code in its 

mother matrix and presented cycle relationships of the mother matrix and the protograph LDPC 

code [16],[17]. 

While decoding cycle-free LDPC codes with the sum-product algorithm, the performance 

converges to the optimal solution. If the Tanner graph of an LDPC code has cycles, very little is 

known regarding the convergence of iterative decoding methods. 

On the other hand, it is known that cycle-free Tanner graphs do not support good codes, as the 

code minimum distance is asymptotically upper bounded by [3] 
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where R  is the code rate. Therefore, the engineering practice is to construct codes with limited 

number of short cycles and live with long cycles. In this paper, we will give a more general 

definition of cycles which is a little different from the definition of cycles in graph theory. 

The outline of the paper is as follows. In Section 2, reviews on the quasi-cyclic LDPC codes 

studies followed by description of QC-LDPC and the definition of the path and cyclic. In 

Section 3, we analyze Cycle Effects on the error Performance of LDPC Code. In Section 4, we 

determine the Minimal Matrices of Simple Cycles and all RN minimal matrices of simplek −2  

cycles and we give concluding in Section 5. 

2. QUASI-CYCLIC LDPC CODES 

A QC-LDPC code is characterized by the parity-check matrix which consists of small square 

blocks which are the zero matrix or circulant permutation matrices. Let p  be the 

LL× permutation matrix given by 
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Note that
i

p is just the circulant permutation matrix which shifts the identity matrix I to the 

right by i times for any integer i , Li <≤0 .For simple notation, we denote the zero matrix 

by
∞

p .Let H be the nLmL × matrix defined by 
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where { }∞−∈  ,1 ..., ,1 ,0 Laij . From now on, the code C  with parity-check matrix H will be 

referred to as a QC-LDPC code. When H has full rank, then its code rate is given by 

nmR /1−= regardless of its code length nLN = .If the locations of 1’s in the first row of the 

i th row block are fixed, then those of the other 1’s in the block are uniquely determined. 

Therefore, the required memory for storing the parity-check matrix of a QC-LDPC code can be 

reduced by a factor L/1 , as compared with random LDPC codes. 

The QC-LDPC code defined in (2) may be regular or irregular depending on the choice of ija ’s 

of H . When H has no blocks corresponding to the zero matrix, it is a regular LDPC code with 

column weight m and row weight n . In this case, its code rate is larger than nm /1−  since there 

are at least 1−m linearly dependent rows. 

For our presentation we introduce the following Lemmas. 
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2.1. PATHS 

Suppose that M  is a binary matrix. Let )(MT  denote the Tanner graph of M . The set of 

edges of )(MT  is denoted by )(ME . For )(MEe ∈ , let )(0 ed  and )(1 ed  denote the check 

and bit nodes connected by e , respectively. Let { })(),()( 10 edede =σ . Clearly, two edges e , 

e′  are equal if and only if )()( ee ′= σσ . Here, we will mainly work on the paths in )(MT . 

However, differing from in literature, we will despise the nodes on the paths to some extent. Let 

Ω  be a nonempty subset of )(ME . For { }1,0∈τ , let )(ΩΓτ  denote the set of sequences 

keee L21=γ  with Ω∈keee ,,, 21 L  and  

 ,2/1for    ),()( 21121 kieded ii ≤≤= −−− ττ                                                     (3) 

 ,2/)1(1for    ),()( 122 −≤≤= + kieded ii ττ                                                          (4) 

,1for    ,1 kiee ii ≤≤≠ +                                                                        (5) 

where k , 1e , ke  are called the length, origin, terminal of γ  and also denoted by γ , )(γο , 

)(γt , respectively. The edges )(γο  and )(γt  are also called ends of γ . By convention, )(ΩΓτ  

contains the null sequence φ . Clearly, { }φ∪Ω=ΩΓ∩ΩΓ )()( 10 . We write 

)()()( 10 ΩΓ∪ΩΓ=ΩΓ . A sequence of edges is called a path over Ω  if it is in )(ΩΓ . The 

null sequence is also called a path of length 0 . ))((0 MEΓ , ))((1 MEΓ  and ))(( MEΓ  are also 

abbreviated as )(0 MΓ , )(1 MΓ  and )(MΓ , respectively. For any path γ , let )(γΓ  denote the 

set of paths consisting of edges on γ . For any sequence keee ,,, 21 L  of edges, let 

)(),,,( 11

1

21 eeeeee kkk LL −

− = . Clearly, for any { }φγ ∪∈ )(ME , we have γγ =−1
. 

According to the definitions, we can show the following five lemmas easily. 

Lemma 1. A sequence γ  of edges is a path if and only if 
1−γ  is a path. For { }1,0∈τ  and 

)(Mτγ Γ∈  with 1>γ , the path 
1−γ  is also in )(MτΓ  if and only if γ  is even. 

Lemma 2. For )(, 21 MEee ∈ , { }1,0∈τ  and )(Mτγ Γ∈  with 1>γ , if γ1e , γ2e  are paths, 

then we have ))(()()( 21 γοτττ deded == . 

Lemma 3. For { }1,0∈τ  and )(321 Mτγγγ Γ∈ , we have )(2 Mτγ Γ∈  if 1γ  is even, and 

)(12 Mτγ −Γ∈  otherwise. 

Lemma 4. For )(,, 321 MΓ∈γγγ  with 22 ≥γ , the sequence 321 γγγ  is a path if and only if 

321 ,, γγγ  are paths. 

Lemma 5. For )(MEe ∈  and { }φγγ \)(, 21 MΓ∈ , the sequence 21 γγ e  is a path if and only if 

there is a { }1,0∈τ  such that )(1

1 Me τγ Γ∈−
 and )(1

1

2 Me τγ −

− Γ∈ . 
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The following lemma can also serve as another definition for paths. 

Lemma 6. A sequence 
keee ,,, 21 L  of edges is a path if and only if 

,1for    ,1)()( 1 kiee ii <≤=∩ +σσ                                                          (6) 

.1for    ,)()( 11 kjee jj <<=∩ +− φσσ                                                          (7) 

Proof. Only-if-part: Assume that keee ,,, 21 L  is a path of length k . Clearly, (6) follows from 

(3) to (5). To show (7), assume in contrast that φσσ ≠∩ +− )()( 11 jj ee  for some j  with 

kj <<1  Let τ  be the integer in { }1,0  such that )()( 1 jj eded ττ =−  and )()( 111 jj eded ττ −+− = . 

If )()( 11 +− = jj eded ττ , then we have 1+= jj ee , which contradicts (5). If 

)()( 1111 +−−− = jj eded ττ , then we have 1−= jj ee , which contradicts (5) too. Hence, (7) is valid. 

If-part: Assume that (6) and (7) are valid. Clearly, (5) follows from (6). For any given j  with 

kj <<1 , let τ ′  and τ ′′  be integers in { }1,0  such that )()( 11 +′−′ = jj eded ττ  and 

)()( 1 jj eded ττ ′′+′′ = . Then, from (7) we see ττ ′′−=′ 1  . Hence, (3) and (4) are valid for some 

integer { }1,0∈τ . 

According to Lemma 6, we can show the following two lemmas. 

Lemma 7. For )(,,, 10 MEeeee ∈′  with )(10 Meee Γ∈ and 1)()( =′∩ ee σσ , there are 

integers v  and τ  in }1,0{  such that )()()( ededed v
′== τττ  and φσσ =′∩− )()( 1 ee v . In 

particular, eee v
′

−1  is a path. 

Proof. Let { }1,0∈τ  be the integer such that )()( eded ′= ττ . Clearly, )()( 11 eded ′≠ −− ττ . Since 

10eee  is a path, there is an integer { }1,0∈γ  such that )()( eded v ττ =  and 

)()( 111 eded v ττ −−− = . Hence, we have )()()( vededed τττ ==′  and )()( 111 eded v
′≠ −−− ττ . 

From Lemma 6, we see )()()( 1 ededed vv
′=≠− τττ . Then, we have φσσ =′∩− )()( 1 ee v . 

Lemma 8. For }{\)(,, 10 φγγγ MΓ∈  with )()( 10 γογο ≠  and 1>γ , if 0γγ , 1γγ  are paths, 

then 1

1

0 γγ −
 is a path. 

Proof. According to Lemma 2, we see 1))(())(( 10 =∩ γοσγοσ . For { }1,0∈v , let vγ ′  denote 

the path with vvv γγογ ′= )( . If φγ ≠′
v , from )()()()( Mt vv Γ∈′γογογ , 

1))(())(( 1 =∩− vv γοσγοσ , 1))(())(( 1 =∩− γσγοσ tv  and Lemma 7, we see 

φγοσγοσ ≠′∩− ))(())(( 1 vv . Then, from Lemma 6, we see that 

110

1

01

1

0 )()()( γγογογγγ ′′= −−
 

is a path. 
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Lemma 9. Assume that Ω  is a nonempty subset of )(ME . If there is at least one path in 

)(\)( ΩΓΓ M  with ends in Ω , let keee L21  be a such path with the least length, then  

,1for   , kiei <<Ω∉                                                                         (8) 

. ,23for   ,)()( Ω∈−≤≤=∩ ekieei φσσ                                                          (9) 

Proof. (8) is obvious. If there is an edge Ω∉e  and integer i  with 23 −≤≤ ki  such that 

φσσ ≠∩ )()( eei , according to Lemma 4 and 7, we see that either eeee iL21  or kii eeee L1+  

is a path connecting 1Ω  and 2Ω , contradicts our assumption. Hence, we have (9). 

2.2. Cycle 

For { }1,0∈τ , a path { }φγ τ \)(MΓ∈  of even length is called a cycle if )()( γγο t≠  and 

)).(())(( γγο ττ tdd =                                                                  (10) 

Clearly, the length of any cycle is even and at least 4. Let )(MΘ  denote the set of cycles. 

Clearly, )(MC Θ∈  if and only if )(1
MC Θ∈−

. If φ≠Θ )(M , the length of the shortest 

cycles in )(MΘ  is called the girth of M , and denoted by )(Mg . If φ=Θ )(M , we say that 

the girth of M  is ∞=)(Mg . The following lemma can also serve as another definition for 

cycles. 

Lemma 10. A path γ  is a cycle if and only if 0>γ  and )(MΓ∈γγ . 

Proof. If-part: Assume that γ  is positive and γγ  is a path in )(MτΓ  for some { }1,0∈τ . 

Clearly, we have )(Mτγ Γ∈ , 1>γ  and ( ) ( )γογ ≠t . Furthermore, from Lemma 3 and 

( ) ( ) ( ) { }φ∩=Γ∩Γ MEMM 10 , we see that γ  is even and therefore )).(())(( γογ ττ dtd = . 

Hence, γ  is a cycle. 

Only-if part: Assume that γ  is a cycle of length k2 . For ki 21 ≤≤ , let ie  denote the thi −  

edge on γ . Then, kee 21 ≠  and 1+≠ ii ee  for ki 21 <≤ . Furthermore, for the integer { }1,0∈τ  

with )(Mτγ Γ∈ , we have ( ) ( )12 eded k ττ =  and 

( ) ( ) ,1for    ,21121 kieded ii ≤≤= −−− ττ                                                (11) 

( ) ( ) .1for    ,122 kieded ii <≤= +ττ                                                     (12) 

Hence, kk eeeeee 221221 LL=γγ  is a path by definition. 

Lemma 11. For paths γ , γ ′  of positive lengths, the sequence γγ ′  is a cycle if and only if 

γγ ′+  is even and γγγ ′  is a path. 
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Proof. If-part: Assume that γγ ′+ | is even and γγγ ′  is a path in )(MτΓ  for some { }1,0∈τ . 

Clearly, we have ( ) ( )γγο ′≠ t , ( )( ) ( )( )γγο ττ
′= tdd  and ( )Mτγγ Γ∈′ . Hence, γγ ′  is a cycle. 

Only-if-part: Assume that γγ ′  is a cycle. According to Lemma 10, γγγγ ′′  is a path. Thus, we 

see that γγγ ′  is a path. 

Remark: We note that the condition “ γγ ′+  is even” in Lemma 11 can be dropped if the 

length of γ  is at least 2. 

The following lemma is a simple corollary of Lemmas 10 and 11. 

Lemma 12. For any two paths ( ) { }φγγ τ \, MΓ∈′ , γγ ′  is a cycle if and only if γγ ′  is a cycle. 

Proof. Assume that γγ ′  is a cycle. Clearly, we have )(|2 γγ ′+ . From Lemma 10, we see 

( )MΓ∈′′ γγγγ . Then, we have ( )MΓ∈′′ γγγ  and thus, from Lemma 11, γγ ′  is a cycle. 

A path ( ) { }φγ τ \MΓ∈  is said acyclic if ( )γΓ  has no cycle. 

Lemma 13. Let keee L21=γ  be a path in ( )MΓ . Then, γ  is a acyclic if and only if 1≥k  and 

( ) ( ) φσσ =∩ ji ee  for all ji,  with 3≥− ji . 

Proof. Only-if-part: Assume γ  is acyclic. Clearly, we have 1≥k . If ( ) ( ) φσσ ≠∩ ji ee  

for some ji,  with 3≥− ji , according to ( ) ( ) φσσ =∩ +2ii ee  and ( ) ( ) φσσ =∩ −2jj ee , we 

can assume further, without loss of generality, that ( ) ( ) φσσ =∩ −1ji ee  and 

( ) ( ) φσσ =∩ +1ij ee . From ( ) ( ) 11 =∩ +ii ee σσ  and ( ) ( ) φσσ =∩ +1ij ee , we see ji ee ≠ . 

Hence, jii eee L1+  is a cycle in ( )γΓ , contradicts our assumption. Thus, ( ) ( ) φσσ =∩ ji ee  for 

all ji, with 3≥− ji . 

If-part: Assume 1≥k  and ( ) ( ) φσσ =∩ ji ee  for all ji,  with 3≥− ji . Let γ ′  be 

an arbitrary path in ( )γΓ . One can show easily that there are some integers i  and j  with 

kji ≤≤≤1  such that  

.or  11 ijjjii eeeeee LL −+=′γ  

Clearly, we have )(MΘ∉′γ . Hence, γ  is a cyclic. 

According to Lemma 6 and 13 we can get the following corollary easily. 

Corollary 1. A sequence keee L21  of edges is an acyclic path if and only if it satisfies (6) and 
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( ) ( ) .1for    ,11 kjiee ji ≤≤<=∩ +− φσσ                        (13) 

Two cycles C  and C′  are said equivalent if there are paths 1γ , 2γ  such that 21γγ=C  and 

12γγ=′C  or 
1

2

1

1

−− γγ . For cycle C  and path γ , we write C⊆γ  if there is a path γ ′  such that 

γγ ′  is a cycle equivalent to C , such path γ ′  is called the complementary of γ  in C . A cycle 

C  is said simple if any path C⊆γ  with C<< γ0  is acyclic. 

Lemma 14. For ( )MΓ∈γ  and ( )MEe ∈0
, the sequence γ0e  is a simple cycle if and 

only if γ  is acyclic and ( )Mee Γ∈00γ . 

Proof. The only-if-part is obvious. Now we consider the if-part. Assume 
keee L21=γ  is 

acyclic and ( )Mee τγ Γ∈00
 for some τ  in { }1,0∈τ . From ( )Mee Γ∈00γ , we see 3≥k , 

( ) ( ) ( ) ( ) 1010 =∩=∩ keeee σσσσ  and  

( ) ( ) ( ) ( ) φσσσσ =∩=∩ −1020 keeee  

Since γ  is acyclic, we see ( ) ( ) φσσ =∩ kee1 . Then, γγ 00 ee  is a path and thus, from Lemma 

10, γ0e  is a cycle. From ( ) ( ) ( ){ }kedede ττσ ,110 −=  and (13), we see ( ) ( ) φσσ =∩ iee0  for any 

i  with 23 −≤≤ ki . Hence, for any j  with kj ≤≤1 , 1101 −+ jkj eeeee LL  is an acyclic path. 

Thus, γ0e  is a simple cycle. 

According to Corollary 1 and Lemma 14, one can show the following corollary easily. 

Corollary 2. A necessary and sufficient condition for a sequence keee L21  of different edges to 

be a simple cycle is 

( ) ( ) . mod  1 ifonly  and if   1 kjiee ji ±≡−=∩σσ                   (14) 

A path in ( ) { }φ\MΓ  is said cyclic if it is not acyclic. We note that the null sequence φ  is 

neither acyclic nor cyclic according to our definitions. 

Lemma 15. Suppose that γ  is a cyclic path. Then, there are a simple cycle 0C  and paths 1γ , 2γ  

such that 201 γγγ C= . 

Proof. Suppose keee L21=γ  is a cyclic path of length k . According to Lemma 13, there are 

integers i  and j  with 3≥− ji  such that ( ) ( ) φσσ ≠∩ ji ee . Without loss of 

generality, we assume further ji <  and ( ) ( ) φσσ =∩ ′′ ji ee  for any i′ , j′  with 

jjii ≤′≤+′≤+ 33  and ( ) ( )jiji ,, ≠′′ . From ( ) ( ) φσσ ≠∩ −1jj ee  and ( ) ( ) φσσ =∩ −1ji ee , 
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we have ji ee ≠ . Hence, from Corollaries 1 and 2, jii eee L1+  is a simple cycle and 

211 γγγ jii eee L+=  for 1211 −= ieee Lγ  and kjj eee L212 ++=γ . 

A cycle C  is called a sub-cycle of another cycle C′  if CC ′⊆ . Clearly, two cycles are 

equivalent if and only if they are sub-cycles of each other. Furthermore, according to Lemma 

15, the shortest sub-cycles of a given cycle C must be simple. We note that, even if 1C  is a sub-

cycle of 2C  and 2C  is a sub-cycle of 
3C , 1C  is not necessary to be a sub-cycle of 

3C . 

However, if C  and C′  are equivalent cycles, then any sub-cycle of C  is a sub-cycle of C ′ . 

If C  and C ′ s are equivalent cycles, for any given integer t, the cycle 

43421 K
t

t
CCCC =  

is called a multiple of C′ . 

Lemma 16. Let C  be a simple cycle. Then any cycle in )(CΓ is a multiple of C . In particular, 

any sub-cycle of C  is equivalent to C . 

Proof. Let 
keeeC 221 L=  be a simple cycle and 

lfffC 221 L=′  a cycle in ( )CΓ . According 

to Corollary 2, ( ) ( ) 1=∩ ji ee σσ  if and only if kji 2 mod  1±≡− . Without loss of 

generality, we assume that 11 ef = . From ( ) ( ) 121 =∩ ff σσ , we have 

{ }keef 222 ,∈ . 

If 22 ef = , according to ( ) ( ) 132 =∩ ff σσ , we have { }313 ,eef ∈ . From ( ) ( ) φσσ =∩ 31 ff  

and 11 ef = , we have 33 ef = . By induction, one can show easily that kelf ii 2 mod 2 mod =  

for any positive integer i . By taking i as the least common multiple of l2  and k2 , we get 

kl ef 22 = . Since keee 221 ,,, L  are distinct, k  must divide l . Hence 
tCC =′  for some positive 

integer t . 

If kef 22 = , one can show similarly that if  mod kel ik 2 mod 2 22 −+=  for any positive integer 

i . Hence, k  must divide l  and there is some positive integer t  such that 
t

CC 0=′ , where 

212210 eeeeC kk L−= is a cycle equivalent to C . 

3. Cycle Effects on the Performance of LDPC Code 

The error performance of an LDPC code with iterative decoding such as SPA depends on a 

number of structural properties besides its minimum distance. One such structural property is 

the girth of the code. 

By proving the convergence of the sum-product algorithm for codes whose graphs are free of 

cycles, Tanner was the first to formally recognize the importance of cycle free graphs in the 

context of iterative decoding. The effect of cycles on the practical performance of LDPC codes 

was demonstrated by simulation experiments by MacKay and Neal [1] in the mid-1990s, and 
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the beneficial effects of using graphs free of short cycles were shown [2]. Given the detrimental 

effects of cycles on the convergence of iterative decoders, it is natural to seek strong codes 

whose Tanner graphs are free of cycles. An important negative result in this direction was 

established by Etzion et al. [3], who showed that for linear codes of rate 5.0/ ≥nk  which can 

be represented by a Tanner graph without cycles, the minimum distance is at most 2. Therefore, 

we should construct codes with long cycles. The shortest possible cycle in a Tanner graph is a 

cycle of length 4. A length 4 cycle results if two columns of parity check matrix H  have more 

than one check positions in common. We are interested in knowing and controlling short cycles, 

since they have a negative impact on the decoding algorithm. Short cycles in LDPC codes cause 

successive iterations of the sum-product decoding algorithm to be highly correlated after only 

small number of iterations, thus prevent the iterative sum-product decoding from converging to 

the optimal solution. One commonly applied constraint in constructing parity check matrix is 

that the maximum overlap between any two columns in the matrix should be one, which ensures 

that the code has no 4-cycles. 

In LDPC decoding, the sum-product algorithm assumes that the reliability information gathered 

by the variable or check nodes at each iteration is statistically independent. This assumption is 

valid for the initial number of iterations equal to ( ) 4/1−g , as the information has not been 

propagated around the shortest cycle in the graph, and the messages arriving at any node are 

indeed statistically independent. Therefore, it is desirable for a Tanner graph to have a large 

girth. In deriving the bounds on the maximum number of decoding iterations for regular LDPC 

codes. Gallager [6] established a simple lower bound on the code length of an LDPC code give 

the girth of the associated Tanner graph. It shows it is difficult to construct high-rate regular 

LDPC codes with moderate block length (i.e. N = 5000) and large girth (i.e. g = 10). 

4. Determination of Minimal Matrices of Simple Cycles 

It is obviously the most ordinary cycle in LDPC codes is the simple cycle. We will analysis the 

property of simple cycles in this section. 

For two matrices W  and R , we say that W  covers R  if R  can be obtained from some sub-

matrix of W  by changing some nonzero elements to zero. Clearly, R  is covered by W  if and 

only if the Tanner graph of R  can be obtained from that of W  by deleting some nodes and 

edges. 

A matrix M  is called a minimal matrix of a simple cycle C  if the following two conditions are 

valid: 

•  any sub-matrix of M  does not contain the simple cycle C , 

•  any covered matrix of M  does not contain the simple cycle C . 

Two matrices M  and M ′  are said equivalent, and denoted MM ′≡ , if M  itself or its 

transpose is equal to M ′  after some permutations of rows and columns. 

When we construct LDPC codes with large girth, it is obviously that the shortest cycles are 

simple cycles. We will present all the minimal matrix of 2k-simple cycles )2( ≥k  in the 

following. 

From the definitions of simple cycle and minimal matrix of a simple cycle, we get the following 

lemma. 
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Lemma 17. The minimal matrix of a simplek −2  cycle is equivalent to a kk ×  matrix 

expressed as follows: 

kk×




























100001

110000

010000

001100

000110

000011

K

K

K

MMOMMMM

K

K

K

                                                  (15) 

It is obviously every minimal matrix of a simplek −2  cycle is a kk ×  matrix with row and 

column weights 2. We can get all minimal matrices of a simplek −2  cycle after some row or 

column permutations of (15). 

We say a matrix M  is row non-equivalent (RN for short) to another matrix M ′  , if M  can not 

be obtained only by row permutations of M ′ . 

Let ),( ji  denote the position which is in the thi −  row and thj −  column of a matrix. 

We will find all figures of simplek −2  cycles into two steps. First, find all RN minimal 

matrices of simplek −2  cycle. Then, make exhausted row permutations to each RN minimal 

matrices. All these RN minimal matrices and their row permutation matrices are matrices we 

look for. 

4.1. Determine all RN minimal matrices of simplek −2  cycles 

For 2=k , it is obviously the minimal matrix of a simple−4  cycle is 








11

11
. 

Now, for 3≥k  determine all RN minimal matrices of simplek −2  cycles. 

Let M  be a minimal matrix of simplek −2  cycle. Then M  is a kk ×  matrix, each column 

and each row of M  have weights 2, and M  does not contain cycles shorter than k2 . 

Assume two 1’s in the first column of M  are in the thi −1  and thi −2  rows, where 21 ii ≠ . 

The positions of two 1’s in the first column are )1,( 1i , ),( 11 ji . Assume the 1 in the same row of 

)1,( 2i  is in position ),( 11 ji , and the 1 in the same row of )1,( 2i  is in position ),( 22 ji , where 

{ }kj ,,3,21 L∈ , { } { }12 \,,3,2 jkj L∈ . 

Since a matrix, whose 1’s in the thi −1  and thi −2  rows are in positions )1,( 1i , ),( 11 ji , )1,( 2i , 

),( 22 ji , are row equivalent to matrix whose 1’s in the thi −1  and thi −2  rows are in positions 

)1,( 1i , ),( 21 ji , )1,( 2i , ),( 12 ji . We only reserve one of them to obtain all RN minimal 

matrices. 
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Assume the position of the 1, which is in the same column of the 1 in position ),( 11 ji , is 

),( 13 ji , where 13 ii ≠ , 23 ii ≠ . Assume the position of the 1, which is in the same row of the 1 

in position (i3, j1), is (i3, j3), where { } { }213 ,\,,3,2 jjkj L∈ . 

Iteratively, assume the position of the 1, which is in the same column of the 1 in position 

),( 2−ll ji , is ),( ll ji , where kl <≤3 , { } { }1211 ,,,\,,3,2 −∈ ljjjkj LL , and 

11, −≠≠ lll iiii L . 

Assume the position of the 1, which is in the same column of the 1 in position ),( 22 −− kk ji , is 

),( 2−kk ji , where 11, −≠≠ kkk iiii L . Then the position of the 1, which is in the same row of the 

1 in position ),( 2−kk ji , is ),( 1−kk ji . 

Then, all the 1’s in M  are in positions: 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )},,,,,,,,       

,,,,,,,,1,,,,1,{

122

3313222111

−−− kkkkllll jijijiji

jijijiijii

L

L
 

where ),,,( 21 kiii L  is a permutation of { }k,,2,1 L , { } { } kljjjkj l <≤∈ − 1,,,,\,,3,2 1211 LL . 

Take ),,,( 21 kiii L  one permutations of { }k,,2,1 L . Take all the possible values of 

121 ,,, −kjjj L  described above. We can get all RN minimal matrices of simplek −2  cycles. 

For each RN minimal matrix, make row permutation of it, we will have 
k

kp  different minimal 

matrices. 

The number of all minimal matrices of simplek −2  cycles can be easily obtained. 

Theorem 1. Let kN2  be the number of all minimal matrices of simplek −2  cycles. Then, 

( )






≥⋅
−

=
=

3.k    ,!
2

!1
2k                   ,1

2 k
kN k  

Proof. It is obviously there is only one minimal matrix of simple−4  cycle. 

For simple cycles of length 2k , 3k ≥ , we prove the number of all figures of minimal matrices 

is 
( )

!
2

!1
k

k
⋅

−
. The number of all minimal matrices of simplek −2  cycles is equal to the 

number of all RN minimal matrices multiple the number of all row permutations. For a kk ×  

matrix, the number of all row permutations is 
k

kp , which is equal to the number of all 

permutations of { }k,,2,1 L . Now, we calculate the number of all RN minimal matrices. Since 

1j  can choose from 1−k  possible values, 2j  can choose from 2−k  possible values, All 

possible chosen of 121 ,,, −kjjj L  is ( )!1−k . Since exchanging the values of 1j  and 2j  results 
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in row equivalent minimal matrices, the number of all RN minimal matrices is 
( )

2

!1−k
. Then, 

the number of all minimal matrices is obtained. 

Example All row non-equivalent matrices of 8-simple cycles are as follows: 

.

1010

0110

1001

0101

,

1100

0110

1001

0011

,

1100

1010

0101

0011























































 

For each row non-equivalent matrix, we can obtain all figures of simple−8  cycles after all 

rows permutations. There are 24!4 =  row permutations, hence the number of all minimal 

matrices of simple−8  cycles are 72243 =×  

5. CONCLUSIONS 

Simple cycles are the easiest cycles to reveal in LDPC codes. All minimum matrices of simple 

cycles with the same length will be equivalent after row or column permutations. We know the 

number of all minimal matrices of 2k-simple cycles is 3    ,.
2

)!1(
≥

−
kforP

k k

k  we introduce a 

more general definition of cycle and investigate simple cycles in LDPC codes. We present a 

number of simple cycles of arbitrary length and all the minimal matrices of simple cycles. 

Future studies include research other cycles different from simple cycles and balanced cycles. 

For example, a cycle formed by a simple cycle twice will induce a cycle in the expanded matrix 

for some circulant permutation matrices. 
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