
International Journal of Wireless & Mobile Networks (IJWMN) Vol. 4, No. 4, August 2012

DOI : 10.5121/ijwmn.2012.4404 53

MOBILITY BASED CHECKPOINTING AND TRUST

BASED RECOVERY IN MANET

Suparna Biswas
1
, Sarmistha Neogy

2
and Priyanka Dey

3

1,3
Department of Computer Science & Engineering, West Bengal University of

Technology, Salt Lake, Kolkata
mailtosuparna@gmail.com

priyankadey24@yahoo.co.in

2
Department of Computer Science & Engineering

sarmisthaneogy@gmail.com

ABSTRACT

Proposed work is a mobility based checkpointing and trust based rollback recovery algorithm to provide

fault tolerance in Mobile Ad hoc Network (MANET). Here each mobile host maintains a count of number

of clusters a mobile host traverses through, during a single checkpoint interval. A mobile host increments

‘cluster-change-count’ by 1, each time it leaves a cluster and joins another. Each mobile host saves a

checkpoint independently if its ‘cluster-change-count’ exceeds a predefined threshold. This measure is

important because each mobile host leaves its last checkpoint and logs at different clusters that it has

visited earlier. If the mobile host fails, the time to search and collect its last checkpoint and logs gets

added to the recovery time of the mobile host. In MANET, retrieval of checkpoint and logs has to be done

through a number of intermediate mobile hosts because each mobile host has short area coverage, hence

direct communication among distant mobile hosts is not possible. Now if any of these mobile hosts fail,

depending on the nature of failure, the checkpoint or log may be lost or forwarding of them to the failed

host may be delayed causing unsuccessful or delayed recovery of the failed host respectively. This can be

avoided if it is ensured that the checkpoints and logs are forwarded only through trusted nodes. Trust

model proposed here computes trust value of a mobile host based on four factors: failure rate,

availability in network, unused energy and recommendations from neighbour mobile hosts. Simulation

results show that proposed algorithm achieves low recovery cost and high recovery probability of failed

mobile hosts.

KEYWORDS

MANET, checkpoint, mobility, trust, recovery

1. INTRODUCTION

Rapid development of communication technology from wired to wireless network led almost

all service oriented systems to “all time everywhere” service from “anywhere anytime” service.

This has been possible due to stabilization of portable devices e.g. laptop, smart phones, mobile

phones and advancement of wired communication to wireless infrastructure as well as wireless

infrastructure less communication. Today’s portable devices are equipped with sufficient

resources hence can do computing as well as communication while on the move. In this kind of

systems, computing devices as well as communication links are failure prone. Mobile

hosts(MH) in MANET are not physically protected hence can come easily under intruder’s

control. Failure prone nodes are security attack prone and vice versa. In failure prone system

International Journal of Wireless & Mobile Networks (IJWMN) Vol. 4, No. 4, August 2012

54

fault tolerance measures should be there for quick recovery. Checkpoint and rollback recovery

is popular technique for fault tolerance in mobile computing [1], [2], [3], [4]. In a checkpoint

the state of a process saved contains process structure, register values, segments, actual data

and open file information [5]. Starting address of each segment of a process to be checkpointed,

size of a segment, actual data of a segment etc. are saved in checkpoint file. The recovering

process will recover and resume execution from saved register values in checkpoint file. The

checkpoint is generally saved in cluster head. Now the MH moves across different clusters and

may fail in other cluster. To recover from saved checkpoint which is saved in another cluster

head, the checkpoint needs to be transferred to the cluster head in which the failed host will

recover. Checkpoint is transferred through a number of cluster heads and gateway nodes. If any

of these nodes fail, then the checkpoint may be lost and the recovery process will be terminated.

So, the challenge is to select a set of nodes through which checkpoint can be successfully

transferred without any fail. In this paper we propose a mobility and trust based checkpointing

algorithm. Here we consider cluster based hierarchical MANET [6]. A MH moves across

different clusters, leaves behind checkpoint and logs in different cluster heads. If the MH fails,

these dispersed recovery information need to be collected at the time of recovery. To limit this

search and retrieval cost of recovery information, MHs save checkpoint based on threshold of

cluster_change_count [7]. All the cluster members of a cluster save checkpoints in current

cluster head and if any cluster member fails in another cluster, last saved checkpoint of failed

host is transferred through intermediate gateway nodes and cluster heads to the cluster head in

which the failed host will recover. So, cluster head and gateway nodes must be available in the

network without any failure. We compute trust value of a mobile host based on following four

factors : failure rate, availability of node, unused battery power and recommendation from

neighbor node. A mobile host having low failure rate and high unused battery power, will be

highly available in network ensuring successful execution of any assigned task enhancing

positive recommendations from neighbor nodes. We define a threshold of trust value. A mobile

host is considered as trusted if its trust value is greater than threshold.

The rest of the paper is structured as follows: Section 2 discusses some of the related works, our

observation and problem definitions. Section 3 describes system model, preliminary

assumptions, data structures and notations. Section 4 explains proposed checkpointing scheme

and proposed trust model. Section 5 presents algorithms and its correctness proof. Section 6

illustrates simulation and performance analysis. In Section 7 we conclude our work.

2. RELATED WORKS

The proposed work combining trust model with checkpoint and rollback recovery technique to

implement secure checkpointing is unique of its kind. Hence similar related work cannot be

presented. Overviews of some of existing works related to our proposed algorithm are

described in this section.

In [7] Biswas and Neogy present a movement based independent checkpointing and log based

rollback recovery algorithm in cluster based MANET. Mobile hosts move among different

clusters and leave saved checkpoint and logs scattered in different previously visited cluster

heads. If number of inter-cluster movements of a mobile host exceeds a predefined threshold

then the mobile host takes checkpoint. Cluster head is like any other node and does not have

stable storage, hence copy of checkpoint of a mobile host is saved in one of the cluster

members of same cluster having sufficient resources. Threshold of Cluster_change_count limits

recovery cost. In [8] P.K.Jaggi et.al describes a staggering based synchronous checkpointing

and recovery scheme adapted for handling the limited storage and bandwidth problems of

International Journal of Wireless & Mobile Networks (IJWMN) Vol. 4, No. 4, August 2012

55

Mobile ad hoc network which is cluster based. Here cluster member will save checkpoint and

logs in cluster head. Cluster member will save only in channel message in log. Any cluster head

can initiate checkpointing scheme. After taking checkpoint cluster head sends a request

message to take checkpoint to the other cluster head s in its transmission range and then

initiates the checkpoint in its cluster. In [9], Juang and Liu presented an efficient asynchronous

recovery algorithm in cluster based MANET. In this work they have studied the fundamental

problem of crash recovery in mobile distributed environment. Each processor takes checkpoint

independently without any synchronization and coordination overhead. Yi, Heo, CHo and Hong

presented an adaptive mobile checkpointing facility for wireless sensor networks in [10]. Each

node saves copy of checkpoint in its neighbor nodes. A node saves checkpoint, sends its copy

to all its neighbor nodes which send acknowledgement along with a probability. This

probability is inversely proportional to the number of neighbor nodes of a node. As a node

cannot save all the checkpoints of its neighbor nodes due to limited storage space, this

probability helps each node to adaptively decide on saving checkpoints of its neighbor nodes

calculated based on each node’s neighbor node. In [11] X. Zhao et.al proposed a work to

provide security in Mobile ad hoc network based on availability based trust model. They

divided availability into three main elements: collaboration, honesty and ability. They build

their trust model based on security and safety capacity of node, experience of some certain

trusted nodes and ability of some certain nodes which participate in web collaboration and

stand alone capacity of data transfer. Their trust model based security mechanism ensures the

validity of trust computation under limited resource. In [12] A.fathi et.al proposed an energy

efficient topology control protocol for Mobile ad hoc network which ensures minimum

connectivity in the network at all times. They defined energy is the main factor of life time of a

node. So, dynamic topology depends on energy. So, based on energy cluster head and gateway

is elected so that they get maximum lifetime. In [13] J. Luo et.al proposed an efficient trusted

node discovery method on recommendation based on fuzzy logic. They decide based on

recommendation whether a node is trusted or selfish. In [14] R. Manoharan et.al proposed a

trust based Hybrid Gateway selection scheme. According to their proposed scheme gateway is

selected based on three metric: load taking capacity, recommendation based on observation

from other neighbour node and route selection based on trust.

2.1. Problem Identification

After analyzing the above literature survey we identify the following problems that motivated

us to propose the work.

• Cluster Head has limited memory space: In [8], checkpoints are always saved in

cluster head. A cluster head has limited memory space. Hence, there should be an upper

limit of number of cluster members that can be connected to a single cluster head. But

they do not specify number of Cluster member in a cluster so that cluster head can save

all the cluster members’ checkpoint.

• Random mobility of clusterhead and cluster member nodes: Above mentioned

related works do not consider random mobility of cluster members and cluster heads as

a factor of saving checkpoints.

• Frequent and sudden failures of mobile hosts: Frequent transient or crash failures

may occur in mobile hosts suddenly. Existing works consider that all mobile hosts that

participate in checkpoint- recovery process do not fail.

International Journal of Wireless & Mobile Networks (IJWMN) Vol. 4, No. 4, August 2012

56

• Trust value calculation based on a single factor: In [11], [12], [13] cluster head is

selected based on only a single factor. In [11], cluster head is selected based on a

mobile host’s availability. In [12], mobile node is selected on the basis of only

available battery power. In [13], cluster head is selected based on only recommendation

from others. The problem of considering a single factor is that other factors that are not

considered at all, may cause failure.

In our work we have addressed above problems and tried to give solutions as given below:

• Limited cluster members in a single cluster: Maximum number of cluster member

nodes of a cluster is defined by dividing allocated memory space of a cluster head to

save copy of checkpoints of its cluster member nodes by size of checkpoint.

• Inter-cluster movement based checkpointing: Mobile hosts save checkpoints based

on their inter-cluster movement.

• Only trusted nodes evaluated based on multiple factors can participate in

checkpoint-recovery process: Trust value of a mobile host is calculated based on its

failure rate, unused battery power, availability in the network and recommendation

from others based on previous performance.

3. SYSTEM MODEL

MANET considered here consists of a number of clusters each having a cluster head and

multiple cluster member nodes. Cluster heads communicate with each other through gateway

nodes. In MANET there is no stable storage, fixed access point, topology changes dynamically.

Assumptions: Our proposed algorithm is true based on following assumptions:

• Recovery of a mobile host is possible for both transient and crash failures.

• Each mobile host saves last checkpoint, logs and log_tags of current checkpoint

interval at any instant of time.

• The mobile host that saves checkpoint and the cluster head that carries the copy will

not fail simultaneously

3.1. Data Structures & Notations:

CH = Cluster head, CM =cluster member, GW = gateway, c3 = cluster_change_count, c3_th =

threshold of cluster change count, Fr = failure rate, %Bleft = percentage of available battery

power, Rt_chkp= Rate of checkpoint transfer, A = availability, R= Recommendation from other

node, Tr = recovery time, Tval = trust value, T1= Time required to send CH id where checkpoint

and log is saved to the currently connected CH, T2 = Time required to send request to the CHs

where checkpoint and log reside, T3= Time required to transfer checkpoint and log from

requested CHs to the CH where failure CM is connected after failure,T4= Time required to

transfer checkpoint and log from currently connected CH to failed CM,T5= Time required to

rollback,T6= Time required to replay log, mh_dep [] = during current interval, list of mhs from

which computation messages received, CH_mh_list[] = list of mobile hosts connected to a

clusterhead currently, CH_mh_list[i] = 1, mhi connected, CH_mh_list[i] = 0, mhi disconnected,

CH_mh_list[i] = -1, mhifailed, CH_traversed_list[] = Array of cluster heads through which a

mobile host traverses during a checkpoint interval, mhi_s = mobile host that sends computation

message, mhi_r = mobile host that receives computation message, mc= computation message,

mco = coordination message, log = logs, r,intv,seq : s = sender mh, r = receiver mh, intv. = interval,

International Journal of Wireless & Mobile Networks (IJWMN) Vol. 4, No. 4, August 2012

57

seq = sequence number of computation message, log_tag = logr,s,intv,seq, log (1,*, 1, *) : s = mh1,

intv = 1, r = seq = ‘any’, UID = UID s, r,intv,seq : s=sender mh, r = receiver mh, intv. = interval,

seq = sequence number of computation message, e.g. UID (*, 1, 1,*) : r = mh1, intv = 1, s = seq =

‘any’

Checkpoint_ file: Log_file:

4. PROPOSED WORK

4.1 Checkopinting and Recovery Technique

During a checkpoint interval mobile host computes, sends and receives computation messages

to and from other mobile hosts. A mobile host saves log of sent computation message and

forwards to current cluster head. A cluster head saves logs of its cluster members, coordinates

recovery of its failed member hosts besides own computations. A mobile host increments

‘cluster-change-count’ by 1 each time the mobile host leaves a cluster and joins another. Each

mobile host saves a checkpoint independently if its ‘cluster-change-count’ exceeds a predefined

threshold. If a mobile host fails before saving a checkpoint during current checkpoint interval,

the cluster head in which it will recover will search for its last checkpoint and logs saved in

other cluster heads. The cluster head that saved failed MH’s last checkpoint will forward

checkpoint to the cluster head in which the failed MH will recover. The cluster head then

forwards checkpoint to the MH. In similar way the logs also will reach the MH. Now the MH

will roll-back upto last checkpoint, replay logs, sends request message to the MHs from which

the MH has received computations messages according to log_tags saved before failure. The

recovered mobile host is now same as that before failure.

Figure.1. Working example of the network considered in our work

Above figure represents the cluster based mobile ad hoc network considered in our work. In the

above example, we consider 4 clusters C1, C2, C3, C4. Each cluster contains 4 cluster members.

Within 4 cluster members, one cluster member will play the role of cluster head, another cluster

member will play the role of gateway node, rest of the two are normal cluster members. So

clusters C1, C2, C3 and C4 have cluster heads CH1, CH2, CH3 and CH4 respectively. Each cluster

head of one cluster is connected to cluster head of another cluster through gateway nodes, GW1,

GW2 and GW3. Here we consider each cluster member will take checkpoint when c3_th =3. So,

for example we consider CM1,1 initially take checkpoint at C1 and save checkpoint and logs in

CH1..So after visiting C2, C3 when CM1 will reach C4 its c3_th will be 3. So CM1 will have to

save checkpoint and logs in CH4. After taking checkpoint in C3 two cases may happen:

case1:CM1,1 may fail before saving checkpoint CH4, case2: CM1,1 may save checkpoint and logs

in CH4.

MH_id, CH_id

Process status

Data, intv

logs, r,intv,seq,

copy of mc

International Journal of Wireless & Mobile Networks (IJWMN) Vol. 4, No. 4, August 2012

58

Case1: If CM1,1 fails before saving checkpoint to CH4, after reconnect to CH4 after failure

CM1,1 will give the id of CH1 where checkpoint and logs of send messages [15] are saved. Then

CH4 will send requests to CH1 through the path CH4-GW3-CH3-GW2-CH2-GW1-CH1.CH1will

send checkpoint and logs through the above discussed path.CH4 then sends checkpoint and logs

to CM1,1. CM1,1 will rollback to this checkpoint and replay the logs. This mobility based

checkpoint and log based rollback recovery is consistent. If mobile hosts save checkpoint

independently and do not saved log of send message then if a mobile host fails without saving

next checkpoint whereas the receiver host of that message has saved checkpoint then the

message has been received without being sent i.e. orphan message which will cause

inconsistent recovery. Here our proposed checkpointing and recovery algorithm is consistent.

Case2: CM1,1 saves checkpoint and logs to CH4 and sends message to CH4 to delete last saved

checkpoint and logs which is saved in CH1. Ch4 sends message to CH1to delete checkpoint and

logs of CM1,1 . After receiving message CH1 deletes checkpoint and logs of CM1,1 and

acknowledges CH1.

This recovery technique does not consider failure probability of intermediate MHs through

which the checkpoint is transferred to the failed mobile host from the cluster head that saved it.

So if any checkpoint forwarding nodes fails, checkpoint transfer will be delayed or

unsuccessful depending on the type of failure. Any of these are undesirable. Alternatives may

be: i) Cluster head will keep a copy of the checkpoint till a successful recovery message comes

from failed MH after its recovery. Then the cluster head will delete the checkpoint. Within

stipulated time if successful recovery message does not come or failed recovery message come,

the cluster head will again resend a copy of checkpoint and wait for reply. Reasons of this could

be due to failure of forwarding mobile hosts. In worst case, this may continue repeatedly

causing resource consumptions of cluster head, intermediate forwarding mobile hosts.

ii) If it can be ensured that checkpoint forwarding is done through only ‘trusted MHs’ that does

not fail during recovery process of a MH. To ensure that, before forwarding checkpoint to next

MH, current MH must be sure about trust status of next MH. For that, trust value of next MH

has to be calculated. That can be done using a trust model [6].

The second alternative solution is much more acceptable because checkpoint forwarding

through trusted MHs will ensure that checkpoint will reach to the failed mobile host. Here we

propose a trust model that evaluates trust of a mobile host based on multiple factors like its

unused battery power, life time in the network, failure rate and recommendation from other

MHs.

4.2 Proposed Trust Model

Trust of cluster member in a cluster is a belief that all the cluster member will resist different

types of attack. A cluster member can be trusted or distrusted. But sometimes it may be

impossible to decide whether a cluster member is ‘trusted’ or ‘distrusted’ due to lack of

communication or improper knowledge. In this case we consider cluster member as ‘uncertain’

cluster member. According to [16], probability of a mobile host being trusted, distrusted and

uncertain can be expressed in following way-

b + d + u=1 …………………………… (1)

Where b=belief, d=disbelief and u=uncertain. In our paper we term belief as trusted, disbelief

as distrusted.

International Journal of Wireless & Mobile Networks (IJWMN) Vol. 4, No. 4, August 2012

59

There are various methods of trust value evaluation of a system [11, 13] and how to remove

uncertainty [17]. In proposed algorithm trust value is defined based on trust matrix in which

values of availability, recommendation from neighbour nodes, failure rate, and unused energy

per mobile host are saved.

Availability: This is a statistical data accumulated during a MH’s communications with other

mobile hosts. Each MH estimate its neighbour’s availability based on its accumulated

observations using Bayesian inference as discussed in [17]. Bayesian inference is a statistical

inference in which evidence or observations are used to update statistics. Beta distribution, Beta

(a, b), are used here in the Bayesian inference, since it only needs two parameters that are

continuously updated as communications are made. When a new communication is made, if it

is successful, then parameter ‘a’ is updated, otherwise parameter ‘b’ is updated. Every mobile

host always maintains experience statistics record of its neighbour mobile hosts. Every mobile

host always maintains availability record of its neighbour mobile host. When availability of a

node is being observed or calculated, availability record from its neighbour hosts are taken.

Algorithm to evaluate availability:

if (a >= b && a != 0) availability = 1;

else { if (b= = 0) availability = 0.5;

 else availability = 0; }

Failure rate: It is an important factor to decide whether a MH is trusted or distrusted.

According to our algorithm, a mobile host having low failure rate will be considered as trusted

because it will not fail frequently and hence will be recommended by others.

Unused energy: Energy is also an important factor to decide whether a MH is trusted or

distrusted. If a MH has high energy then its probability of disconnection from network will be

low. So, MH will be more reliable.

Recommendation from neighbour nodes: When we have to decide whether a thing is good or

bad, sometimes it is necessary to take recommendation from others. Many trust models are

already implemented based on this concept of recommendation. So, we also include this

parameter in the trust matrix defined here. Recommendation from others is a very important

factor to get to know about the behaviour of a particular MH. In MANET, as no dedicated

router is there, forwarding of checkpoint has to be done through normal mobile hosts. To select

next node on a path, recommendation helps. A mobile host will give recommendation about

other host based on its availability, failure rate and unused energy.

For example, suppose A will have to give recommendation of B. In that case, first B has to

share its failure rate, availability and unused battery power to A. Then B checks its availability

by using algorithm as already discussed in the above availability section. Then give

recommendation given as below:

Table 1. Set recommendation value on different factors

Recommendation Failure rate (Fr) Availability(A) Unused battery

power(P)

1 < 0.5 > 0.5 > 0.5

0.5 = 0.5 = 0.5 = 0.5

0 > 0.5 < 0.5 < 0.5

International Journal of Wireless & Mobile Networks (IJWMN) Vol. 4, No. 4, August 2012

60

So, a mobile host having failure rate < 0.5, availability > 0.5 and unused battery power > 0.5

will have a recommendation 1 from other mobile hosts. Fifty-fifty recommendation is given for

all parameter value of 0.5. Hence, 0.5 is threshold level of all three parameters.

So, Trust_value_threshold (Tval_th) = (Fr_th * r) + (A_th * r) + (P_th * r) ----------------------- (2)

 = (0.5 * 0.5) + (0.5 * 0.5) + (0.5 * 0.5)

 = 0.25 + 0.25 + 0.25 = 0.75

By using following algorithm we consider whether a node is trusted, distrusted or uncertain.

How to decide a mobile host’s trust status:

if ((trust_value >= trust_value_threshold) && A >=.5&&F<=.5&&P>=.5)

 mobile host is ‘trusted’ ;

else { if (A = = 0) mobile host is ‘uncertain’ ;

else mobile host is distrusted ; }

If a node is uncertain, we check failure rate of the node. If failure rate is greater than or equal to

0.5, mobile host will be considered as trusted, otherwise distrusted. For example, suppose the

trust matrix of three mobile host of a cluster is as follows:

Table 2. An example of labelling of node after computing trust value

MH Fr A P R T_val Label of node

A 0.2 0.2 0.7 (1,0,1) = (0.2*1) + (0.2*0) + (0.7*1) =

0.2+0+0.7 = 0.9 > 0 .75

Trusted

B 0.2 0 0.7 (1,0,1) = (0.2*1) + (0*0) + (0.7*1) =

0.2+0+0.7 = 0.9 but A==0

Uncertain

C 0.6 0.02 0.6 (0,0,1) = (0.6*0) + (0.02*0) + (0.6*1)

= 0+0+0.6 = 0.6 < 0.75

distrusted

In the above table trust value of A is greater than threshold and availability is non-zero. So it is

a trusted node. Trust value of node C is less than threshold, so distrusted. Trust value of B is

greater than threshold but availability is zero. So, it is uncertain. Justification is that when a

mobile host is not available in the network, how its trust status can be defined?

In a cluster, the mobile host that has highest trust value will be selected as cluster head, the

mobile host with next higher trust value will be gate way node. A mobile host once trusted may

not be trusted forever because its battery power may be reduced, its availability in the network

may be poor, its failure rate may be high and if any or all of these are true, then other nodes

may not recommend it. Then a trusted node may become distrusted or undefined. If due to

reduced trust value, or random mobility or any other reason, cluster head or gateway nodes get

changed, these nodes will transfer all the saved checkpoints, logs, data structures to the newly

selected cluster head or gateway nodes respectively. The node may change but its ID will

remain same like cluster head of cluster 1 is designated as CH1. Now irrespective of the node,

the cluster head ID of cluster 1 will always be CH1.So trust value evaluation of mobile hosts is a

continuous process which must repeat itself after certain time interval which can be set based

on specific system or the network being used. As only trusted nodes can be cluster head and

gateway nodes, by our proposed trust model it is ensured that checkpoint will be forwarded

through only trusted nodes.

International Journal of Wireless & Mobile Networks (IJWMN) Vol. 4, No. 4, August 2012

61

5. ALGORITHM

1. Mobile hosts compute, communicate with each other through message passing.

2. Each mobile host sends a beacon message to own cluster head at regular interval to convey

that it is connected. Through beacon message continuous authentication of nodes also goes

on.

3. If mhi_swants to send a computation message to mhi_r, mhi_ssaves a log, forwards mc and log

to current cluster head. c_ch saves log in its memory, checks own ch_mh [], if finds a 1 in

corresponding array field then mhi_ris in cluster 1, if finds a 0 then mhi_r is in other

clusters, if finds a -1, then mhi_rfailed.

 case 1: mhi_sand mhi_rin same cluster:

 c_ch forwards mc to mhi_randmhi_rsends ack to mhi_s throughc_ch.

 case 2: mhi_sand mhi_rin different cluster:

 c_ch of mhi_s broadcasts a look up (mhi_r) message to all cluster heads through gateway

 nodes. All cluster heads searches their corresponding ch_mh []. The CH that founds 1

 replies to c_chof mhi_s, c_ch forwards mc and UID of mc gateway node which saves UID

 of mc and forwards mc to replyingch, ch forwards to mhi_r.

 case3: mhi_rfails:

 mhi_s stops sending mc temporarily, will try to send later.

4. mhi_r receives computation message,saves updates dependency array, sends UID of mc to

 gateway node.

5. mhi_smoves randomly, leaves current cluster and joins another cluster .

6. In cluster based adhoc network each mobile host increments cluster_change_counter

 (c3) each time a mobile host changes cluster.

7. The mobile host saves ID of cluster heads being traversed in an array, CH_traversed_list[].

8. Before the mobile host leaves a cluster head, sends different data structures e.g.

dependency

 array, CH_traversed_list etc. saved being connected to current cluster head along with a

 leave message to current cluster head.

9. The mobile host saves ID of previous cluster head in CH_traversed_list[], e.g.

 CH_traversed [0] = CH1, if mh leaves CH1.

10. The mobile host next joins another cluster head say CH2

11. repeat steps 2 to 6 .

12. The mobile host saves ID of previous cluster head in CH_traversed_list[], e.g.

 CH_traversed [1] = CH2, if mh leaves CH2.

13. Repeat steps 2 to 6.

14. The mobile host saves ID of previous cluster head in CH_traversed_list[], e.g.

 CH_traversed [2] = CH3, if mh leaves CH3.

15. If c3 > c3_th, mobile host invokes checkpoint procedure ().

 15.1.The mh takes a snapshot of current state of computation of running application

 process.

15.2 Checkpointingmh searches for an immediate neighbour with highest remaining

 memory and saves a back up copy of checkpoint in it. The mh ends

 checkpoint_backup_node = ID ofmhneighbour to CH2.

16. The mobile host sends delete_logof prev_interval message to CH2 which forwards this

 message tothe cluster heads that are saved in CH_traversed_list of the mobile host through

 gateway nodes.

16.1 If any gateway node finds a match between log_ID and UID, sends do_not_delete message

International Journal of Wireless & Mobile Networks (IJWMN) Vol. 4, No. 4, August 2012

62

 to the cluster head.

 16.2 The cluster head forwards log to the gateway node.

16.3 Gateway node saves log.

17. The mobile host enters into next checkpoint interval.

18. The mobile host saves current cluster head in its CH_traversed_list[]

19. repeat steps 2 to 6 till c3 ≤ c3_th.

20. The mobile host fails, last checkpoint can be recovered from the host itself or cluster head

20.1 CASE 1: Last checkpoint can be recovered from the failed host itself, the host rollsback

 upto last checkpoint.

20.1.1 Case 1: The failed host is mhi_s, Replay_ log (UID) message to c_ch, c_ch

 checks if the log is saved in its memory, if yes replays log to mhi_r, else

 broadcasts replay_log (UID) message to the chs saved in failed

 host’sch_traversed_list.

20.1.2 Case 2: The failed host is mhi_r, Receive_mc (UID) message to c_ch, c_ch

 checks if the log is saved in its, memory, mhi_r receives mc from, c_ch, else

 c_ch broadcasts receive_mc, (UID) message to the chs saved in mhi_s’

 ch_traversed_list.

20.1.3 Case 3: The failed host is both mhi_s and mhi_r, Do tasks in case 1 and case2.

20.2 CASE 2: Last checkpoint needs to be recovered from cluster head,

Current cluster head sends recovery_message of the failed mobile host to the cluster head saved

in first field of ch_traversed_list. Then that cluster head forwards copy of checkpoint of failed

host saved to it following the same path through which the recovery_message has been sent to

it.

21. The failed host rolls back upto last checkpoint and recovers following any of the

above three cases.

5.1 Correctness Proof

Theorem 1: The algorithm ensures consistent recovery

Proof: With the help of following two lemmas the above statement can be proved.

Lemma 1: There is no orphan message.

Proof: save log of each sent mc, TRUE for∀ mh

if (mh fails without saving checkpoint)

sent mc is retrieved from saved logs, TRUE for ∀ sent mc

Lemma 2: There is no lost message.

Proof: save UID of each received mc, TRUE for∀ mh

if (mh fails without saving checkpoint)

received mc is retrieved according to saved UIDs, TRUE for ∀ mh

Theorem 2: Proposed algorithm causes minimum checkpoint and log overhead per mobile

host per checkpoint interval

Proof: Each mh saves log, ∀ sent computation message, interval=current

Each mh saves UID, ∀ received computation message, interval=current

Each mh saves checkpoint, C3>C3_th, delete logs and UIDs, interval=next

Each mh saves log, ∀ sent computation message, interval=current

Each mh saves UID, ∀ received computation message, interval=current

International Journal of Wireless & Mobile Networks (IJWMN) Vol. 4, No. 4, August 2012

63

Each mh saves checkpoint, C3>C3_th, delete previous checkpoint, delete logs

 and UIDs, interval=next

 So, per interval each mh saves checkpoint, logs and UIDs of single checkpoint interval.

Theorem 3: Checkpoint traverses only through trusted mobile hosts

Proof: Following two lemmas help to prove this theorem.

Lemma 1: Only Trusted mobile hosts can be selected as cluster heads and gateway nodes.

Proof: If there is n number of mobile hosts in a cluster then the mobile host having highest trust

value will be selected as cluster head and mobile hosts having next higher trust value/values

will be selected as gateway node/nodes. If trust value of current cluster head deceases due to

reduced battery power or unavailability in the network etc., then it will be replaced by another

mobile host having highest trust value currently.

Lemma 2: Saved last checkpoint copy of failed mobile host is forwarded through only

cluster heads and gateway nodes to the failed host for its recovery

Proof: Last checkpoint copy of any mobile host is saved in cluster head. When it fails after

some inter-cluster movements, the cluster head in which it will recover communicates with

other cluster heads to find and retrieve its last checkpoint. Then the checkpoint saving cluster

head forwards it to the communicating cluster head through intermediate cluster heads and

gateway nodes.

6. PERFORMANCE ANALYSIS

We simulate the whole MANET environment like clusters, cluster heads, gateways, cluster

members, movement, cluster change, communication through message passing, logging,

checkpointing, failure, recovery all these non-deterministic events randomly using C

programming. The mobility model considered here is random way point model [18]. We use

rand () function in C to generate join, leave, send and receive function randomly. We have

implemented random movement, handoff, trust model computation message sending and

receiving, logging, checkpoint, failure and rollback recovery of mobile hosts to get different

parameters for the performance analysis of the proposed algorithm. We get all this computation

time using clock () function. By using clock() function we get the time to take checkpoint and

log, time required to decide whether a node is trusted and distrusted, time required to cluster

change and failure time by using clock(). We consider following parameter set to show

performance analysis of proposed mobility based checkpointing and trust based rollback

recovery technique. The parameter values which we use in our simulation are represented in

tabular form in below:

Table 3. Performance Analysis parameters value

Parameter value

Checkpoint Size 2-256 KB

Log Size 50 B

computation message size 50 B

coordination message size 2.5 B

UID size 2.5 B

time to transfer checkpoint per hop through wireless channel 0.08s

International Journal of Wireless & Mobile Networks (IJWMN) Vol. 4, No. 4, August 2012

64

time to transfer log or computation message per hop through wireless channel 0.002s

time to transfer coordination message or UID of a log. 0 .0001s

Energy capacity of a node 1800J

Availabity 10-100%

Mobility rate 0.40-0.48

Channel bandwidth 1 MB

Failure rate 0.02-0.08

Cluster change threshold 3-20

Recovery probability 0.4-0.99

c3 vs. failed node’s recovery time (assuming mobile host fails when c3 = c3_th) :

A cluster member node moves from one cluster to another cluster, c3 increases by 1, distance

between old and new clusterhead increases by 1 hop. Here we assume that a node fails when c3

= (c3_th) i.e. just before c3 exceeding (c3_th), the condition to save checkpoint of current state.

At this point recovery information, logs have to be retrieved from (c3_th) number of cluster

heads and checkpoint will be transferred from the cluster head which is at a distance of (c3_th)

number of hops from recovery clusterhead. Thus log transfer cost and checkpoint transfer cost

both will be maximum. So it is justified that if checkpoint is saved based on c3_th then

maximum recovery cost can be calculated beforehand. This will help to set the value of (c3_th)

as per application.

Recovery time = cost to transmit recovery request message to (c3_th) no. of cluster heads +

cost to transfer logs saved in c3_th no. of cluster heads + cost to transfer last checkpoint from

the cluster head which is at a distance of c3_th hops

 = (Cmco* (c3_th) + Clog_transfer * (c3_th) + Ccheckpoint_

 transfer*(c3_th) hops) unit

 = ((Cmco+ Clog_transfer + Ccheckpoint_transfer) * (c3_th))unit

 = ((0.0001 + 0.002 + 0.08) * (c3_th)) unit

 = (0.0821 * (c3_th)) unit -------------------- (3)

cluster change count threshold vs. coordination

overhead

0

1

2

3

4

5

1 2 4 6 9 13 16 25 37 55

threshold of cluster change count

c
o
o
rd
in
a
ti
o
n

o
v
e
rh
e
a
d

linear c3_th

exponential c3_th

Figure 2. maximum coordination overhead at the time of recovery varies with cluster change

count threshold

A mobile node fails when c3= (c3_th), just before saving checkpoint. Hence number of cluster

heads where the node’s recovery information are scattered is c3_th. For simplication we

consider that distance between last cluster head where the ID of the cluster member node that

saves backup copy of last checkpoint of failed node is saved and the cluster head where the

failed node recovers is (c3_th) hops. Here checkpoint transfer cost is bounded by (c3_th).

Number of cluster member nodes vs. coordination overhead :

Coordination message for Checkpoint-recovery

International Journal of Wireless & Mobile Networks (IJWMN) Vol. 4, No. 4, August 2012

65

= recovery messagemh-CCH + transfer_checkpoint_messageCCH-CH +

 transfer_checkpoint_messageCH-mh

= mco+ CH* mco + mco = mco(1+CH+1) ≈ CH (for high value) --------------------------(4)

coordination message for Log recovery

=log recovery messagemh-CH+ transfer log messageCH-CH

≈ (1+CH)*mco ≈ CH, hence total coordination message = CH + CH = 2*CH

Total coordination message ∞ CH ------------------------ (5)

coordination message vs. number of cluster

member node

0

5

10

15

20

25

10 100 1000 10000

cluster member node

c
o
o
rd

in
a
ti
o
n

m
e
s
s
a
g
e

CH = 10

CH=5

Figure 3. recovery coordination message varies with cluster head irrespective of number of

cluster member nodes of a cluster

In figure 3 it is shown that coordination among different nodes at the time of recovery of a

failed node is restricted to cluster head level. Coordination message overhead does not depend

on number of cluster member nodes.

Next, we compare recovery probability by considering selection of CH and GW based on trust

model and considering selection of CH and GW based on individual factor like failure rate,

available battery power, percentage of availability and recommendation. We have calculated

and plotted recovery probability vs. varying individual factor among the four mentioned above

while the other three is constant,

Case1: Selection of CH and GW based on failure rate.

Case2: Selection of CH and GW based on percentage of availability of CM.

Case3: Selection of CH and GW based on available battery power of CM.

Case4: Selection of CH and GW based on recommendation from neighbour CM.

Case5: Selection of CH and GW based on Trust Model.

Figure 4.(a) failure rate of node vs. Trust value; (b)available battery power of node vs. Trust

value;(c) recommendation from neighbour node vs. Trust value

In figure.4.(a) we see that if failure rate of node increases trust value will decrease.So, failure

rate is inversely proportional to trust value. In figure 4.(b) we see that if availability of baterry

power increases trust value will increase.So, it is directly proportional to trust value. In figure

International Journal of Wireless & Mobile Networks (IJWMN) Vol. 4, No. 4, August 2012

66

4.(c) we see that if recommendation from neighbour node increases trust value will

increase.So, it is directly proportional to trust value.

Figure 5.(a) Availablity of node vs. Trust value; (b) Trust value vs. Recovery probability

 In figure 5.(a) we see that if availability of node increases trust value will increase.

So,availability of node is directly proportional to trust value.In figure 5.(b)we see that recovery

probability increases with trust value. we get 0.99 as highest recovery probability. In all the

comparison we consider failure rate 0.08. At this failure rate we consider available battery

power, percentage of availability and percentage of recommendation will be 100%.

Figure 6.(a) Failure rate vs. recovery probability considering case1 and case5 ; (b) Percentage

of availability vs. recovery probability considering case2 and case5

In figure 6(a) we see that if failure rate of CH and GW is increased recovery probability will

decrease because if failure rate of CH and GW is high then checkpoint and log may not be

transferred all time to the destination cluster. Therefore the recovery probability decreases as

the failure rate increases. In the above figure we compare between case5 and case1.We see that

recovery probability of case5 is more than case1. In figure 6(b) we see that if percentage of

availability of CH and GW is increased recovery probability will increase because if percentage

of availability of CH and GW is high then failure rate will be low. In above we have already

discussed failure rate is inversely proportional to recovery probability. As percentage of

availability is inversely proportional to failure rate, percentage of availability is directly

proportional to recovery probability. In the above figure we compare between case5 and

case2.We see that recovery probability of case5 is more than case2.

International Journal of Wireless & Mobile Networks (IJWMN) Vol. 4, No. 4, August 2012

67

Figure 7.(a) Percentage of available battery power vs. recovery probability considering case3

and case5; (b) Percentage of recommendation vs. recovery probability considering case4 and

case5

In figure 7(a) we see that if available battery power of CH and GW is increased, recovery

probability will increase because if available battery power of CH and GW is high then failure

rate will be low. We have already discussed failure rate is inversely proportional to recovery

probability. As available battery power is inversely proportional to failure rate, available battery

power is directly proportional to recovery probability. In figure 7.a, we compare between case5

and case3.We see that recovery probability in case5 is more than case3.

In figure 7(b) we see that if percentage of recommendation of CH and GW is increased,

recovery probability will increase because if percentage of recommendation of CH and GW is

high then failure rate will be low. We have already discussed that failure rate is inversely

proportional to recovery probability. As percentage of recommendation is inversely

proportional to failure rate, percentage of recommendation is directly proportional to recovery

probability. In figure 7.b, we compare between case5 and case4.We see that recovery

probability of case5 is more than case4.

After analyzing the above comparisons we get the following results.

Table 4. Performance analysis result

desired

recovery

probability

Highest Recovery Probability we get from our

experimental result

Case1 Case2 Case3 Case4 Case5

1 .75 .81 .78 .82 .99

After analyzing table 4, we see that we get highest recovery probability in case5. So, selection

of CH and GW based on proposed trust model gives high recovery probability which is desired

in any fault tolerant system. We get all the above values through our simulation result. In case1,

CH and GW get selected based on only failure rate without considering available battery

power, availability and recommendation. So, after failure when checkpoint is transferred

through GW or CH, there is a possibility of failure of CH and GW due to low available battery

power or availability or poor recommendation. So, checkpoint and log may not be successfully

transferred all the time to the destination. Hence recovery probability may be very low. This

may be true in case2, case3 and case4 mentioned above. But in case5, we select CH and GW

considering above four factors so that chances of failure of CH and GW will be less. So we can

get maximum 99% recovery probability using proposed trust model.

International Journal of Wireless & Mobile Networks (IJWMN) Vol. 4, No. 4, August 2012

68

7. Conclusion

In this work we propose a mobility based checkpointing and trust based rollback recovery

algorithm combined with message logging to provide fault tolerance in cluster based mobile ad

hoc network. Mobility based checkpointing limits recovery time and trust based recovery

increases recovery probability of failed mobile hosts. Each cluster member keeps a count of its

change of clusters and if this count exceeds a predefined threshold, then the mobile host will

save checkpoint. What makes more challenging the task of checkpointing in MANET is lack of

stable storage. In MANET, checkpoint and log placement is also a very trivial issue.

Checkpoint traversal only through trusted mobile hosts ensures successful recovery of failed

mobile host. Failure prone components are security attack prone also. Moreover insecurity

leads to distrust and vice versa. So, security of checkpoints in mobile hosts can be added as a

factor to calculate trust value of a mobile host. Proposed trust model will be extended towards

that.

REFERENCES

[1] T. Park , N. Woo , H.Y. Yeom,(2003) “An Efficient recovery scheme for fault-tolerant mobile

 computing systems”, Future Generation Computer System, 19(1)pp: 37-53.

[2] C. Men, Z. Xu , D. Wang , (2007)“An Efficient Handoff strategy for Mobile Computing

 Checkpoint System”, EUC 2007, LNCS 4808, pp. 410–421.

[3] F. Quaglia, B. Ciciani , R. Baldoni (2006)”Checkpointing Protocols in Distributed Systems

with Mobile Hosts: a Performance analysis”,Workshop on Fault-Tolerant Parallel and

Distributed Systems, pages 742-755.

[4] R. Prakash, M. Singhal, (1996)“Low Cost Checkpointing and Failure Recovery in Mobile

Computing Systems”, IEEE Transactions on Parallel and Distributed Systems, Vol. 7, pp:1-38.

[5] G.Hong, S.J.Ahn, S.C.Han, T. Park, H.Y. Yeom, Y.Cho,(2000) “ Kckpt: Checkpoint and

 Recovery Facility on UnixWare Kernel” [J], Computers and Applications, pp. 303-308.

[6] P. Basu, N. Khan, and T.D.C. Little, (2001)“A Mobility Based Metric for Clustering in Mobile

 Ad Hoc Networks,” in Proc. IEEE ICDCSW’ 01, Apr., pp. 413–418.

[7] J.H.Cho, A.Swami (2011)”A Survey on Trust Management for Mobile Ad HocNetworks”,

 Communications Surveys & Tutorials, IEEE, Computer & Information Science,Volume: 13,

 pp. 562 – 583.

[8] S.Biswas,S.Neogy,(2012)“Checkpointing and Recovery using Node Mobility Among Clusters

 in Mobile Ad hoc Network”, , Springer, NECOM pp. 447-456.

[9] P.K. Jaggi, A.K. Singh,(2011) “Staggered Checkpointing and Recovery in Cluster Based Mobile

Ad Hoc Networks “, Advances in Parallel Distributed Computing Communications in Computer

 and Information Science, , Volume 203, pp. 122-134

[10] T. Ying., T. Juang, M.C. Liu, (2002) “An efficient asynchronous recovery algorithm in wireless

 mobile adhoc networks”, Journal of Internet Technology Special Issue on Wireless Internet:

 Applications and Systems¨. Vol 3, No.2, pp 147-155

[11] Y. Sangho, J. Heo, Y. Cho, J. Hong,(2006) “Adaptive Mobile Checkpointing Facility for

Wireless Sensor Networks”, LNCS 3981, pp. 701-709.

[12] X.Zhao, Z.You, Z. Zhao, D.Chen, F.Peng,(2010)”Availability Based Trust Model of Clusters

 for MANET” Service Systems and Service Management (ICSSSM), 7th International

 Conference on,pp: 1 – 6.

International Journal of Wireless & Mobile Networks (IJWMN) Vol. 4, No. 4, August 2012

69

[13] A. fathi, H. taheri,(2010)” Enhance Topology Control Protocol (ECEC) to Conserve Energy

 based clustering in Wireless Ad Hoc Networks”,ICCSIT, 3rd IEEE International Conference

 , Volume: 9,pp. 356 – 360.

[14] J. Luo, X.Liu , M.Fan,(2009)”A trust model based on fuzzy recommendation for mobile ad-

 hoc networks”, Journal Computer Networks: The International Journal of Computer and Teleco-

 mmunications Networking , September,Volume 53,pp. 2396–2407.

[15] R. Manoharan, S. Mohanalakshmie,(2011)“A Trust Based Gateway Selection Scheme for

 Integration of MANET with Internet” , IEEE-International Conference on Recent Trends

 in Information Technology,MIT, Anna University, Chennai, ,pp543-548.

[16] E.N. (Mootaz) Elnozahy, L.Alvisi, Y.Wang and D.B. Johnson, (September 2002), “A Survey of

Rollback Recovery Protocol in Message Passing System”ACM Comput. Surv., Vol. 34, No. 3.

pp. 375-408.

[17] A.Jøsang,(1999)”An Algebra for Assessing Trust in Certification Chains”, In J.Kochmar,

 editor, Proceedings of the Network and Distributed Systems Security (NDSS'99) Symposium,

 The Internet Society, pp.1-10

[18] F.Li, J.Wu, (2007) “Mobility Reduces Uncertainty in MANETs”, INFOCOM.26th IEEE

 International Conference on Computer Communications. IEEE, pp.1946 – 1954.

[19] T. Camp, J. Boleng, and V. Davies, (2002,)“A survey of mobility models for adhoc network
research”, Wireless Comm. & Mobile Comp. (WCMC), vol. 2, no. 5,pp: 483-502.

Authors

Suparna Biswas obtained M.E. from Jadavpur University. She is currently working as an Assistant

Professor in the Dept. of Computer Science & Engg., West Bengal University of Technology. Her areas

of research interests are Fault Tolerant Mobile Computing, Software Engineering etc.

Sarmistha Neogy is an Associate Professor in the Department of Computer Science & Emgineering,

Jadavpur University, at present and is in teaching profession since last eighteen years. She has been an

active researcher in the areas of distributed systems, fault tolerance, mobile computing and security in

wireless networks.

Priyanka Dey completed her B.Tech in Information Technology from Techno India College of

Technology. Presently she is pursuing her M.Tech in Software Engineering from Dept. of Computer

Science & Engg., West Bengal University of Technology. Her research interest is “Fault tolerance in

mobile computing”.

