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ABSTRACT 

This paper presents a high-throughput memory efficient decoder for Low Density Parity Check (LDPC) 

codes in the high-rate wireless personal area network application. The novel techniques which can apply 

to our selected LDPC code is proposed, including parallel blocked layered decoding architecture and 

simplification of the WiGig networks. We use Real Time - Performance Evaluation Process Algebra (RT-

PEPA) to evaluate a typical LDPC Decoder system’s performance. The approach is more convenient, 

flexible, and lower cost than the former simulation method which needs develop special hardware and 

software tools. Moreover, we can easily analysis how changes in performance depend on changes in a 

particular modes by supplying ranges for parameter values. 
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1. INTRODUCTION 

Low density parity check (LDPC) codes, first proposed by Gallager in 1962 have attracted 

much attention because of their excellent error correcting performance, inherently parallelism 

and high throughput potentials. Therefore, they are being widely used in communication 

standards such as IEEE 802.16e and IEEE 802.11n. In addition, millimeter wave (mmWave) 

Wireless Personal Area Networks (WPANs) described by the IEEE 802.15.3c Working Group 

are considering LDPC codes as the preferred choice for forward error correction (FEC). 

Recently, many studies have been accomplished to simplify the VLSI implementation of the 

related decoders called “Architecture-Aware LDPC codes” or “Block-LDPC codes”. Based on 

these design approaches, quasi-cyclic LDPC (QCLDPC) codes have received significant 

attentions due to their efficient hardware implementations. Furthermore, QC-LDPC codes can 

provide comparable error-correction performance compared with random LDPC codes.  

With the increasing demand for high-data-rate wireless application, an overlapped decoding 

architecture and a layered decoding architecture are popular for high-throughput LDPC 

decoding architectures using QC-LDPC codes. An overlapped decoding architecture based on 

the partially parallel architectures using the belief-propagation (BP) algorithm, where the 

message updating computations in the check node unit (CNU) and in the variable node unit 

(VNU) are partially overlapped, can increase the decoding throughput by maximizing the 

hardware utilization efficiency without any performance degradation.  

Compared with the overlapped two-phase decoding scheme, a layered decoding algorithm and 

architecture have been proposed to achieve a faster convergence. Generally, layered decoding 

algorithm is the horizontal layered decoding algorithm which is favorable for the Min-Sum 

algorithm. The layered decoding algorithm offers 2x throughput and significant memory 
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advantages, compared with the BP algorithm. Also, it can reduce the average number of 

iteration using intermediate check-node (or variable-node) message values. However, 

conventional layered decoders use a bidirectional network or two switch networks for shuffling 

and reshuffling messages, which increases the hardware complexity. Also, due to the data 

dependency between consecutive rows in layered decoding, the parallel and pipelining 

techniques cannot be applied directly. In this paper, we develop a fully pipelined architecture 

targeted for the IEEE WiGig standard that has fully parallelized variable nodes and layer 

serialized check nodes. By exploiting the structure of the lower rate codes, it reduces the 

number of sub-iterations by up to half. 

The rest of the paper is structured as follows. Section II introduces Real-Time Performance 

Evaluation Process Algebra (RT-PEPA) and its Tools. Section III describes the design choices 

made for the architecture of Decoder Functional Blocks Specification, and Section IV details 

performance evaluation result of the functional design of the decoder's major blocks. Then, 

conclusion is presented in Section V. 

2. RT-PEPA and its Tools 

We present a formal modelling language, called Real-Time Performance Evaluation Process 

Algebra (RT-PEPA), to describe the real-time stochastic behaviour of communication systems. 

The language combines conventional stochastic process algebra with real-time semantics to 

describe complex systems in a compositional manner. It includes timed transition, parallel 

composition, probabilistic branching and hard real-time aspects. Performance Evaluation 

Process Algebra (PEPA), developed by Hillston in the 1994s [3, 4], is a timed and stochastic 

extension of classical process algebras such as Communication Sequential Process (CSP) [5]. It 

describes a system as an interaction of the components and these components engage in 

activities. Generally, components model the physical or logical elements of a system and 

activities characterize the behavior of these components. An exponentially distributed random 

variable is associated with each activity specifies the duration of it, that leads to a clear 

relationship between the model and a Continuous Time Markov Chain (CTMC) process. Via 

this underlying Continuous Time Markov Chain process performance measures can be extracted 

from the model. The PEPA formalism provides a small set of timed operators which are able to 

express the individual real time activities of components as well as the interactions between 

them. We provide a brief summary of the operators here, more details about PEPA can be found 

in [2, 3]. 

 

2.1. Notation and Definitions of RT-PEPA 

Real-Time - Performance Evaluation Process Algebra (RT-PEPA) is process algebraic language 

which supports the compositional description of concurrent and distributed systems and analysis 

of their performances. The basic elements of RT-PEPA are its actions, which represent activities 

carried out by the systems being modeled, and its operators, which are used to compose 

algebraic descriptions. 

 

Time point 

A time point is a time instant with respect to the global clock of the real time system; it does not 

have duration. It specifies the starting and stopping times of an action. Using a time point, we 

can instruct the system to generate an action at a particular point in time. Time point progresses 

consistently in all parts of the system. More formally, the time point is defined by using a 

discrete time domain, which contains the following properties: 

:t t t t t t t t t′ ′ ′′ ′′ ′ ′′∀ ∃ < ∧ ∀ < ⇒ ≤   
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We assume a fixed set of clock 0{ , , }it t t= … . The special time point t0, which is called the start 

time point, always has the value 0. 

Time Constraint 

An action can exist for a short period of time; this duration is called the time constraint of the 

action. A time constraint has a starting and an ending point. It consists of a lower-bound and an 

upper-bound time point, where the lower-bound time point enables an action in a module, and 

the upper-bound time point disables the action at that point in time. Formally, we define a time 

constraint in the following: 

{[ , ] }  0
min max min maxi i i i i it T withτ τ τ τ= ∀ ∈ ≤ ≤∣T   

Timed Action 

A timed action is a tuple , ,α λ< >T  consisting of the type of the action α  , the rate of the 

action λ  and temporal constraint of the action T  . The type denotes the kind of action, such as 

transmission of data packets, while the rate indicates the speed at which the action occurs from 

the view of an external observer. The rates are used to denote the random variables specifying 

the duration of the actions. The actions can be defined in different types of probability 

distribution function such as Exponential, Poisson, Constant, Geometric and Uniform 

distribution. Moreover, each transition is also bounded by a temporal constraint. In this section, 

some basic notations and operation semantics about RT-PEPA are briefly introduced. The 

syntax of RT-PEPA is defined in the following: 

, ,,:: , , /  . LrP stop P P Q P Q P Q P Q P L Aα λ ⊗= < > + ⊕ �∣ ∣ ∣ ∣ ∣ ∣ ∣T P TTT   

The conventional stochastic process algebra operators and the additional operations are 

described in the following: 

� stop is an inactive process 

� , , . Pα λ< >T  , which stands for a prefix operator, where the type of the action is a 

probability distribution function (pdf) type α  , with the activity rate denoted by λ  , and 

the temporal constraint of component is T . It subsequently behaves as P. Sequences of 

actions can be combined to build up a time constraint for an action. The time constraint T  
is defined as above. 

� P + Q  is choice combinator capturing the possibility of competition or selection between 

different possible activities. It represents a system which may behave either as P or as Q 

processes. All the current actions P and Q process are enabled. The first action to complete 

distinguishes one of the processes. The other process of the choice is discarded. The 

system will then behave as the derivative resulting from the evolution of the chosen 

process. 

� ,rP Q⊕ T  denotes the probabilistic choice with the conventional generative interpretation, 

thus with probability r the process behaves like P and with probability 1  r−   it behaves 

like Q bounded with the time constraint T . 

� , L TP Q⊗  is a cooperation, in which the two actions P and Q are parallel, synchronizing 

on all activities whose type is in the cooperation set L of action types. The lifetime of two 

actions is the time constraint T . These two actions are disabled when the time constraint 

expires. Any action whose type is not in L will proceed independently. As a syntactic 

convenience the parallel combinator is defined by ,φ⊗ T   , where the cooperation set L is 

empty and the lifetime of two actions is T . 
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� , P Q� P T   is a unary operator which returns the set of actions that meet the temporal 

predicate condition specified by T .  P  consists of several predicates combined with the 

boolean connectives: `And' ,`Or', Exclusive-Or (EXOR)' and `Not'. ,And� T   means both 

actions can occur during the interval T . ,Or� T  means that one or both actions can occur 

during the interval T  . ,EXOR� T  means that one of these actions occurs; it immediately 

determines whether P or Q can subsequently occur during the triggered interval T  . 

,Not� T  means that both actions do not occur during the interval T . 

�  /  P L   is a hiding operation, where the set L of visible action types identifies those 

activities which are to be considered internal or private to the component. These activities 

are not visible to an external observer, nor are they accessible to other components for 

cooperation. 

�  :  A P=   is a countable set of constants. 

 

2.2. RT-PEPA Eclipse Plug-in Tools 

The PEPA is a language for modelling systems in which a number of interacting components 

run in parallel, and whose behaviour is stochastic. The core semantics of PEPA is in terms of 

Continuous Time Markov Chains (CTMCs), and an alternative semantics in terms of Ordinary 

Differential Equations (ODEs) has also been developed. PEPA has been applied in practice to a 

wide variety of systems, and its success as a modelling language has been largely down to its 

extensive tool support. Most recently, the PEPA Plug-in Project [6, 7] has integrated a range of 

analysis techniques based on both numerical solution and simulation into a single tool built on 

top of the Eclipse platform [8]. As with all compositional Markovian formalisms, however, 

PEPA suffers from the state space explosion problem. A model can have an underlying state 

space that is exponentially larger than its description, meaning that it can be infeasible to 

analyse. Fluid flow approximation using PEPAs ODE semantics can solve this problem if we 

are only interested in the average behaviour of the system over time. However, if we want to 

reason over all possible behaviours of the model for example, the probability that an error 

occurs within some time interval then we must consider the CTMC semantics. In this paper, we 

present a new extension to the PEPA plugin, in which a model can be abstracted by combining, 

or aggregating, states. To safely over-approximate the behaviour of the original model (for any 

aggregation of its states), we use two abstraction techniques - abstract CTMCs (a type of 

Markov decision process with infinite branching), and stochastic bounds. We provide a model 

checker for the three-valued Continuous Stochastic Logic (CSL), which computes from the 

abstraction a safe bound of the probability of a quantitative property holding in the original 

model X if the actual probability is p, then the model checker will return an interval I = [p1, p2] 

such that p 2 I. The current version of the PEPA plug-in is available from 

http://www.dcs.ed.ac.uk/pepa/tools/plugin, and provides several views: 

 

2.2.1 Abstract Syntax Tree View 

The Abstraction View is a graphical interface that shows the state space of each sequential 

component in a PEPA model. It provides a facility for labelling states (so that they can be 

referred to in CSL properties), and for specifying which states to aggregate. 

 

2.2.2 Model Checking View 

The Model Checking View is an interface for constructing, editing, and model checking CSL 
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properties. The property editor provides a simple way to construct CSL formulae, by 

referencing the labels given to states in the abstraction view. It ensures that only syntactically 

well-formed CSL formulae can be constructed. 

 

2.2.3 State Space View 

The State Space View is linked to the active PEPA editor and provides a tabular representation 

of the state space of the underlying Markov chain. The table is populated automatically when 

the state space exploration is invoked from the corresponding top level menu item. A row 

represents a state of the Markov chain, each cell in the table showing the local state of a 

sequential component. The state space order in which sequential components are displayed 

corresponds to the order in which they are found in the co-operation set by depth-first visit of 

the co-operations binary tree. A further column displays the steady-state probability distribution 

if one is available. A toolbar menu item provides access to the user interface for managing state 

space filters. When a set of filter rules is activated, the excluded states are removed from the 

table. The probability mass of the states that match the filters is automatically computed and 

shown in the view. Filter rules are assigned names and made persistent across workspace 

sessions. From the toolbar the user can invoke a wizard dialogue box to export the transition 

system and one to import the steady-state probability distribution as computed by external tools. 

The view also has a Single-step Debugger, a tool for navigating the transition system of the 

Markov chain. The debugger can be opened from any state of the chain and its layout is as 

follows. In an external window are displayed the state description of the current state and two 

tables. The tables show the set of states for which there is a transition to or from the current 

state. The tables are laid out similarly to the views main table. In addition, the action types that 

label a transition are shown in a further column. The user can navigate backwards and forwards 

by selecting any of the states listed. 

 

2.2.4 Performance Evaluation View and Graph View 

Performance Evaluation View and Graph View A wizard dialogue box accessible from the top-

level menu bar guides the user through the process of performing steady-state analysis on the 

Markov chain. The user can choose between an array of iterative solvers and tune their 

parameters as needed. Performance metrics are calculated automatically and displayed in the 

Performance Evaluation View. It has three tabs showing the results of the aforementioned 

reward structures (throughput, utilisation, and population levels). Throughput and population 

levels are arranged in a tabular fashion, whereas utilisation is shown in a two-level tree. Each 

top-level node corresponds to a sequential component and its children are its local states. The 

Performance Evaluation View can feed input to the Graph View, a general purpose view 

available in the plug-in for visualising charts. Throughputs and population levels are shown as 

bar charts and a top-level node of the utilisation tree is shown as a pie chart. As with any kind of 

graph displayed in the view, a number of converting options is available. The graph can be 

exported to PDF or SVG and the underlying data can be extracted into a comma separated value 

text file. 

 

2.2.5 Experimenting with Markovian Analysis 

An important stage in performance modelling is sensitivity analysis, i.e. the study of the impact 

that certain parameters have on the performance of the system. A wizard dialogue box is 

available in the plug-in to assist the user with the set-up of sensitivity analysis experiments over 
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the models. The parameters that can be subjected to this analysis are the rate definitions and 

number of replications of the array of processes in the system equation. The performance 

metrics that can be analysed are throughput, utilisation, or population levels. If the model has 

filter rules defined, the probability mass of the set of filtered states can be used as a performance 

index as well. The tool allows the set-up of multiple experiments of two kinds: one-dimensional 

(performance metric vs. one parameter) or two-dimensional (performance metric vs. two 

parameters changed simultaneously). The results of the analysis are shown in the Graph View as 

line charts. For example, a parameter that may have an important impact on the performance of 

the real time system is the reset delay of the CPU. 

 

2.2.6 Time Series Analysis 

When performing a time-series analysis there are three basic steps to complete; component 

selection, solver selection and solver parameterization, all of which are handled by the time-

series analysis wizard. Rather than simply observing all components, the wizard allows the 

modeller to select only those components that are of interest. This becomes more pertinent as 

either the number components in the system or number of observed time points increase - one 

limitation of the current time-series solvers is that all data is held in memory, and only written 

out to disk when exporting from the graph view. Solver selection and parameterization are self-

explanatory, with the list of visible parameters being dynamically linked to the currently 

selected solver. In keeping with the rest of the UI, the selections across all three steps are 

persistent across invocations. Likewise, each unique parameter is stored only once, meaning 

parameters such as start and stop times are persistent over all solvers. Lastly, the parameters, 

including selected solver, are attached to the results in the graph view for future reference. 

Currently this meta data can only be seen when the data is exported. The last feature of the 

wizard is the ability to export the model in alternative formats, such as Matlab. 

 

3. Decoder Functional Blocks Specification 

3.1. Overall System 

The decoder has five major blocks: variable nodes (VN), check nodes (CN), barrel shifters (BS), 

pre-routers, and post-routers. Figure 1 shows the high-level connection of all the blocks. The 

VNs are combined into 16 groups of 42VNs, called a variable node group (VNG). Each VN 

within a VNG connects to one port of a 42-input barrel shifter to implement the sub-matrix 

shifts. The outputs of the barrel shifter are further routed by the pre-routers, which connect to 

one of the 16 inputs of the 42 CNs. The outputs of each CN go through inverse shifting using 

post-routers and another set of barrel shifters. The design has several levels of hierarchy in order 

to keep irregular wiring local and make the global wires as regular as possible. Since the design 

layer serializes the CNs, they are time multiplexed to act as different CNs in each cycle. The CN 

has all of the information it needs to compute the new check to variable (C2V) message from all 

CNs in the first layer, and, after it has finished processing the inputs, it sends back a single 

message to all neighboring VNs. In the next cycle, the VNs send another single message that 

has been marginalized for the CNs in the second layer, so that the same CNs can compute the 

C2V message from the CNs of the second layer. This continues for all the layers in the matrix, 

with serial messages being passed back and forth from VNs to CNs. The decoder uses the 

flooding schedule because layered decoding has too many dependencies to be used effectively 

in a highly parallel, fully pipelined design. It processes one layer per pipeline stage, and the 

VNs accumulate one frames messages while sending out the others. The decoder equation 

defines how the components interact with each other. According to the working cycle and the 
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definitions of model’s components we give before, the decoder equation is show below: 
 

, , ,

, ,

0 0 0 0

0 0 0

:

;

L L L

L L

Decoder Back Shifter Variable Node Front Shifter

Pre Router Check Node Decoder

= − −⊗ ⊗

⊗

−

− −

⊗

⊗

T T T

T T

  

 

Fig. 1. Decoder Block Diagram 

 

3.2. Variable Node 

The VN implements [9] and performs both the CN and VN marginalization, which keeps all 

memory within the VN. When starting to decode a new data frame, the VN loads in a prior 

value to either the first or second frames prior or accumulation registers. Over the next four 

cycles sends variable to check (V2C) messages to its neighboring CNs. Since the VN performs 

the C2V marginalization, it locally stores the V2C messages it just sent out in a shift register. 

Once the un-marginalized C2V message returns, the VN compares the first minimum magnitude 

to the V2C magnitude from the shift register. If they match, the VN uses the second minimum; 

otherwise, it uses the first minimum. It marginalizes the sign by taking the XOR of the new and 

stored V2C signs. The VN accumulates the marginalized C2Vs, with the prior value added in 

when the first C2V arrives, and it also stores them individually in another shift register. After all 

C2V messages have been accumulated, the VN calculates the new V2C messages by subtracting 

out the saved C2V values from the accumulated value, which is the V2C marginalization. Also, 

the sign bit of the accumulated value is used as the hard decision and for early termination. 

Figure 2 shows the block diagram for the VN. 

, , ,

, ,

0 0 0 0

0 0 0

: / 2

2 / ;

L L L

L L

Variable Node Corrector S M sComp XOR

Accum Subtractor sComp S M

β ⊗ ⊗ ⊗

⊗ ⊗

′− = −

′ −

T T T

T T

  

00 0 0 0 0 0 0: , , . 2  , , . ;LCorrector listen C V Min get Muxβ λ λ= < > − < >⊗T T   

00 0 0 0 0 0 0 : , , . , , . 2 ;LSubtractor listen Mux get V C Margλ λ= < > < > −⊗T T   
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Fig. 2. Variable Node Schematic 

 

3.3. Check Node Node 

Since the VN performs the marginalization, the CN only needs to find the first and second 

minima of all the incoming V2C message magnitudes and the product of the V2Cs signs. The 

CN computes the former with a compare select tree. A sorting block at the beginning arranges 

pairs of inputs in ascending order, and subsequent stages of the tree select the minimum two out 

of four inputs. A separate XOR tree finds the product of the signs. The CN is modified to 

process either a single high-weight layer or two non-overlapping layers. To process a single 

layer, it takes the output of the entire tree to find the first and second minima of all 16 inputs. 

For non-overlapping layers, the weight is at most 8, so the top half of a tree can process one 

layer and the bottom half can process the other. The outputs are taken at the second to last stage 

to obtain first and second minima for each layer. This partitions a 16-input CN into two 8-input 

CNs, giving the CN two levels of granularity. Because the layers do not overlap, no read before 

write conflicts occur. Figure 3 shows the final CN architecture for the magnitude computation. 

The sign’s XOR tree is partitioned similarly.  

 

, , , ,0 0 0 1 0 2: ;L L L LCheck Node Sort CS CS XOR CS− = ⊗ ⊗ ⊗ ⊗T T T T   

 

 
 

Fig. 3. Check Node Magnitude Computation Schematic 
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3.4. Pre- and Post-Routing 

When processing two non-overlapping layers at once, barrel shifters alone cannot guarantee that the first 

layers inputs will go to the top half of each CN and the second layers inputs will go to the bottom half. 

Granular CNs need two extra sets of routing to allow this, as depicted in Figure 4. Pre-routing comes 

before the CN and selects which VNGs go to the top half or bottom half of each CN. Post-routing comes 

after the CN and, for each VNG, selects whether to send the top trees or bottom trees result. Both types of 

routers are implemented with a small number of muxes. In the case of processing one layer, the routers do 

not shift the messages. 

, , , ,0 0 0 1 0 1: ;L L L LRouter Select Pre Router Check Node Post Router Select= − − ⊗ −⊗ ⊗ ⊗T T T T

  
Fig. 4. Operation of Pre- and Post-Routers 

 

3.5. Pipeline 

The decoder has five pipeline stages and processes two independent data frames simultaneously. 

Each full iteration takes three sub-iterations for the rate 13/16 code and four for the rest, one for 

each time-multiplexed use of the check nodes. In the first stage, the VN outputs the 

marginalized V2C and the barrel shifter reorders the messages. The second stage consists of the 

pre-routing and global wiring to the check node. The CNs processes their inputs in the third 

stage and route the messages back to the VNs across the global wires in the fourth stage. In the 

fifth stage, the VN accumulates the serial messages over three or four cycles. The accumulation 

would normally cause a four cycle bubble in the pipeline, it due to the dependency between 

accumulating all the C2Vs and sending out the next V2Cs. The bubble is just large enough to 

accommodate processing a second frame. This reduces the bubble to one cycle for the rate 13/16 

code and removes it completely for the other rates because no dependencies exist between the 

two frames. Figure 5 gives the pipeline diagram for the decoder with four sub-iterations. 

 

Fig. 5. Pipeline Diagram for rate 1/2, 5/8, and 3/4 codes where the first number indicates the 

frame and the second the sub-iteration 
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4. PERFORMANCE EVALUATION 

The study of how changes in performance depend on changes in parameter mode values is 

known as sensitivity analysis. We can vary some parameter's value a little, and see its influence 

degree to the model's performance, for example, the throughput or response time. Throughput is 

an action-related metric showing the rate at which an action is performed at steady-state. In 

other words, the throughput represents the average number of the activities completed by the 

system during one unit time. From Figure 6, it can be observed that the impact of the number of 

devices on the throughput of transmit is more sensitive than the QPSK-1/2 and 16-QAM-1/2 

modulation for NLOS channel CM 2.3 and LOS channel CM 1.2 Modes. If we could make 

some efforts to optimize the cache, and raise the 16-QAM-1/2 modulation for NLOS channel 

Mode form 0.6 to 0.85 or even more high value, the throughput of transmit could greatly 

improved. 

 

Fig. 6. Throughput versus Number of Devices 

For channel coding, we have investigated the performance of LDPC (768,384) coded OFDM 

systems All receiver functions including packet detection, fine timing synchronization, channel 

estimation equalization and common phase-error correction have been included. Quantization of 

bit metrics has been performed with 5 soft-bits in both coding schemes. The chosen LDPC 

decoding algorithm is the min-sum algorithm with a maximum of 25 iterations per LDPC block. 

The performance for QPSK-1/2 and 16-QAM-1/2 modulation for NLOS channel CM 2.3 and 

LOS channel CM 1.2 are presented in Figure 7. The simulation results show better performance 

of LDPC code for both channel models. The target for the Bit Error Rate (BER) ranges from 

10% down to 1%. In the presence of NLOS channel model (CM) 2.3, LDPC coding achieves 

higher coding gain, in the range of 1.6 to 2.7 dB for QPSK, and 1.0 to 2.5 dB for 16-QAM. On 



International Journal of Wireless & Mobile Networks (IJWMN) Vol. 4, No. 4, August 2012 

97 

 

the other hand, in the presence of LOS channel CM 1.2, the coding gain of the LDPC code is 

approximately 1 dB. 

 

 

Fig. 7. BER of designed LDPC Decoder for 60-GHz NLOS Channel CM2.3 & LOS channel 

CM 1.2 

 

5. CONCLUSIONS 

The proposed fully pipelined architecture with granular check nodes supports all matrices and 

low-power modes of the IEEE 802.11ad standard. The routing complexity was reduced 

significantly by replacing a crossbar based interconnect network with a fixed wire network for 

SN. Hence, the proposed decoder architecture has high throughput, low interconnect complexity 

and very low decoding latency. The architecture can be extended to other short block length 

codes that have the same property of non-overlapping layers, such as to be incorporated in next-

generation high-rate WPAN applications. 
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