
International Journal of Wireless & Mobile Networks (IJWMN) Vol. 4, No. 4, August 2012

DOI : 10.5121/ijwmn.2012.4406 87

LDPC DECODER MODELLING AND EVALUATION

USING RT-PEPA

Tony Tsang
1

1
Hong Kong Polytechnic University, Hung Hom, Hong Kong.

ttsang@ieee.org

ABSTRACT

This paper presents a high-throughput memory efficient decoder for Low Density Parity Check (LDPC)

codes in the high-rate wireless personal area network application. The novel techniques which can apply

to our selected LDPC code is proposed, including parallel blocked layered decoding architecture and

simplification of the WiGig networks. We use Real Time - Performance Evaluation Process Algebra (RT-

PEPA) to evaluate a typical LDPC Decoder system’s performance. The approach is more convenient,

flexible, and lower cost than the former simulation method which needs develop special hardware and

software tools. Moreover, we can easily analysis how changes in performance depend on changes in a

particular modes by supplying ranges for parameter values.

KEYWORDS

LPDC, IEEE 802.15.3c, RT-PEPA, Performance Analysis, Formal Modelling.

1. INTRODUCTION

Low density parity check (LDPC) codes, first proposed by Gallager in 1962 have attracted

much attention because of their excellent error correcting performance, inherently parallelism

and high throughput potentials. Therefore, they are being widely used in communication

standards such as IEEE 802.16e and IEEE 802.11n. In addition, millimeter wave (mmWave)

Wireless Personal Area Networks (WPANs) described by the IEEE 802.15.3c Working Group

are considering LDPC codes as the preferred choice for forward error correction (FEC).

Recently, many studies have been accomplished to simplify the VLSI implementation of the

related decoders called “Architecture-Aware LDPC codes” or “Block-LDPC codes”. Based on

these design approaches, quasi-cyclic LDPC (QCLDPC) codes have received significant

attentions due to their efficient hardware implementations. Furthermore, QC-LDPC codes can

provide comparable error-correction performance compared with random LDPC codes.

With the increasing demand for high-data-rate wireless application, an overlapped decoding

architecture and a layered decoding architecture are popular for high-throughput LDPC

decoding architectures using QC-LDPC codes. An overlapped decoding architecture based on

the partially parallel architectures using the belief-propagation (BP) algorithm, where the

message updating computations in the check node unit (CNU) and in the variable node unit

(VNU) are partially overlapped, can increase the decoding throughput by maximizing the

hardware utilization efficiency without any performance degradation.

Compared with the overlapped two-phase decoding scheme, a layered decoding algorithm and

architecture have been proposed to achieve a faster convergence. Generally, layered decoding

algorithm is the horizontal layered decoding algorithm which is favorable for the Min-Sum

algorithm. The layered decoding algorithm offers 2x throughput and significant memory

International Journal of Wireless & Mobile Networks (IJWMN) Vol. 4, No. 4, August 2012

88

advantages, compared with the BP algorithm. Also, it can reduce the average number of

iteration using intermediate check-node (or variable-node) message values. However,

conventional layered decoders use a bidirectional network or two switch networks for shuffling

and reshuffling messages, which increases the hardware complexity. Also, due to the data

dependency between consecutive rows in layered decoding, the parallel and pipelining

techniques cannot be applied directly. In this paper, we develop a fully pipelined architecture

targeted for the IEEE WiGig standard that has fully parallelized variable nodes and layer

serialized check nodes. By exploiting the structure of the lower rate codes, it reduces the

number of sub-iterations by up to half.

The rest of the paper is structured as follows. Section II introduces Real-Time Performance

Evaluation Process Algebra (RT-PEPA) and its Tools. Section III describes the design choices

made for the architecture of Decoder Functional Blocks Specification, and Section IV details

performance evaluation result of the functional design of the decoder's major blocks. Then,

conclusion is presented in Section V.

2. RT-PEPA and its Tools

We present a formal modelling language, called Real-Time Performance Evaluation Process

Algebra (RT-PEPA), to describe the real-time stochastic behaviour of communication systems.

The language combines conventional stochastic process algebra with real-time semantics to

describe complex systems in a compositional manner. It includes timed transition, parallel

composition, probabilistic branching and hard real-time aspects. Performance Evaluation

Process Algebra (PEPA), developed by Hillston in the 1994s [3, 4], is a timed and stochastic

extension of classical process algebras such as Communication Sequential Process (CSP) [5]. It

describes a system as an interaction of the components and these components engage in

activities. Generally, components model the physical or logical elements of a system and

activities characterize the behavior of these components. An exponentially distributed random

variable is associated with each activity specifies the duration of it, that leads to a clear

relationship between the model and a Continuous Time Markov Chain (CTMC) process. Via

this underlying Continuous Time Markov Chain process performance measures can be extracted

from the model. The PEPA formalism provides a small set of timed operators which are able to

express the individual real time activities of components as well as the interactions between

them. We provide a brief summary of the operators here, more details about PEPA can be found

in [2, 3].

2.1. Notation and Definitions of RT-PEPA

Real-Time - Performance Evaluation Process Algebra (RT-PEPA) is process algebraic language

which supports the compositional description of concurrent and distributed systems and analysis

of their performances. The basic elements of RT-PEPA are its actions, which represent activities

carried out by the systems being modeled, and its operators, which are used to compose

algebraic descriptions.

Time point

A time point is a time instant with respect to the global clock of the real time system; it does not

have duration. It specifies the starting and stopping times of an action. Using a time point, we

can instruct the system to generate an action at a particular point in time. Time point progresses

consistently in all parts of the system. More formally, the time point is defined by using a

discrete time domain, which contains the following properties:

:t t t t t t t t t′ ′ ′′ ′′ ′ ′′∀ ∃ < ∧ ∀ < ⇒ ≤

International Journal of Wireless & Mobile Networks (IJWMN) Vol. 4, No. 4, August 2012

89

We assume a fixed set of clock 0{ , , }it t t= … . The special time point t0, which is called the start

time point, always has the value 0.

Time Constraint

An action can exist for a short period of time; this duration is called the time constraint of the

action. A time constraint has a starting and an ending point. It consists of a lower-bound and an

upper-bound time point, where the lower-bound time point enables an action in a module, and

the upper-bound time point disables the action at that point in time. Formally, we define a time

constraint in the following:

{[,] } 0
min max min maxi i i i i it T withτ τ τ τ= ∀ ∈ ≤ ≤∣T

Timed Action

A timed action is a tuple , ,α λ< >T consisting of the type of the action α , the rate of the

action λ and temporal constraint of the action T . The type denotes the kind of action, such as

transmission of data packets, while the rate indicates the speed at which the action occurs from

the view of an external observer. The rates are used to denote the random variables specifying

the duration of the actions. The actions can be defined in different types of probability

distribution function such as Exponential, Poisson, Constant, Geometric and Uniform

distribution. Moreover, each transition is also bounded by a temporal constraint. In this section,

some basic notations and operation semantics about RT-PEPA are briefly introduced. The

syntax of RT-PEPA is defined in the following:

, ,,:: , , / . LrP stop P P Q P Q P Q P Q P L Aα λ ⊗= < > + ⊕ �∣ ∣ ∣ ∣ ∣ ∣ ∣T P TTT

The conventional stochastic process algebra operators and the additional operations are

described in the following:

� stop is an inactive process

� , , . Pα λ< >T , which stands for a prefix operator, where the type of the action is a

probability distribution function (pdf) type α , with the activity rate denoted by λ , and

the temporal constraint of component is T . It subsequently behaves as P. Sequences of

actions can be combined to build up a time constraint for an action. The time constraint T
is defined as above.

� P + Q is choice combinator capturing the possibility of competition or selection between

different possible activities. It represents a system which may behave either as P or as Q

processes. All the current actions P and Q process are enabled. The first action to complete

distinguishes one of the processes. The other process of the choice is discarded. The

system will then behave as the derivative resulting from the evolution of the chosen

process.

� ,rP Q⊕ T denotes the probabilistic choice with the conventional generative interpretation,

thus with probability r the process behaves like P and with probability 1 r− it behaves

like Q bounded with the time constraint T .

� , L TP Q⊗ is a cooperation, in which the two actions P and Q are parallel, synchronizing

on all activities whose type is in the cooperation set L of action types. The lifetime of two

actions is the time constraint T . These two actions are disabled when the time constraint

expires. Any action whose type is not in L will proceed independently. As a syntactic

convenience the parallel combinator is defined by ,φ⊗ T , where the cooperation set L is

empty and the lifetime of two actions is T .

International Journal of Wireless & Mobile Networks (IJWMN) Vol. 4, No. 4, August 2012

90

� , P Q� P T is a unary operator which returns the set of actions that meet the temporal

predicate condition specified by T . P consists of several predicates combined with the

boolean connectives: `And' ,`Or', Exclusive-Or (EXOR)' and `Not'. ,And� T means both

actions can occur during the interval T . ,Or� T means that one or both actions can occur

during the interval T . ,EXOR� T means that one of these actions occurs; it immediately

determines whether P or Q can subsequently occur during the triggered interval T .

,Not� T means that both actions do not occur during the interval T .

� / P L is a hiding operation, where the set L of visible action types identifies those

activities which are to be considered internal or private to the component. These activities

are not visible to an external observer, nor are they accessible to other components for

cooperation.

� : A P= is a countable set of constants.

2.2. RT-PEPA Eclipse Plug-in Tools

The PEPA is a language for modelling systems in which a number of interacting components

run in parallel, and whose behaviour is stochastic. The core semantics of PEPA is in terms of

Continuous Time Markov Chains (CTMCs), and an alternative semantics in terms of Ordinary

Differential Equations (ODEs) has also been developed. PEPA has been applied in practice to a

wide variety of systems, and its success as a modelling language has been largely down to its

extensive tool support. Most recently, the PEPA Plug-in Project [6, 7] has integrated a range of

analysis techniques based on both numerical solution and simulation into a single tool built on

top of the Eclipse platform [8]. As with all compositional Markovian formalisms, however,

PEPA suffers from the state space explosion problem. A model can have an underlying state

space that is exponentially larger than its description, meaning that it can be infeasible to

analyse. Fluid flow approximation using PEPAs ODE semantics can solve this problem if we

are only interested in the average behaviour of the system over time. However, if we want to

reason over all possible behaviours of the model for example, the probability that an error

occurs within some time interval then we must consider the CTMC semantics. In this paper, we

present a new extension to the PEPA plugin, in which a model can be abstracted by combining,

or aggregating, states. To safely over-approximate the behaviour of the original model (for any

aggregation of its states), we use two abstraction techniques - abstract CTMCs (a type of

Markov decision process with infinite branching), and stochastic bounds. We provide a model

checker for the three-valued Continuous Stochastic Logic (CSL), which computes from the

abstraction a safe bound of the probability of a quantitative property holding in the original

model X if the actual probability is p, then the model checker will return an interval I = [p1, p2]

such that p 2 I. The current version of the PEPA plug-in is available from

http://www.dcs.ed.ac.uk/pepa/tools/plugin, and provides several views:

2.2.1 Abstract Syntax Tree View

The Abstraction View is a graphical interface that shows the state space of each sequential

component in a PEPA model. It provides a facility for labelling states (so that they can be

referred to in CSL properties), and for specifying which states to aggregate.

2.2.2 Model Checking View

The Model Checking View is an interface for constructing, editing, and model checking CSL

International Journal of Wireless & Mobile Networks (IJWMN) Vol. 4, No. 4, August 2012

91

properties. The property editor provides a simple way to construct CSL formulae, by

referencing the labels given to states in the abstraction view. It ensures that only syntactically

well-formed CSL formulae can be constructed.

2.2.3 State Space View

The State Space View is linked to the active PEPA editor and provides a tabular representation

of the state space of the underlying Markov chain. The table is populated automatically when

the state space exploration is invoked from the corresponding top level menu item. A row

represents a state of the Markov chain, each cell in the table showing the local state of a

sequential component. The state space order in which sequential components are displayed

corresponds to the order in which they are found in the co-operation set by depth-first visit of

the co-operations binary tree. A further column displays the steady-state probability distribution

if one is available. A toolbar menu item provides access to the user interface for managing state

space filters. When a set of filter rules is activated, the excluded states are removed from the

table. The probability mass of the states that match the filters is automatically computed and

shown in the view. Filter rules are assigned names and made persistent across workspace

sessions. From the toolbar the user can invoke a wizard dialogue box to export the transition

system and one to import the steady-state probability distribution as computed by external tools.

The view also has a Single-step Debugger, a tool for navigating the transition system of the

Markov chain. The debugger can be opened from any state of the chain and its layout is as

follows. In an external window are displayed the state description of the current state and two

tables. The tables show the set of states for which there is a transition to or from the current

state. The tables are laid out similarly to the views main table. In addition, the action types that

label a transition are shown in a further column. The user can navigate backwards and forwards

by selecting any of the states listed.

2.2.4 Performance Evaluation View and Graph View

Performance Evaluation View and Graph View A wizard dialogue box accessible from the top-

level menu bar guides the user through the process of performing steady-state analysis on the

Markov chain. The user can choose between an array of iterative solvers and tune their

parameters as needed. Performance metrics are calculated automatically and displayed in the

Performance Evaluation View. It has three tabs showing the results of the aforementioned

reward structures (throughput, utilisation, and population levels). Throughput and population

levels are arranged in a tabular fashion, whereas utilisation is shown in a two-level tree. Each

top-level node corresponds to a sequential component and its children are its local states. The

Performance Evaluation View can feed input to the Graph View, a general purpose view

available in the plug-in for visualising charts. Throughputs and population levels are shown as

bar charts and a top-level node of the utilisation tree is shown as a pie chart. As with any kind of

graph displayed in the view, a number of converting options is available. The graph can be

exported to PDF or SVG and the underlying data can be extracted into a comma separated value

text file.

2.2.5 Experimenting with Markovian Analysis

An important stage in performance modelling is sensitivity analysis, i.e. the study of the impact

that certain parameters have on the performance of the system. A wizard dialogue box is

available in the plug-in to assist the user with the set-up of sensitivity analysis experiments over

International Journal of Wireless & Mobile Networks (IJWMN) Vol. 4, No. 4, August 2012

92

the models. The parameters that can be subjected to this analysis are the rate definitions and

number of replications of the array of processes in the system equation. The performance

metrics that can be analysed are throughput, utilisation, or population levels. If the model has

filter rules defined, the probability mass of the set of filtered states can be used as a performance

index as well. The tool allows the set-up of multiple experiments of two kinds: one-dimensional

(performance metric vs. one parameter) or two-dimensional (performance metric vs. two

parameters changed simultaneously). The results of the analysis are shown in the Graph View as

line charts. For example, a parameter that may have an important impact on the performance of

the real time system is the reset delay of the CPU.

2.2.6 Time Series Analysis

When performing a time-series analysis there are three basic steps to complete; component

selection, solver selection and solver parameterization, all of which are handled by the time-

series analysis wizard. Rather than simply observing all components, the wizard allows the

modeller to select only those components that are of interest. This becomes more pertinent as

either the number components in the system or number of observed time points increase - one

limitation of the current time-series solvers is that all data is held in memory, and only written

out to disk when exporting from the graph view. Solver selection and parameterization are self-

explanatory, with the list of visible parameters being dynamically linked to the currently

selected solver. In keeping with the rest of the UI, the selections across all three steps are

persistent across invocations. Likewise, each unique parameter is stored only once, meaning

parameters such as start and stop times are persistent over all solvers. Lastly, the parameters,

including selected solver, are attached to the results in the graph view for future reference.

Currently this meta data can only be seen when the data is exported. The last feature of the

wizard is the ability to export the model in alternative formats, such as Matlab.

3. Decoder Functional Blocks Specification

3.1. Overall System

The decoder has five major blocks: variable nodes (VN), check nodes (CN), barrel shifters (BS),

pre-routers, and post-routers. Figure 1 shows the high-level connection of all the blocks. The

VNs are combined into 16 groups of 42VNs, called a variable node group (VNG). Each VN

within a VNG connects to one port of a 42-input barrel shifter to implement the sub-matrix

shifts. The outputs of the barrel shifter are further routed by the pre-routers, which connect to

one of the 16 inputs of the 42 CNs. The outputs of each CN go through inverse shifting using

post-routers and another set of barrel shifters. The design has several levels of hierarchy in order

to keep irregular wiring local and make the global wires as regular as possible. Since the design

layer serializes the CNs, they are time multiplexed to act as different CNs in each cycle. The CN

has all of the information it needs to compute the new check to variable (C2V) message from all

CNs in the first layer, and, after it has finished processing the inputs, it sends back a single

message to all neighboring VNs. In the next cycle, the VNs send another single message that

has been marginalized for the CNs in the second layer, so that the same CNs can compute the

C2V message from the CNs of the second layer. This continues for all the layers in the matrix,

with serial messages being passed back and forth from VNs to CNs. The decoder uses the

flooding schedule because layered decoding has too many dependencies to be used effectively

in a highly parallel, fully pipelined design. It processes one layer per pipeline stage, and the

VNs accumulate one frames messages while sending out the others. The decoder equation

defines how the components interact with each other. According to the working cycle and the

International Journal of Wireless & Mobile Networks (IJWMN) Vol. 4, No. 4, August 2012

93

definitions of model’s components we give before, the decoder equation is show below:

, , ,

, ,

0 0 0 0

0 0 0

:

;

L L L

L L

Decoder Back Shifter Variable Node Front Shifter

Pre Router Check Node Decoder

= − −⊗ ⊗

⊗

−

− −

⊗

⊗

T T T

T T

Fig. 1. Decoder Block Diagram

3.2. Variable Node

The VN implements [9] and performs both the CN and VN marginalization, which keeps all

memory within the VN. When starting to decode a new data frame, the VN loads in a prior

value to either the first or second frames prior or accumulation registers. Over the next four

cycles sends variable to check (V2C) messages to its neighboring CNs. Since the VN performs

the C2V marginalization, it locally stores the V2C messages it just sent out in a shift register.

Once the un-marginalized C2V message returns, the VN compares the first minimum magnitude

to the V2C magnitude from the shift register. If they match, the VN uses the second minimum;

otherwise, it uses the first minimum. It marginalizes the sign by taking the XOR of the new and

stored V2C signs. The VN accumulates the marginalized C2Vs, with the prior value added in

when the first C2V arrives, and it also stores them individually in another shift register. After all

C2V messages have been accumulated, the VN calculates the new V2C messages by subtracting

out the saved C2V values from the accumulated value, which is the V2C marginalization. Also,

the sign bit of the accumulated value is used as the hard decision and for early termination.

Figure 2 shows the block diagram for the VN.

, , ,

, ,

0 0 0 0

0 0 0

: / 2

2 / ;

L L L

L L

Variable Node Corrector S M sComp XOR

Accum Subtractor sComp S M

β ⊗ ⊗ ⊗

⊗ ⊗

′− = −

′ −

T T T

T T

00 0 0 0 0 0 0: , , . 2 , , . ;LCorrector listen C V Min get Muxβ λ λ= < > − < >⊗T T

00 0 0 0 0 0 0 : , , . , , . 2 ;LSubtractor listen Mux get V C Margλ λ= < > < > −⊗T T

International Journal of Wireless & Mobile Networks (IJWMN) Vol. 4, No. 4, August 2012

94

Fig. 2. Variable Node Schematic

3.3. Check Node Node

Since the VN performs the marginalization, the CN only needs to find the first and second

minima of all the incoming V2C message magnitudes and the product of the V2Cs signs. The

CN computes the former with a compare select tree. A sorting block at the beginning arranges

pairs of inputs in ascending order, and subsequent stages of the tree select the minimum two out

of four inputs. A separate XOR tree finds the product of the signs. The CN is modified to

process either a single high-weight layer or two non-overlapping layers. To process a single

layer, it takes the output of the entire tree to find the first and second minima of all 16 inputs.

For non-overlapping layers, the weight is at most 8, so the top half of a tree can process one

layer and the bottom half can process the other. The outputs are taken at the second to last stage

to obtain first and second minima for each layer. This partitions a 16-input CN into two 8-input

CNs, giving the CN two levels of granularity. Because the layers do not overlap, no read before

write conflicts occur. Figure 3 shows the final CN architecture for the magnitude computation.

The sign’s XOR tree is partitioned similarly.

, , , ,0 0 0 1 0 2: ;L L L LCheck Node Sort CS CS XOR CS− = ⊗ ⊗ ⊗ ⊗T T T T

Fig. 3. Check Node Magnitude Computation Schematic

International Journal of Wireless & Mobile Networks (IJWMN) Vol. 4, No. 4, August 2012

95

3.4. Pre- and Post-Routing

When processing two non-overlapping layers at once, barrel shifters alone cannot guarantee that the first

layers inputs will go to the top half of each CN and the second layers inputs will go to the bottom half.

Granular CNs need two extra sets of routing to allow this, as depicted in Figure 4. Pre-routing comes

before the CN and selects which VNGs go to the top half or bottom half of each CN. Post-routing comes

after the CN and, for each VNG, selects whether to send the top trees or bottom trees result. Both types of

routers are implemented with a small number of muxes. In the case of processing one layer, the routers do

not shift the messages.

, , , ,0 0 0 1 0 1: ;L L L LRouter Select Pre Router Check Node Post Router Select= − − ⊗ −⊗ ⊗ ⊗T T T T

Fig. 4. Operation of Pre- and Post-Routers

3.5. Pipeline

The decoder has five pipeline stages and processes two independent data frames simultaneously.

Each full iteration takes three sub-iterations for the rate 13/16 code and four for the rest, one for

each time-multiplexed use of the check nodes. In the first stage, the VN outputs the

marginalized V2C and the barrel shifter reorders the messages. The second stage consists of the

pre-routing and global wiring to the check node. The CNs processes their inputs in the third

stage and route the messages back to the VNs across the global wires in the fourth stage. In the

fifth stage, the VN accumulates the serial messages over three or four cycles. The accumulation

would normally cause a four cycle bubble in the pipeline, it due to the dependency between

accumulating all the C2Vs and sending out the next V2Cs. The bubble is just large enough to

accommodate processing a second frame. This reduces the bubble to one cycle for the rate 13/16

code and removes it completely for the other rates because no dependencies exist between the

two frames. Figure 5 gives the pipeline diagram for the decoder with four sub-iterations.

Fig. 5. Pipeline Diagram for rate 1/2, 5/8, and 3/4 codes where the first number indicates the

frame and the second the sub-iteration

International Journal of Wireless & Mobile Networks (IJWMN) Vol. 4, No. 4, August 2012

96

4. PERFORMANCE EVALUATION

The study of how changes in performance depend on changes in parameter mode values is

known as sensitivity analysis. We can vary some parameter's value a little, and see its influence

degree to the model's performance, for example, the throughput or response time. Throughput is

an action-related metric showing the rate at which an action is performed at steady-state. In

other words, the throughput represents the average number of the activities completed by the

system during one unit time. From Figure 6, it can be observed that the impact of the number of

devices on the throughput of transmit is more sensitive than the QPSK-1/2 and 16-QAM-1/2

modulation for NLOS channel CM 2.3 and LOS channel CM 1.2 Modes. If we could make

some efforts to optimize the cache, and raise the 16-QAM-1/2 modulation for NLOS channel

Mode form 0.6 to 0.85 or even more high value, the throughput of transmit could greatly

improved.

Fig. 6. Throughput versus Number of Devices

For channel coding, we have investigated the performance of LDPC (768,384) coded OFDM

systems All receiver functions including packet detection, fine timing synchronization, channel

estimation equalization and common phase-error correction have been included. Quantization of

bit metrics has been performed with 5 soft-bits in both coding schemes. The chosen LDPC

decoding algorithm is the min-sum algorithm with a maximum of 25 iterations per LDPC block.

The performance for QPSK-1/2 and 16-QAM-1/2 modulation for NLOS channel CM 2.3 and

LOS channel CM 1.2 are presented in Figure 7. The simulation results show better performance

of LDPC code for both channel models. The target for the Bit Error Rate (BER) ranges from

10% down to 1%. In the presence of NLOS channel model (CM) 2.3, LDPC coding achieves

higher coding gain, in the range of 1.6 to 2.7 dB for QPSK, and 1.0 to 2.5 dB for 16-QAM. On

International Journal of Wireless & Mobile Networks (IJWMN) Vol. 4, No. 4, August 2012

97

the other hand, in the presence of LOS channel CM 1.2, the coding gain of the LDPC code is

approximately 1 dB.

Fig. 7. BER of designed LDPC Decoder for 60-GHz NLOS Channel CM2.3 & LOS channel

CM 1.2

5. CONCLUSIONS

The proposed fully pipelined architecture with granular check nodes supports all matrices and

low-power modes of the IEEE 802.11ad standard. The routing complexity was reduced

significantly by replacing a crossbar based interconnect network with a fixed wire network for

SN. Hence, the proposed decoder architecture has high throughput, low interconnect complexity

and very low decoding latency. The architecture can be extended to other short block length

codes that have the same property of non-overlapping layers, such as to be incorporated in next-

generation high-rate WPAN applications.

REFERENCES

[1]. IEEE Std 802.15.3c-2009 (Amendment to IEEE Std 802.15.3-2003), “IEEE Standard for

Information Technology - Telecommunications and Information Exchange between Systems -

Local and Metropolitan Area Networks - Specific Requirements. Part 15.3: The ultimate purpose

of the 60-GHz WPAN systems is to deliver MAC throughput of the order of multi-Gb/s over a

reasonable range. To accomplish this, system designers have to increase the transmission range,

especially in non-line-of-sight channels. IEEE Communications Magazine E July 2011 121

Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for High Rate

International Journal of Wireless & Mobile Networks (IJWMN) Vol. 4, No. 4, August 2012

98

Wireless Personal Area Networks (WPANs) Amendment 2: Millimeter - Wave-Based Alternative

Physical Layer Extension”, pps. c1-187, Octaber. 2009.

[2]. Tony Tsang, “Performance modelling and evaluation of OFDMA based WiMAX systems using

RT-SPA”, Proceedings of the International Conference on Computer and Communication

Engineering 2008 (ICCCE08), Kuala Lumpur, Malaysia, pps. 180- 186, May 13-18, 2008.

[3]. J. Hillston, “A Compositional Approach to Performance Modelling”, PhD Thesis, The University

of Edinburgh, 1994.

[4]. J. Hillston, “Fluid flow approximation of PEP A models”, Proceedings of the Second International

Conference on the Quatitative Evaluation of Systems, IEEE Computer Society Press, pps. 33-41,

2005.

[5]. C.A.R.Hoare, “Communicating Sequential Process”, Prentice-Hall, 1985.

[6]. Micheal J.A. Smith, “Abstraction and Model Checking in the PEPA plug-in for Eclipse”, Seventh

International Conference on the Quantitative Evaluation of Systems, pps. 155-156, 2010.

[7]. M. Tribastone, A. Duguid, and S. Gilmore. “The PEPA Eclipse Plug-in”, Performance Evaluation

Review, 36(4):28-33, March 2009.

[8]. The Eclipse platform. http://www.eclipse.org.

[9]. Weiner Matthew; Nikolic Borivoje; Zhang Zhengya; “LDPC decoder architecture for high-data

rate personal-area networks”, IEEE International Symposium on Circuits and Systems (ISCAS),

pps. 1784 - 1787, 15-18 May, 2011.

Tony Tsang

received the BEng degree in Electronics & Electrical Engineering with First

Class Honours in U.K., in 1992. He received the Ph.D from the La Trobe

University (Australia) in 2000. He was awarded the La Trobe University Post-

graduation Scholarship in 1998. He is a Lecturer at the Hong Kong Polytechnic

University. Prior to joining the Hong Kong Polytechnic University, Dr. Tsang

earned several years of teaching and researching experience in the Department of

Computer Science and Computer Engineering, La Trobe University. His research

interests include mobile computing, networking, protocol engineering and formal

methods. Dr. Tsang is a member of the ACM and the IEEE.

