
International Journal of Wireless & Mobile Networks (IJWMN) Vol. 4, No. 4, August 2012 

DOI : 10.5121/ijwmn.2012.4417                                                                                                               227 

 

 

 

CLONE-BASED MOBILE AGENT ITINERARY 

PLANNING USING SEPARATE TREES FOR DATA 

FUSION IN WSNS 

Soheil Javadi
1
, Mohammad H. Hajiesmaili

2
, Behzad Moshiri

1
 and Ahmad 

Khonsari
2 

1
School of ECE, College of Engineering, University of Tehran, Tehran, Iran 

s.javadi@ut.ac.ir , moshiri@ut.ac.ir 
2
School of Computer Science, IPM, Tehran, Iran 

hajiesmaili@ipm.ir , ak@ipm.ir 

ABSTRACT 

Recent studies demonstrate that Mobile Agent (MA) approach could be more effective than conventional 

client-server model in Wireless Sensor Network (WSN). Particularly, itinerary planning for MAs is a 

significant aspect of these approaches. Tree-based methods have been widely used for this purpose where 

many agents are dispatched simultaneously. Most of tree-based methods try to construct an 

optimal/suboptimal tree in terms of an objective function. In contrast, in this paper we introduce a new 

approach that tries to separate the MA dispatching and data fusion operations by considering two 

itinerary trees which results in more flexibility to regulate the itinerary plan. Based on this idea, we 

propose an algorithm called Two Trees Clone-based Itinerary (TTCI) which constructs two trees, one 

serves to distribute MA in the network and another to fuse back the sensed data.  

By experimental results, we demonstrate the performance improvement of TTCI algorithm in terms of 

overall energy consumption in comparison with the previous schemes. Meanwhile, the TTCI keeps the 

delay low. 
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1. INTRODUCTION 

Recent advances in wireless communication has led to rapid proliferation in development of 

wireless sensor network (WSN) applications [1], [2], including target tracking, battlefield 

monitoring, and intrusion detection [3], [4]. 

Each node in WSN has limited resources in terms of processing power, memory, bandwidth, 

and energy. In addition, a sensor node generates information that needs to be transmitted to a 

processing element usually called sink. 

Regarding these issues, there always exists a trade-off between the accuracy of received 

information by the sink and amount of dispatched information [5], so we must find a way to 

effectively utilize precious resources. Towards this, several resource allocation schemes are 

proposed in the literature considering various aspects of WSNs. 

To minimize the energy consumption in WSNs when employing complicated applications that 

required large amount of information to be transferred, a large body of research activities has 

been devoted to the in-network processing activities like data compression, data aggregation and 

data fusion as a state-of-the-art research area. In [6]-[8], several models and techniques for data 

fusion in the WSNs have been studied. 

Data gathering in traditional DSNs usually adherences the client-server approaches, in which 

nodes' raw data are being sent to the processing element [9]. This approach suffers from some 
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drawbacks: In some applications, different types of data might be produced while only 

homogeneous data can be fused together. In these cases, precise routing protocols are required 

so as homogeneous sensed data meet each other, in a right place and at a right time. 

Furthermore, gathering and transmission of high amount of data can result in high energy 

consumption and inefficient bandwidth usage.  

As time went by, the concept of Mobile Agent (MA) arose. The idea behind the MA approach is 

that it might be better to send processing codes toward the nodes, instead of sending nodes' raw 

data to the processing element [10]. 

This mobile code is usually called Mobile Agent (MA). MAs are software components, means 

code and/or execution state that can migrate in the system at run-time thus we have some kind 

of code mobility. Moreover, the program itself can make decisions about migration 

autonomously. 

Several good reasons for using MA have been mentioned in [11], [12], such as reducing the 

network load, overcoming network latency, dynamic adaption. A comparison between the 

client-server paradigm and MA approach is presented in [13]. One of the most important 

reasons to use MA approach is the high flexibility in the face of requirements changing, because 

it is almost impossible or too difficult to reprogram sensor nodes which have already distributed 

in environment, while in MA approach only the processing codes require to change. On the 

other hand, there are still some disputes on this paradigm. One of the basic criticisms is that 

more resources are required to form a node, because it must be capable of executing the MA 

codes and the underlying framework [14]. 

One of the most important issues about MA approach is that each MA migrates through the 

network. So, the question is what is the best itinerary for MA to traverse?  

This is the main focus of this work and several other research activities. Sometimes a single MA 

is used [5], [9], [15] and sometimes several MAs are used simultaneously [14], [16]-[19]. There 

is another scheme as well in the basis of cloning capability [20]. Long end-to-end delay, high 

energy consumption, fast energy depletion of some critical nodes, and high complexity are some 

of the main drawbacks that must be addressed in itinerary planning of MAs in WNS. Herein, 

our endeavour is devoted to propose a solution that reduces the energy consumption and keeps 

the delay low, while it has a special attention to reduce the fast energy depletion of the closest 

nodes to sink. 

In this paper, we introduce a new approach towards itinerary of MAs in which two separated 

trees are used for dispatching MAs and data fusion, in contrast to the previous work that 

construct an itinerary tree for both.  

The tree serves to distribute MA within network is called Forward Tree, and the other one 

employs for data fusion is called Fusion Tree. 

Using separated trees help us to achieve more flexibility and tuning capability with regard to 

MA dissemination and data gathering activities. 

According to the aforesaid approach, our contribution in this paper is twofold. First, we propose 

two heuristic algorithms for constructing the Forward Tree, the centralized one called Maximum 

Degree Heuristic (MDH) and its distributed version DMDH. In construction of Forward Tree, 

we try to reduce the energy consumption by minimizing the number of MA transmissions. 

Second, another algorithm is proposed to create the Fusion Tree, which is developed to balance 

the load of closest nodes to the sink by building some sets and appending the unprocessed nodes 

to the sets with fewer members. 

By putting the algorithms for constructing Forward and Fusion Trees together and in the basis 

of cloning capabilities of MA, we introduce an algorithm called Two Trees Clone-based 

Itinerary (TTCI). 

Experimental results clearly demonstrate the performance improvement of the proposed 

algorithms in terms of less energy consumption and lower delay in comparison to the similar 

approaches. 
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The rest of the paper is organized as follows. Section 2 is devoted to related work. Section 3 

will introduce the problem statement and proposed algorithms. Section 4 contains experimental 

results and finally, we conclude the paper and outline some future directions in Section 5. 
 

2. RELATED WORK 

MA-based solutions are a new trend in distributed computing, which provides more flexibility 

and scalability than conventional client-server models. In [21] mobile agent is represented as a 

middleware for automatic data fusion in WSNs and several algorithms in the context of itinerary 

planning have been surveyed. Although, the problem is NP-Complete [5], some previous work 

tried to use heuristics that yield suboptimal solutions. Note that, we only mention homogeneous 

WSNs (unlike [22]). Generally, one can imagine two major categories for MA itinerary 

planning approaches: single MA, and multiple MA approaches. 

Single MA approach: In this approach, a single MA tries to traverse among all nodes and 

collect the data. Qi et al. in [9] proposed two heuristics called LCF and GCF. In LCF, the next 

node is the closest node to the current node. In GCF, the closest node to the center of 

environment will be the next node, so it will relocate around the center. 

In LCF and GCF, only the physical distance between nodes is considered in construction of 

MA's itinerary plan, while one can consider many other useful criteria.  

Two algorithms named IEMF and IEMA have been introduced in [15], which consider 

communication cost as well. IEMF operates entirely the same as LCF, but only the first node 

will be chosen according to the estimation of minimum communication cost. IEMA is iterative 

version of IEMF, where first k nodes are chosen according to the communication cost and then 

behaves like IEMF. It will be a trade-off between computational complexity and energy 

consumption. 

In [5], by reducing the MA itinerary problem to a 3D traveling salesman problem, it has been 

shown that the problem is NP-Complete. Authors use genetic algorithm which results in a 

suboptimal itinerary plan.  

Multiple MA approach: To address the scalability problem in single MA approach, this 

approach uses more than one MA, simultaneously. In [16], a genetic-based algorithm (GA-IMP) 

has been introduced that uses many agents simultaneously which leads to better performance 

than [5]. But, the problem of GA approaches mostly is related to their slow convergence rate, so 

they are not proper for time critical applications. 

Chen et al. in [17], find the center of the dense regions (VCL), one after another. All nodes 

within a circle around VCL will be covered by a single MA (by methods like LCF, etc). 

Choosing the proper grouping parameters or dynamic radius, is not easy and highly depends on 

the topology. Furthermore, using a single agent in a dense area can arise the same deficiencies 

of single agent itinerary planning. Moreover, considering one hop communication is not a 

realistic assumption. 

There are some approaches based on minimum spanning trees. Inspired by constrained 

minimum spanning tree, Gavalas et al. in [14] proposed NOID. It finds a near optimal solution 

where the results are satisfactory, but the computational time is high. Konstantopoulos et al. 

[18] improved NOID and introduced TBID, which is a greedy suboptimal algorithm. Chen et al. 

in [19] proposed MST-MIP. They assumed that all nodes are connected together, and weights of 

the edges are estimated in terms of number of hops. Then, an agent is distributed for each 

branch of the constructed tree. In a dense area, edges will be light weight so these edges will be 

selected and in this case, one agent won't be effective. Because of that, by using the hop 

distance to the sink, BST-MIP tries to make a trade-off between energy consumption and delay. 

But, if we have low density around the sink, a few agents will be dispatched and the same 

problem will rise again. 

CBID (Mpitziopoulos et al. [20]) uses the cloning capability and tries to build a minimal tree 

node by node. In order to connect a new node to the nodes of the in progress tree, CBID chooses 
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the node which leads to minimum expense. Gathering the nodes data by a single MA according 

to the tree, and in a depth first manner, defines the expense. 

The problem is, this tree will results in some unnecessary dispatch of MAs, so increase the 

energy consumption. Also, it prefers deeper tree that increases the delay. 
 

3. TWO TREES SCHEME 

In this section we propose a new approach for itinerary planning of mobile agents in WSNs. As 

mentioned in Section 2, most of previous studies rely on building a unique tree for both 

dispatching the MAs and fusing the information. As a main contribution of this paper, we 

introduce a new approach, where we build two separate trees, one for dispatching the MAs and 

the second for information fusion. In this section, at first we will describe proposed algorithms 

to create Forward and Fusion Tree. Then by putting them together, we introduce TTCI 

algorithm. 

 

3.1. Forward Tree 

Transmission in a wireless channel has a broadcast-form nature, so every node in range will get 

the sent packet and obviously radio module will consume energy for receiving the packet which 

may or may not be delivered to the upper layers. Considering this property, our main goal is to 

distribute MA in the network with minimum number of transmissions which yields the lower 

energy consumption. 

The nodes that are being distributed in a real topology can be divided into some levels with 

respect to their minimum hop distance from the sink [23]. The nodes that their minimum 

distance to the sink are i, construct the i th level nodes. The nodes in i th level are connected to 

some nodes in level i-1, i and i+1 . Moreover, nodes in level i can have common neighbors in 

level i+1. Some of the level i nodes will send (clone) MA to some level i+1 nodes and try to 

cover all of them. 

Our goal is to cover whole level i+1 nodes with minimum number of transmissions. Towards 

this, at first, we formally present this problem which we refer to as covering problem and then 

will propose some optimal and suboptimal solutions to it. 

Covering problem: Suppose we have a bipartite graph consists of two sets of vertices, V (level i 

nodes) and U (level i+1 nodes). Each ∈kv V covers (is connected to) a non-empty subset 

⊆kU U. Our goal is to find a subset of V like M, such that M={
αv | α

α

UU Vv ∈
=U } and |M| is 

minimal. In the other words, there won't exists ⊆′M V that can cover U and |M|>| M ′ | . 

In what follows, we present some algorithms for the covering problem to construct the Forward 

tree. 

3.1.1. Naïve Algorithm 

One obvious algorithm to find M, is to search through all subsets of V. It means to examine 

every ⊆kv V to find out whether it covers all U or not, and finally choose the minimum one. 

Although this algorithm yields the optimal solution, but its complexity is exponential in the |V| 

(O(
||2V
)). It is clear that this is too costly for big valued of |V|, so it is not a practical solution; 

but it can be used as a benchmark. 

3.1.2. MDH Algorithm 

In spite of the fact that employing the Naïve algorithm achieves us the optimal solution, it could 

be impractical due to its high complexity. So, we introduce Maximum Degree Heuristic (MDH) 

algorithm which leads to a near optimal solution with lower complexity.  
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It works as follows. In each round we choose vertex 
kv  among V which has the maximum 

neighbors among unlabeled nodes in U (unselected nodes). Then, we label unselected nodes in 

U that are neighbor of 
kv  by its index k. This process continues until all vertices in U have been 

labeled. In Algorithm 1 (Appendix I), you can see the procedure in more detail. 

MDH is a greedy algorithm which will not guarantee the optimal (minimal) answers. Two 

examples of optimal and non-optimal solution of MDH algorithm are demonstrated in Figure 1 

and Figure 2, respectively. We will see in Section 4 how effective are the obtained results from 

MDH, in comparison with Naïve algorithm. Due to its low complexity, we used MDH 

algorithm in TTCI (see Algorithm 2 in Appendix I). 

Discussion on the Complexity of MDH: 
At first, we assume that MDH will iterate n times to label all the nodes in U. We set v = |V| and 

u = |U|. Let us denote by v′  and u′  as average of nodes' degree in V (at the beginning) and 

average of nodes' degree in U, respectively. Furthermore, we suppose that each vertex in V (or 

U), knows its neighbors in U (or V). 

The number of iterations n in the best case is O(1), and in the worse case is O(v). In average 

case, we can imagine that each vertex of V in average has v′  neighbours (without any in 

common with other vertices). So n is equal to O(
v

u

′
). The complexity of search and update 

depends on implementation. If we use a MaxHeap structure, we can find the node with largest 

degree in O(1) and update the degrees in O( vvu log′′ ). Then the whole complexity (based on 

this consideration) is O( vuv
v

u
log′′

′
)=O( vuu log′ )=O( vvv log′ ). 

 

 

Figure 1. Optimal answer (MDH algorithm example) 

 

Figure 2. Optimal answer (MDH algorithm example) 
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3.1.3. DMDH Algorithm 

In this subsection we are going to extend MDH algorithm into a distributed one named 

Distributed MDH (DMDH). At first, we assume that every node knows its level. It is not an 

unreasonable assumption. Consider a packet that has an additional field which is dedicated to 

keep the level information of the sender. The sink sends a packet which its level indicator field 

is initialized by zero. If a node receives a packet from a sender which is closer to the sink (in 

terms of hop distance) compared to the previous senders, it must update its level. Then the node 

must advertise its new level to its neighbors and so on. We omit further discussions about these 

issues because those are out of the scope of this paper. In what follows, we are going to explain 

the main procedure of the algorithm: 

1. At the first step, every node in i th level will send a request message to its neighbor 

nodes. 

2. In the second step, only nodes in i+1 th level introduce themselves by sending back a 

response message. After this phase each level i node can find out its degree (number of 

level i+1 neighbors). 

3. Then each level i node, announces its degree. After this phase, each level i+1 node will 

recognize its level i neighbors' degree. 

4. Finally, every level i+1 node chooses the level i node with higher degree, and 

announces that it has decided to connect to it. This let nodes of i level find out that to 

which nodes they must send the MA. 

This algorithm is not optimal too but can find answers which are close to optimal. We will 

compare it with the optimal Naïve algorithm, in Section 4. 
 

3.2. Fusion Tree 

Construction of Fusion Tree can be optimized for different purposes, such as energy 

consumption, delay, or combination of them. There are many studies in the literature trying to 

build an optimal fusion (or aggregation) tree based on various criteria (even non MA-based 

approaches such as [24]). Note that in this work, we suppose that the construction of Fusion 

Tree is centralized and sink knows the coordination of all nodes.  

Fast energy depletion of sink neighbors, especially the nodes in 1st level, has a significant 

negative impact on the network's lifetime. Thus, in our approach, our main aim is to balance the 

load of first level nodes, because they are the communication bridges to the sink. Fast energy 

depletion of some of them can lead to loss of many nodes data. One trivial solution towards this, 

could be to connect a new node at lower levels, to a higher level node with lower degree. But, 

this solution would be ineffective in some situations, because data received by a node are 

gathered from its entire subtree. So, a node with low degree may have large number of 

descendants. 

Here, we are going to propose a new algorithm for building the Fusion Tree. Towards this, we 

consider each of the first level sink neighbors as a new group, i.e., the number of groups is equal 

to the number of direct sink neighbors. Then, at the first phase, starting from the second level, 

we assign each node of level i, to one of its level i-1 neighbors which its corresponding group 

has fewer number of members, till, all nodes are allocated to a particular group. Now, as the 

second phase, we try to reallocate the nodes' group to improve the overall load balancing. For 

this purpose, while a better allocation is found, we keep searching. Again, starting from level 2, 

if appending a node of level i to a node possessed in level i-1 in its neighborhood (which 

belongs to deferent group) leads to a lower standard deviation of groups sizes, we will rearrange 

the tree. Algorithm 3 (in Appendix I) shows this procedure. Obviously we can recompute the 

algorithm for each one of sink neighbors as a new tree root. This can balance the other nodes 

load also. Figure 3 is an example of the Fusion Tree for a sample WSN's topology, where the 

nodes belong to a group are demonstrated in the same color. 
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Figure 3. Optimal answer (MDH algorithm example) 

 

3.3. TTCI Algorithm 

So far, we proposed some algorithms for building Forward and Fusion Trees. In this subsection, 

we are going to introduce the Two Trees Clone based Itinerary (TTCI) algorithm by putting 

them together. This approach can provide us more flexibility and possibility of adjustment 

between different design criteria. Generally speaking, the structure used in the most tree based 

itinerary planning approaches is as follows:  

1. Building Fusion Tree 

2. Distributing MAs according to the constructed tree 

3. Fusing the information based on the constructed tree 

On the other hand, our approach contains one more phase: 

1. Building Forward Tree 

2. Building Fusion Tree 

3. Distribution of MA according to Forward Tree 

4. Fusing the information back to the sink, according to Fusion Tree 

The algorithm works as follows: All nodes within the sink transmission range will constitute the 

first level nodes. For the sake of simplicity, we assume the sink and ordinary nodes have the 

same transmission range. 

Then, unvisited nodes that are directly reachable from the level i nodes, will constitute the level 

i+1 nodes. This will continue until we visit all nodes and construct all level sets. Fortunately, 

this can be done concurrently with building the trees, so, there is no need for extra processing. 

We used MDH algorithm to create Forward Tree level by level (Algorithm 2 in Appendix I). 

Also, we have introduced Algorithm 3 (in Appendix I) for building Fusion Tree. After the 

phases of tree construction, MA can start its itinerary. Each MA cloner node, clones itself (the 

MA), and waits for arrival of data produced by its children through Fusion Tree. These cloned 

MAs will be annihilated after delivering data to their parent. 

Obviously MA needs to carry the information about its itinerary. Simply, each node has to 

know, to whom it should send and from who it should receive. We use two trees instead of one, 

so, we must send extra information compare to single tree approach. Employing the hierarchical 

scheme, allows us to prune the itinerary information effectively. When a level i cloner node 

receives the MA, it can prune the itinerary information corresponding to nodes with level≤i-1 . 

Thus, in an ordinary tree based approach, every node has to send the itinerary information of 

size N (number of the sensor nodes). But in our approach, each node ( iv ) has to send the 
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itinerary information of size ∑
≤

⋅=

Depthj

level
i

vj j
lN

max
in which 

j
lN  is the number of j th level sensor 

nodes. 

In WSNs, communication is not completely reliable. Also, nodes may face some problems 

which will not let SN to operate properly. It means that when the delay of receiving data from a 

certain node exceeds a particular threshold, we should proceed without that. Here, we do not 

mention the issues about this timer settings and robustness. We suppose that we are not facing 

the failure and mobility of the nodes. Many researchers consider limited amount of energy for 

nodes, to study the network's lifetime. Also, some works consider sensor malfunction which 

leads to elimination of sensors, to study the robustness of their algorithms in deal of sensor 

death. But, these are not our concerns in this study. We didn't consider the collision condition as 

well. 
 

4. EXPERIMENTAL RESULTS 

In the following section, we will present experimental results to show the effectiveness of the 

algorithms proposed in this paper. All implementation codes were written in Java. Moreover, 

results have been reported by 95% confidence level. At first, we will show the experimental 

results about algorithms introduced to build Forward and Fusion Tree. Then we benchmark 

TTCI with another clone-based algorithm called CBID [20]. 

Energy model used in the simulation is based on the fact that the energy consumed by radio 

module has 3 states: Tx, Rx, and sleep [25]. Also, there are another models in which energy 

consumption is proportional to the number of bits [24], [26], so we reported the number of 

sent/received bytes. Some have used a simple linear model (in terms of the number of bits) for 

processing and receiving [26]. Also, sending energy can be considered as it is proportional to 

the square of the distance. It means 
2

dES ∝  [24]. 

Table 1. Simulation parameters 

Parameter Value 

Area 

Transmission range 

Transmission rate 

MA code size 

Local data 

Fusion factor (output/input) 

Tx energy consumption 

Rx energy consumption 

Periodic energy consumption 

500×500 (m
2
) 

45 (m) 

250 (kbps) 

1 (KByte) 

2 (KByte) 

0.7 

57.42 (mW) 

62 (mW) 

6 (mW) 
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                            Figure 4(a)                                                                   Figure 4(b) 

 

Figure 4(c) 

Figure 4. Naïve and MDH comparison 

4.1. Comparison of Naïve, MDH, and DMDH 

To compare Naïve and MDH, we examined the results over different topologies. Figures 4(a) 

and 4(b) show the effect of increasing the number of level i nodes, in the situation of fix average 

number of neighbors in level i+1. On the other hand, in Figure 4(c) the number of level i nodes 

has been fixed, while average number of neighbors (in level i+1) is variable. Results from 

Figure 4(a), Figure 4(b), and Figure 4(c) clearly demonstrate that results of two algorithms are 

similar and very close. Therefore, due to lower complexity, employing MDH instead of optimal 

Naïve can make sense. Thus, in TTCI, we used MDH to build Forward Tree.  

You can see the phrase “Maximum number of neighbours” in some figures, which needs further 

explanation. We choose a number Max≤|U| to build a random topology which means that each 

node in V will have at most Max neighbours in U. Then a random number 
k

vRand  will be 

chosen for node kv  in V such that MaxRand
k

v ≤  is equal to the number of kv  's neighbours 

in U. For example, in Figure 4(c), Max=50 shows that each node in level i has 25 neighbours in 

average (because the distribution is uniform). It is obvious that by increasing the Max, the 

topology becomes denser. Also, we compare the results of Naïve and DMDH in Figure 5. We 

can see that the results are close and can lead to proper selection of V-nodes for the covering 

problem. 
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Figure 5(a). Effect of increasing the U-nodes          Figure 5(b). Effect of increasing the V-nodes 

Figure 5. Naïve and DMDH comparison 

4.2. On the Performance of Fusion Tree Algorithm 

Figure 6(a) shows the effectiveness of our Fusion Tree algorithm on balancing the number of 

nodes attached to each group. You can see that even after first phase in our algorithm, we have a 

good balance compared to the tree constructed by CBID. Analyzing the improvement phase of 

our algorithm is not straightforward because of the randomness in the topology. Thus, for the 

sake of better illustration of the complexity, we report the mean number of changes in Figure 

6(b), which means the maximum number of the while loop (line 17 of Algorithm 3 in Appendix 

I) iteration. 

                
Figure 6(a). Standard deviation of groupCount              Figure 6(b). Improvement loop of TTCI:  

                                                                                                    Number of changes 

Figure 6. Performance of fusion tree algorithm 
 

4.3. Simulation and Implementations outputs 

Now we present the result of simulation that compares TTCI with CBID [20]. We used Castalia 

3.1 framework [25] (built upon OMNeT++ simulator [27]). Table 1 summarizes the simulation 

conditions. Also, we mentioned the overhead of itinerary plan carried by MA in both 

algorithms. Delay reported for 3 rounds of data gathering.  

As it was expected, TTCI has less delay, because CBID may has deeper subtrees (Figure 7(a)). 

Figure 7(b) shows the average of energy consumption. It shows the superiority of proposed 

algorithm. Some packets fail because the radio module of receiver is not in Rx mode. Figure 

8(a) shows the aforesaid packet breakdown. The difference between received packet in TTCI 

and CBID shows that, CBID tends to send more packets compare to TTCI. Finally, Figure 8(b) 
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shows the average number of bytes sent/received in each algorithm. TTCI has superiority 

because it uses the minimum number of cloners. Moreover, CBID cannot prune its itinerary 

data, so it has to send more packets. 

                

             Figure 7(a). Delay comparison                             Figure 7(b). Mean energy consumption  

                                                                                                               comparison 

Figure 7. Comparison of TTCI and CBID 

                

             Figure 8(a). Received packets                           Figure 8(b). Packet exchange comparison 

Figure 8. Comparison of TTCI and CBID 

5. CONCLUSION 

Due to importance of in-network data processing such as data fusion and data aggregation, 

several studies have focused on its efficiency. MA approaches can reduce energy consumption. 

They also increase flexibility in the face of requirements changing. 

Lots of researches have been conducted to find the optimal itinerary plan for MA. In this paper, 

we introduced a tree-based approach according to the cloning capability of MAs, which uses 

separate trees for distributing the MAs and performing data fusion. Based on this scheme, a new 

algorithm named TTCI is presented. Different algorithms were studied in order to build 

Forward and Fusion Trees. Simulation results revealed the effectiveness of our approach in 

reduction of energy consumption and keeping the delay low. There are several future directions 

to extend this work.  



International Journal of Wireless & Mobile Networks (IJWMN) Vol. 4, No. 4, August 2012 

238 

 

 

 

One future work will be studying this method in environment along with collision conditions. 

Robustness is another aspect that could be addressed in the future work. Finally, different 

algorithms can be used to build the trees for further improvement based on different criteria. 
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APPENDIX Ι 

The Appendix I contains the pseudo code of the presented algorithms. These may further clarify 

the algorithms’ purpose. 
 

Algorithm1: MDH Algorithm 
Definitions 

1: V and U are two array of nodes (in the bipartite graph) which we want to cover whole U by some of the  

     nodes in V 

2: int[] deg keeps unprocessed degree of V-nodes (deg[k]=unprocessed degree of  
kv which is initialized  

    by its degree) 

3: index is an integer for tracing the next selected node in V 

4: M is the resulting suboptimal set 

5: findMax(deg) returns the index of element with the maximum value in deg 

6: N( kv ) returns all neighbors of kv  

7: parentuk ⋅  is the node in V which is selected to cover ku  

Main 
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1:  while Uuk ∈∃ such that parentuk ⋅  is null do 

2:            index ← findMax(deg) 

3:            M ⋅ add( indexu ) 

4:            for each ∈'k
u N( indexv ) such that parentu

k
⋅'  is null do 

5:                      index
k

vparentu ←⋅'  

6:                      for each ∈''k
v V such that ∈'k

u N( ''k
v ) do 

7:                                deg[ k ′′ ]-- 

8:                      end for 

9:            end for 

10: end while 

 

Algorithm 1. MDH Algorithm for the Covering Problem 
 

Algorithm 2: Forward Tree Algorithm 

Definitions 

1: V is the array of all nodes of size n+1 (do not getting confused by V and U in Alg. 1) 

2: int[] deg for unprocessed degree of each node initialized by 0 (deg[k]=unprocessed degree of kv  , k=1,  

    ⋅⋅⋅ ,n) 

3: 0v  is the sink 

4: processed, candidates and children are set data structures (also, they can be implemented by ordinary  

    arrays) 

5: 
indexv  is used to point to a selected node (temporary variable) 

6: N(
kv ) returns the neighbors of 

kv  

7: parent of a node, is the node which is selected to cover it  

8: findMax(deg,candidates) returns the node with maximum degree in candidates set 

9: ⋅kv addChild() adds a node to the children list of kv  

Main 

1:   processed 0v←  

2:   candidates ←N( 0v ) 

3:   for each ∈jv candidates do 

4:             0vparentv j ←⋅  

5:             ⋅0v addChild( jv ) 

6:   end for 

7:   while processed ⋅ size()<(n+1) do 

8:             for each ∈'
j

v candidates do 

9:                       for each ∈''
j

v  N( '
j

v ) do 

10:                             if ∉''
j

v (candidates U  processed) then 

11:                                           children ← children U { ''
j

v } 

12:                                           deg[ j′ ]++ 

13:                                 end if 
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14:                     end for 

15:           end for 

16:           if children ⋅ size()>0 then 

17:                     while ∈∃ 'k
v children such that parentv

k
⋅'  is null do 

18:                                ←indexv findMax(deg,candidates) 

19:                                for each ∈''
k

v  N( indexv ) such that (( ∈''
k

v children) && 

                                                                                         ( parentv
k

⋅''  is null )) do 

20:                                           index
k

vparentv ←⋅''  

21:                                           ⋅indexv addChild( ''k
v ) 

22:                                           for each ∈αv N( ''
k

v ) such that ∈αv candidates do 

23:                                                     deg[α ]-- 

24:                                           end for 

25:                                end for 

26:                      end while 

27:                      processed ←processed U candidates 

28:                      candidates ← children 

29:                      children ⋅ clear() 

30:            end if 

31: end while 

 

Algorithm 2. Forward Tree Algorithm used in TTCI (based on MDH) 

 

Algorithm3: Fusion Tree Algorithm 
Definitions 

1: maxDepth shows the maximum depth of the Forward Tree 

2: V is the set of all nodes as in Alg. 2 

3: sink ( 0v ) level is 0 and we assume that by execution of Alg. 2, each node level is determined 

4: FuParent of a node ( kv ), is the node which is selected to receive its ( kv ) data for data fusion (and the  

    same for addFuChild() ) 

5: kv  and 'k
v  are temporary variables 

6: groupCount is an array of integers of size |N(
0v )| 

7: group is the groupID assigned to a node, initialized by -1 

8: N( kv ) returns all neighbors of kv  

9: FuRemove( ''
k

v ) removes ''
k

v  from the fusion children list, of a node 

Main 

1:   for each node like ∈kv N( 0v ) do 

2:             assign a new groupID (from [0 .. |N( 0v )|-1]) to groupvk ⋅  

3:             0vFuParentvk ←⋅  

4:             ⋅0v addFuChild( kv ) 

5:              groupCount[ groupvk ⋅ ]++ 

6:   end for 

7:   for i from 2 to maxDepth do 
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8:             for each node like 
kv  which ⋅kv level==i do 

9:                       find the best '
k

v which ( ∈'
k

v N(
kv ) ) && ( ⋅'

k
v level==i-1) && 

                                                                  (groupCount[ groupv
k

⋅' ] is minimum) 

10:                     '
k

k vFuParentv ←⋅  

11:                     ⋅'k
v addFuChild( kv ) 

12:                     groupvgroupv
k

k ⋅←⋅ '  

13:                     groupCount[ groupv
k

⋅' ]++ 

14:           end for 

15: end for 

16: boolean ctnu ← true 

17: while ctnu==true do 

18:           ctnu ← false 

19:           for i from 2 to maxDepth do 

20:                     for each node like kv  which ⋅kv level==i do 

21:                               find the best 'k
v  which ( ∈'k

v N( kv )) && ( 'k
v level==i-1) && 

                (appending 
kv  to '

k
v  leads to minimum standard deviation of groupCount) 

22:                               if FuParentvv kk
⋅≠'  do 

23:                                         ⋅⋅ FuParentvk
FuRemove(

kv ) 

24:                                         '
k

k vFuParentv ←⋅  

25:                                         ⋅'k
v addFuChild( kv ) 

26:                                         ctnu ← true 

27:                                         decrease groupCount[ groupvk ⋅ ] by the number of kv  

                                                                                                                              descendants +1 

28:                                         increase groupCount[ groupv
k

⋅' ] by the number of kv  

                                                                                                                              descendants +1 

29:                                         update groupvk ⋅  and its descendants with groupv
k

⋅'  

30:                               end if 

31:                     end for 

32:           end for 

33: end while 

 

Algorithm 3. Fusion Tree Creation Algorithm used in TTCI 


