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ABSTRACT
The turbo detection of turbo coded symbols over correlated Rayleigh flat fading channels generated
according to Jakes’ model is considered in this paper. We propose a method to estimate the channel
signal-to-noise ratio (SNR) and the maximum Doppler frequency. These statistics are required by
the linear minimum mean squared error (LMMSE) channel estimator. To improve the system con-
vergence, we redefine the channel reliability factor by taking into account the channel estimation
error statistics. Simulation results for rate 1/3 turbo code and two different normalized fading rates
show that the use of the new reliability factor greatly improves the performance. The improvement
is more substantial when channel statistics are unknown.
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1 Introduction

Turbo codes can perform near the Shannon capacity limit in the AWGN channel [1]. They also give
good performances for the Rayleigh flat fading channels with perfect knowledge of the Rayleigh
process [2–6]. However in practice, the channel response is not available and has to be estimated.
Therefore, in general, one estimates the channel gain and uses the estimated values to compute the
channel reliability factor required by the maximum a posteriori probability MAP-BCJR algorithm.
The design and the analysis of a receiver for turbo coded symbols detection in Rayleigh fading
channels have been investigated by several researchers [2–5].
Recently, an iterative (turbo) detector has been proposed in [4–8] for joint channel estimation and
turbo decoding. The turbo detector is a soft-in/soft-out (SISO) algorithm and the information
exchanged between the channel estimator and the MAP decoder takes soft values. The channel
estimation is the Wiener filter based on the minimum mean squared error (MMSE) criterion.
Nevertheless, previous researches consider that the channel statistics are known.
This paper investigates a turbo detection technique of turbo coded symbols transmitted over
correlated Rayleigh flat fading channel generated according to Jakes’ model [9]. We assume that
the channel SNR and the maximum Doppler frequency are unknown. We propose a procedure to
estimate these parameters. This procedure uses the received signal statistics and a soft information
fed back from the decoder. To improve the system convergence, we redefine the channel reliability
factor. The proposed channel reliability expression takes into account the channel estimation error.
We note that when the channel SNR is unknown, the Maximum-Likelihood (ML) channel estimator
can be used. In fact, the ML estimator does not need the SNR. In this case we can omit the channel
statistics estimation. However, for our turbo coded system, the SNR is necessary to compute the
LLRs. For this reason, we propose to estimate the channel statistics and use the LMMSE fading
gain estimator. Indeed, given perfect knowledge of the data sequence and the channel statistics,
the LMMSE estimator is optimal in terms of minimum MSE. Of course, the performance of the
LMMSE estimator depends on the channel statistics estimation accuracy.
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Monte Carlo simulation results prove that the use of the redefined channel reliability improves the
BER performance. We also demonstrate the efficiency of the proposed channel statistics estimation
procedure.

2 System and channel models

This paper uses the baseband system model shown in Fig. 1. The binary source sequence {di} of
length Ld is encoded using a rate r turbo code. Next, the encoded sequence is interleaved and
known pilot symbols are periodically inserted. We note by Mp the pilot spacing (number of data
symbols between two consecutive pilot symbols). The data frame of length N is BPSK modulated
and transmitted over a correlated Rayleigh flat fading channel with additive white Gaussian noise
(AWGN). Let us denote xk the transmitted signal, Ts the symbol period and gk the multiplicative
distortion of the flat fading channel. The received signal at time kTs is then

yk = gkxk + nk, 1 ≤ k ≤ N (1)

where nk is a zero-mean AWGN with variance σ2
n = N0/2. The Rayleigh fading process is generated

according to Jakes’ model [9]. So, gk is a correlated complex circular Gaussian process with zero
mean and variance σ2

g . The fading autocorrelation function is determined by the maximum Doppler
frequency fM as [9]

rg(k) = E{gng∗n−k}
= σ2

gJ0(2πfMTsk) = σ2
gJ0(2πfdk) = σ2

gρk (2)

where J0(.) is the zeroth-order Bessel function of the first kind, fd is the maximum normalized
Doppler frequency and ()∗ denotes complex conjugate. The real and imaginary parts of gk are
supposed to be mutually uncorrelated. This very popular model for Rayleigh flat fading channels
is often used in the literature [3–5]. It is noted that the transmitted signal is unit power and the
average received SNR is given by

γ̄ =
σ2
g

σ2
n

(3)

Figure 1: Transmission scheme.

3 Turbo reception

Classical receivers are formed by the concatenation of several disjoint modules (demodulator, de-
coder, equalizer . . . ), each of which gives a hard decision as output. This approach has been shown
to be suboptimal, because it uses only a small part of the available information [10]. For instance,
the equalizer does not use the redundancy introduced by the decoder [10]. Moreover, hard decision
at any module’s output results in a loss of information. This suboptimality has motivated the
idea of an iterative joint processing where soft information is exchanged between modules. This
principle, called "turbo-detection", is inspired from the turbo decoding algorithm proposed in [1]
and was proposed first in [10] for turbo equalization. Recently, turbo processing has been used
for joint turbo decoding and Rayleigh flat fading channel estimation [5]. The Turbo detector in
this context is based on the MAP decoder and the linear minimum mean-squared-error (LMMSE)
channel estimator as illustrated in Figure (2).

2



International Journal of Wireless & Mobile Networks (IJWMN) Vol.2, No.4, November 2010

Figure 2: Turbo detector structure.

The well known BJCR-MAP decoding algorithm is used to compute the log likelihood ratio (LLR)
of both information and coded symbols defined by

Λ(ck) =
p (ck = +1|y)
p (ck = −1|y)

(4)

where y = [y1, y2, · · · , yN ]T is a column vector which represents the received sequence and the
superscript T denotes the transpose operator. This algorithm needs the channel reliability factor
which depends on g = [g1, · · · , gN ]T. This Rayleigh channel realization is unknown and has to
be estimated. The decoding and channel estimation are done using an iterative process. At any
iteration, the channel estimator uses the decoder and the channel outputs and provides a LMMSE
estimate of g. The MAP decoder then uses these estimates to re-evaluate the LLR of each symbol.
This iteration process repeats until the data decoding converges or until a processing delay limit
is reached. It is noted that the information exchanged between modules is soft.

4 Channel estimation

4.1 LMMSE channel estimation
The estimation of Rayleigh flat fading channels has been widely investigated in the literature [5,11].
In this paper, we use the well known pilot symbol assisted modulation (PSAM) technique [5, 11].
For this method, known pilot symbols are periodically inserted into the data sequence. For the
proposed channel estimation technique, pilot symbols are used to initialize the channel fading
estimator at the first iteration. Under a given SNR and a known maximum Doppler frequency, the
optimal LMMSE channel gain estimator is the Wiener filter [11]. Authors in [5] have compared
performances of the Wiener filter and the moving average filter. It has been shown that the Wiener
filter outperforms the moving average one specially for fast fade rates.
At any iteration (p > 1), the channel fading can be extracted by dividing the received signal by
the estimation of the transmitted signal

r
(p)
k = yk/x̂

(p−1)
k (5)

where x̂(p−1)
k is the expectation of the transmitted symbol xk at iteration (p−1). This soft decision

is given by [5]

x̂
(p−1)
k = E

{
xk|Λ(p−1)(xk)

}
= tanh

(
Λ(p−1)(xk)

2

)
(6)

where Λ(p−1)(xk) is the LLR of symbol xk delivered by the decoder at iteration (p− 1).
To estimate channel coefficients, scaled samples r(p)k are used in order to minimize the mean square
error (MSE)

E{|ĝ(p)
k − gk|

2
∣∣∣ x̂(p−1)

1 , · · · , x̂(p−1)
N } (7)
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where ĝ(p)
k denotes the estimate of gk at iteration (p).

The mean square solution is given by

ĝ
(p)
k = [W (p)]Tr(p)

k (8)

where r(p)
k = [r(p)k−b(M−1)/2c, · · · , r

(p)
k+bM/2c]

T and W (p) = [w(p)
1 , · · · , w(p)

M ]T is the set of M filter
coefficients obtained by solving the Wiener-Hopf equations [12]. The optimum Wiener filter is
given by [12] [

W (p)
]H

= R(p)
gr

[
R(p)

rr

]−1

(9)

where the superscript H refers to the Hermitian operator, R(p)
gr = E

{
gk

[
r

(p)
k

]H}
a row vector

and R(p)
rr = E

{
r

(p)
k

[
r

(p)
k

]H}
an M ×M Toeplitz matrix,

Now we have to evaluate the correlation matrices R(p)
gr and R(p)

rr . Let us suppose that the symbols
{xk} are independent. So, for all i ∈ {−

⌊
M−1

2

⌋
, · · · ,

⌊
M
2

⌋
} and j ∈ {−

⌊
M−1

2

⌋
, · · · ,

⌊
M
2

⌋
} we can

write

R(p)
gr (i) = E

{
gk

[
r
(p)
k+i

]∗}
= E

{
gkg
∗
k+i

}
E

{
xk+i

x̂
(p−1)
k+i

}
(10)

and

R(p)
rr (i, j) = R(p)

rr (|i− j|)

= E
{
r
(p)
n+i

[
r
(p)
n+j

]∗}
= E

{
gn+ig

∗
n+j

}
E

{
xn+i

x̂
(p−1)
n+i

}
E

{
xn+j

x̂
(p−1)
n+j

}

+E {nb+inn+j}E

{
1

x̂
(p−1)
n+i x̂

(p−1)
n+j

}
(11)

where R(p)
gr (i) denotes element i of vector R(p)

gr and R(p)
rr (i, j) is the element (i, j) of R(p)

rr .
It has been proven that E{xj/x̂(p−1)

j } can be approximated by [13]

E{xj x̂(p−1)
j } ≈ 1

N

N∑
k=1

∣∣∣x̂(p−1)
k

∣∣∣−1

=
1
N

N∑
k=1

∣∣∣∣tanh
(

Λ(xk)
2

)∣∣∣∣−1

(12)

In the same way, E
{

1/x̂(p−1)
n+j x̂

(p−1)
n+j

}
can be approximated by

E

{
1

x̂
(p−1)
n+j x̂

(p−1)
n+j

}
≈ 1
N

N∑
k=1

∣∣∣∣tanh
(

Λ(xk)
2

)∣∣∣∣−2

(13)

For the first iteration, only pilot symbols are known at the receiver. In this situation, the fading
is extracted only at the pilot symbol times. The estimation filter size is then reduced from M
to M/Mp. The fading at the kth data symbol time is estimated using the M/Mp nearest pilot
symbols.

4.2 Channel statistics estimation
The implementation of the Wiener filter requires the knowledge of the channel SNR

(
γ̄ = σ2

g/σ
2
n

)
and the maximum normalized Doppler frequency fd which are unknown in practice. So, to evaluate
R(p)
gr and R(p)

rr , we have to estimate these channel statistics.
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Let us define the function φ(k) by

φ(k) =
Ryy(k)
Ryy(0)

(14)

which can be expressed as

φ(k) =
σ2
gρk

σ2
g + σ2

n

=
γ̄ρk
γ̄ + 1

(15)

=
γ̄

γ̄ + 1
J0(2πfdk)

The autocorrelation function of the scaled received sequence can be estimated as

R̂yy(k) =
1

N − k

N−k∑
i=1

y
(p−1)
i

[
y
(p−1)
i+k

]∗
(16)

Using (16) and (15), we can estimate φ(k) by

φ̂(k) ≈ R̂yy(k)
R̂yy(0)

(17)

Let us denote by θ1 = γ̄ and θ2 = fd the two parameters to be estimated. Our statistics estimation
procedure consists of finding the optimal vector θopt = [θ1, θ2]T that minimizes the total mean
square error given by

J = E {F (θ)} (18)

where F (θ) is defined as

F (θ) =
Q∑
k=1

[
θ1

θ1 + 1
J0(2πθ2k)− φ̂(k)

]2
(19)

where Q is an integer in {2, 3, · · · , N − 1}.
Using the least mean square (LMS) approach combined with the classical Newton’s method, we
can construct a recursive algorithm which would give, once it converges, the optimal solution θopt.
Let θ(l) the value of θ at Newton’s algorithm iteration (l). Using the Taylor series expansion of F
about θ(l) and neglecting terms of order three and higher, we have [14]

F (θ) = F
(
θ(l)
)

+
(
θ − θ(l)

)′

∇F
(
θ(l)
)

+
1
2

(
θ − θ(l)

)′

F
(
θ(l)
)(
θ − θ(l)

)
(20)

where ∇F(.) and F are respectively the gradient and the Hessian matrix of F(.) at θ(l) given by

∇F =
[
∂F
∂θ1

,
∂F
∂θ2

]T
(21)

F =

(
∂2F
∂θ21

∂2F
∂θ1θ2

∂2F
∂θ2θ1

∂2F
∂θ22

)
(22)

So, the lth iteration of Newton’s method can be written as [14]

θ(l+1) = θ(l) − F
(
θ(l)
)−1

∇F
(
θ(l)
)

(23)

We note that, in practice, the maximum Doppler shift fd is much smaller than the symbol rate
Fs = 1/Ts, so that fdTs � 1. This practical condition ensures the one-to-one mapping between
J0(4πfdTs) and fdTs. In fact, J0(4πfdTs) is a monotonically decreasing function for fdTs in
[0, 0.1913], where 0.1913 corresponds to the first zero of Bessel function.
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5 Modification of turbo decoding

Once ĝ(p) = [g(p)
1 , · · · , g(p)

N ]T is evaluated, it is interleaved and passed to the decoder. The channel
fading is then compensated by the fading estimate. Thus, at iteration (p), the decoder evaluates
the LLR for each transmitted symbol xk using the decision variable

z
(p)
k = yk/ĝ

(p)
k (24)

This decision variable depends on the channel estimate given by (8) which can be expressed as

gk = ĝ
(p)
k + e

(p)
k (25)

where e(p)k denotes the channel estimation error at iteration (p). We can easily prove that e(p)k is a
complex Gaussian random variable with E{e(p)k } = 0, which means that the the channel estimator
is unbiased. For the ideal case where x̂(p−1)

k = xk, the channel estimation error variance is given
by [12]

σ2
e = E

{
|ĝ(p)
k − gk|

2
}

= σ2
g −R

(p)
gr

[
R(p)

rr

]−1 [
R(p)
gr

]′
(26)

The only parameter used by the MAP-BCJR decoding algorithm that depends on the decision
variable statistics is called the channel reliability factor and is often denoted by Lc. It has been
shown in [3] and [13] that turbo decoder performances can be improved by considering the channel
estimation error when evaluating the channel reliability factor. The authors in [5,13] do not discuss
the evaluation of this metric and Lc = 2/σ2

n was used although the channel estimation is not perfect.
This Lc expression becomes inaccurate if the channel estimation error variance increases [3,13]. In
the following, we present a new channel reliability factor that takes into account the estimation
error variance.
The decision variable can be written as

z
(p)
k =

yk

ĝ
(p)
k

=
xk(ĝ(p)

k + e
(p)
k ) + nk

ĝ
(p)
k

= xk +
xke

(p)
k + nk

ĝ
(p)
k

(27)

So, the conditional probability density function of the decision variable given ĝ(p)
k and xk = ai(ai =

±1) is

f(z(p)
k |ĝ

(p)
k , xk = ai) =

∣∣∣ĝ(p)
k

∣∣∣2
2πσ2

u

exp

− |zk − ai|2
2σ2

u/
∣∣∣ĝ(p)
k

∣∣∣2
 (28)

where σ2
u can be approximated by σ2

u ≈ σ2
n + σ2

e . It is noted that, for this approximation, we
assume that the AWGN nk and the estimation error e(p)k are independent.
Given equation (28), we can write

ln

{
f(z(p)

k |ĝ
(p)
k , xk = +1)

f(z(p)
k |ĝ

(p)
k , xk = −1)

}
=

2
∣∣∣ĝ(p)
k

∣∣∣2
σ2
u

Re
{
z
(p)
k

}
(29)

where Re
{
z
(p)
k

}
is the real part of z(p)

k .
Then, the channel reliability factor is

Lc(k) =
2
∣∣∣ĝ(p)
k

∣∣∣2
σ2
u

(30)
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6 Simulation analysis

6.1 Simulated system
The performance of the proposed receiver has been evaluated by Monte Carlo simulations. We
have used a rate 1/3 turbo code of constraint length K = 3 with a generator matrix (1, 5/7) in
octal form. Two normalized fading rates fd ∈ {.05, .002} have been considered and the frame size
was fixed to N = 1024. For the slower fade rate (fd = 0.002), a pilot symbol spacing of Mp = 20
was used. For the faster fade rate (fd = 0.5), the pilot symbol spacing was fixed at Mp = 10. The
Wiener filter in equation (8) was of length M = 45. We have simulated the following five detection
scenarios:

• (S1) : CSI (channel state information) case with perfect channel knowledge which serves as
a benchmark;

• (S2) : unknown channel coefficients and known channel statistics, and the reliability factor
is given by (30);

• (S3) : unknown channel coefficients and known channel statistics, and the reliability factor
is Lc = 4|ĝk|

N0
;

• (S4) : unknown channel coefficients and statistics, and the reliability factor is given by (30);

• (S5) : unknown channel coefficients and statistics, and the reliability factor is Lc = 4|ĝk|
N0

.

6.2 Influence of channel reliability
Figures 3 and 4 give the BER performance of the different simulated scenarios after six iterations of
turbo decoding. It is shown that for all simulated cases, the use of the redefined channel reliability
factor improves the BER performances. In fact, the performances achieved by scenarios (S2) and
(S4) are respectively better than those given by (S3) and (S5). For systems with known channel
statistics, the gain between (S2) and (S3) is about 0.3 dB for a BER of 10−4 and fd = 0.002. This
gain is more important if the channel statistics are unknown. Indeed the discrepancy between (S4)
and (S5) is about 0.9 dB for a BER of 10−4 and fd = 0.002.
We notice that the performances are better when the normalized fading rate fm increases. In fact,
as the normalized fading rate decreases, the average burst length increases since the correlation
between the transmitted signals increases.

Figure 3: BER performance over flat fading channel with normalized fading rate fd = 0.002.
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Figure 4: BER performance over flat fading channel with normalized fading rate fd = 0.05.

6.3 Channel estimation
As we can see in Figs. 3 and 4, the channel statistics estimation method presented in section 4.2
can help us to decode the transmitted sequence. Even though the channel statistics are unknown,
we were able to estimate channel coefficients. The BER performances, obtained by combining the
channel statistics estimation method and using the redefined channel reliability, are close to that
of the CSI scenario.
Figures 5and 6 show the mean square error (MSE) of channel estimation respectively for fm = 0.002
and fm = 0.05. It is obvious that the MSE is less important when channel statistics are known.
We note that unlike with the BER, the MSE performances are better when fm decreases.

Figure 5: Mean square error (MSE) for fd = 0.002.

Figure 7 illustrates the mean square error of channel estimation after each iteration for fd = 0.002.
We notice that there is a very important improvement in the MSE from the first iteration to
the fourth one. However, after the fourth iteration, the improvement in MSE estimation is not
noticeable for large values of Eb/N0. So, it is possible to shut down the channel estimation after
the fourth iteration.
To analyze the maximum Doppler frequency estimation accuracy, we define the normalized mean
square error NMSEf as

NMSEf =
E{|f̂m − fd|2}

f2
d

(31)
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Figure 6: Mean square error (MSE) for fd = 0.05.

In Fig. 8, we have plotted NMSEf as a function of parameter Q of Equation (19). Curves of Fig.
6 are obtained for Eb/N0 = 7 dB and fd ∈ {0.002, 0.05}. We note that NMSEf is better when
the normalized fading rate increases. The improvement in NMSEf for Q > 5 is insignificant.

Figure 7: Mean square error (MSE) through iteration when fd = 0.002.

7 Conclusion

This paper focuses on turbo detection in Rayleigh flat fading channels with unknown statistics
and coefficients. We have presented a turbo detector which combines MAP decoding and channel
estimation. The channel coefficients estimator is based on the MMSE criterion. The MAP-BCJR
algorithm is used for turbo decoding. The global receiver is an iterative SISO algorithm where
different modules exchange soft information. The advantage of this procedure is that the channel
estimator uses the redundancy information introduced by the channel encoder.
We have considered that channel SNR and the maximum Doppler frequency are unknown. An
estimation method to evaluate these statistics has been presented. The proposed method uses the
channel output signal and a soft information fed back from the decoder. Computer simulations
have demonstrated the efficiency of the proposed channel statistics estimation procedure. It has
been shown that through iterations, there is an improvement in the channel estimation accuracy.
Since channel estimation is not perfect, we have suggested to redefine the channel reliability factor.
The expression used for this metric takes into consideration the variance of the channel estimation
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Figure 8: Normalized mean square error NMSEf vs. factor Q of Equation (19) for fd = 0.002
and fd = 0.05.

error. When channel statistics are known, the error variance can be expressed in an analytical
form. However, when these statistics are unknown, the channel reliability can be approximated, at
any iteration, by using the channel output and the channel coefficients estimate evaluated at the
previous iteration.
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