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ABSTRACT 

 
In this paper, we present a distributed flow-based access scheme for slotted-time protocols, that provides 

proportional fairness in ad-hoc wireless networks under constraints on the buffer overflow probabilities at 

each node. The proposed scheme requires local information exchange at the link-layer and end-to-end 

information exchange at the transport-layer, and is cast as a nonlinear program. A medium access control 

protocol is said to be proportionally fair with respect to individual end-to-end flows in a network, if the 

product of the end-to-end flow rates is maximized. A key contribution of this work lies in the construction of 

a distributed dual approach that comes with low computational overhead. We discuss the convergence 

properties of the proposed scheme and present simulation results to support our conclusions. 
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1. INTRODUCTION 
 

In this paper we consider an ad-hoc wireless network [1] that carries several flows between 

various source-destination pairs under a slotted-time medium access control (MAC) protocol. 

Specifically, we are interested in a distributed scheme for the assignment of the network’s 

resources among flows, which is fair in terms of end-to-end flow rates. We assume that eachnode 

in the network has a finite buffer assigned to each flow routed through it. In addition to the 

objective of fairness, we are also interested in ensuring that the buffer overflow probability at 

each node does not exceed a pre-determined value. 

 

The literature contains several references to fairness and its impact on the network performance. 

It has been observed by many researchers that the contention control mechanism used in 802.11-

MAC [2] can be inefficient [3]. In [4], [5] a list of modifications is presented, that eliminates the 

unfairness commonly seen in the 802.11-MAC. The literature also contains a large volume of 

references (cf. [6], [7], [8], for example) where it is assumed that each network flow/link is 

associated with a concave utility function that could be maximized. In particular, for proportional 

fairness, it is assumed that the utility function has the form of log x, where x denotes the flow rate 
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[6]. It is of interest to schedule individual transmissions on the links so as to maximize the sum of 

the utilities of the consumers. To achieve fairness, the schemes outlined in the above-mentioned 

references use a penalty function that is updated by some form of feedback from the network. 

Using an appropriately defined cost that is implicitly dependent on the requested rates of each 

node within a neighbourhood, the penalty is typically the total cost of all nodes in the network. A 

node maximizes (its view of) a common performance function, given by the difference between 

the total utility and the penalty. An overview of network resource allocation through utility 

maximization is presented in [9]. 

 

In [10], the authors have addressed the problem of providing proportional fairness by considering 

joint optimization at both transport and link layers. Two algorithms are proposed for solving the 

problem in a distributed manner that converges to the globally optimal solutions. These results, 

generalized in [11], are based on the dual and the primal algorithms in convex optimization and 

need end-to-end feedback information to update variables maintained at the nodes. The 

algorithms presented in [10], [11] are oblivious of the queue dynamics of the network, which may 

increase delays and packet loss. Although our work is closely related to [10], [11], the problem 

formulation and the proposed solution differ significantly. 

 

In [12], the solution approach uses a class of queue backpressure random access algorithms 

(QBRA), where the actual queue-lengths of the flows are used to determine any node’s channel 

access probabilities. In this distributed algorithm, a node uses the queue-length information in a 

close neighbourhood to determine its channel access probability to achieve proportionally fair 

rates and queue stability. This scheme has the advantage that no optimization needs to be 

performedand nodes can achieve proportional fairness just by exchanging the queue information 

in the local neighbourhood. However, the frequency of exchange of this information plays a vital 

role in determining the performance of this algorithm. In optimization-based schemes, once the 

flow rates have converged to the optimum, the frequency of information exchange does not play a 

significant role until the network topology, or the number of flows in the network, change. 

 

In a different approach, several policies have recently been proposed for achieving rates close to 

the maximum throughput region through dynamic link scheduling [13], [14], [15], [16]. These 

scheduling algorithms use maximal matchings in every time slot using local contention 

algorithms and achieve near maximal schedules. Some policies also guarantee fairness of rate 

allocation among different sessions. 

 

Quality of Service(QoS) is an important issue in ad-hoc wireless networks. Service guarantees can 

be provided for delays, packet loss, jitter and throughput based on the application requirements. 

Our approach in this work is to combine the QoS guarantee in addition to providing proportional 

fairness. Our main contributions are as follows: 

 

1. We derive an expression for the buffer overflow probabilities for discrete-time queues. 

This derivation uses the fact that there cannot be simultaneous arrivals and departures 

at a node within the same slot in Aloha-type networks that do not have packet capture 

mechanisms.  

2. Using the expression for buffer overflow probabilities mentioned above, we show that 

an upper bound on the buffer overflow probability translates to an upper bound on the 

utilization or load, which can then be used as constraints in an appropriately posed 

convex minimization problem under convex constraints. This is a reformulation of the 

proportionally fair end-to-end rate allocation problem. A distributed dual approach is 

then used to solve this convex minimization problem using an appropriate 

Lagrangianfunction. The dual problem is solved using a projected gradient method.  

3. Finally, after making some observations about the distributed implementation of the 

above-mentioned dual scheme, we present simulation results showing the satisfactory 
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performance of our proposed algorithm in terms of fairness and QoS.  

 

The rest of the paper is organized as follows. Section 2 presents the network model that is used in 

the rest of the paper. We then formulate the rate control problem as a convex optimization 

instance with bounds on the buffer overflow probabilities at each node. In section 3, we discuss 

the dual-based solution approach and present a distributed implementation to achieve flow-based 

proportional fairness. The convergence of this algorithm to the unique global optimum is 

established. Section 4 contains the details of the experimental results verifying the optimality of 

the proposed scheme. Conclusions are provided in section 5. 

 

2. PROBLEM FORMULATION 

 
2.1. Wireless Network Model 

 
We assume the following: 

 

1. Time is divided into slots of equal duration. 

2. A successful transmission in a time-slot implies collision free data transmission in that slot.  

3. The transmitting nodes always have data packets to transmit (i.e. we do not consider �the 

arrival rates of packets for different flows, and assume that all flows have packets to 

transmit at all times).  

4. Nodes cannot transmit and receive packets at the same time.  

5. The receipt of more than one packet within the same time-slot will result in a collision.  

6. Nodes in the network have a buffer of fixed size assigned to each flow that is routed 

through it.  

7. We also assume there is a unique route for each flow within the network (which would be 

the case if we used DSDV [17] as the routing protocol, for example).  

 

Additionally, we only consider unicast flows for our derivations. 

 

An ad-hoc wireless network carrying a collection of flows, is represented as an undirected graph 

G = (V, E) , where V represents the set of nodes, and E ⊆ V ×V is a symmetric relationship (i.e.

(i, j) ∈ E ⇔ ( j, i) ∈ E ), that represents the set of bidirectional links. We assume all links of the 

network have the same capacity, which is normalized to unity. The 1-hop neighbourhood of node 

i ∈ V  is represented by the symbol N(i) . When a node icommunicates with a node j ∈ N(i) , we 

can represent it as an appropriate orientation of the link (i, j) in E, where i is the origin and j is the 

terminus. The context in which (i, j) ∈ E  is used should indicate if it is to be interpreted as a 

directed edge with i as origin and j as terminus. The set of flows, using a link (i, j) ∈ E  with i( j) 

as origin (terminus), is denoted by F (i, j). 

When node i intends to transmit data to node j ∈ N(i)for the l-th flow ( l ∈ F (i, j)), it 

wouldtransmit data in the appropriate time-slot with probability pi,j,l. Pi,j = pi, j,l
l∈F (i,j)

∑ , denotes 

theprobability that node i transmits data to node j, andPi = Pi, j
j∈V

∑ , denotes the probability that 

node i will be transmitting to some node in its 1-hop neighbourhood for some flow. The 

probabilities pi,j,l’s should be chosen such that Pi is not greater than unity for any node i ∈ V . 

 

2.2. Link Success Probability Expression 

 

The probability of successful data transmission over link (i, j) �E for flow l �F (i, j), denotedby 
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Si,j,l, is given by the expression 

 

Si, j,l = pi, j,l 1− p j,m,n

( j,m)∈E,n∈F ( j,m)

∑








 1− po, p,q

(o, p)∈E,q∈F (o, p)

∑










o∈N ( j )−{i}

∏  (1) 

This is also the rate or the attainable throughput of flow l over link (i, j). 

 

2.3. Problem Statement 

 
Consider an ad-hoc wireless network where there are r flows in the network. Each flow has a 

utility function associated with it, whose value is determined by the logarithm of the flow rate. 

The objective is to maximize the sum of the logarithms of the flow-rates under the operational 

constraints outlined below. We denote the logarithm of the rate of the l-th flow as fl. The end-to- 

end proportionally fair flow control problem can be stated as 

max
pi, j,l

fl

l

∑  (2) 

where(i, j)�E and l�{1, 2, . . . , r}, subject to additional constraints. 

 

Let us assume that the l-th flow (1 ≤ l ≤ r) spans over kl links. We use the notation 〈l, q〉 ∈ E to 

denote the l-th-flow’s q-th-link, where is  is indexed in ascending order starting 

from the source and terminating at the destination. Thus, 〈l, q〉 = (i, j) implies the l-th-flow’s q-th- 

link from the source has i as the source node and j as the destination node. If 〈l, q〉 = (i, j) ∈ E  

then we use the notation Sl,q to denote Si,j,l. The logarithm of the rate of l-th flow over link 〈l, q〉 is 

represented as fl,q. 

Let p = (pl,q,1≤ l ≤ r,1≤ q ≤ kl, 〈l, q〉 ∈ E)bethevectorofaccessprobabilitiesofallthe 

flowsovereachlinkinthenetworkand f
∧

= fl,q,1 ≤ l ≤ r,1 ≤ q ≤ kl, 〈l,q〉∈ E( ) thevectorof the 

logarithm of link rates of all flows. 

In the case of multi-hop wireless networks, the rate of any flow is the same as the rate of the 

bottleneck link in that flow. The logarithm of the rate of the l-thflow is min{fl,q : 1 ≤ q ≤ 

kl}.Hence, the problem can be stated as max
pl,q

min fl,q,1≤ q ≤ kl{ }
l

∑ , subject to capacity 

constraints,and additional constraints on the buffer overflow probabilities which is addressed in 

the nextsubsection. 

 

2.4. Buffer Overflow Probability of a Tandem of Discrete-Time Queues 
 
The results in reference [18] can be paraphrased as follows – for a discrete-time queue of capacity 

M, with a packet arrival probability pa, and a probability pd (pd>pa) of a packet departure from a 

non-empty buffer, the probability of seeing i-many packets at any time-instant in the buffer in 

steady state is given by the expression 
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1−
pa

pd











1−
pa

pd











M+1

pa

pd











i

 (3) 

Using the time-reversibility of the underlying Markov-chain, and the mutual independence of the 

simultaneous states of the buffers, reference [18] also establishes that the joint stationary state 

probability of a tandem of discrete-time queues is the product of the distributions of each queue 

taken independently with an arrival probability of pa, which is the probability of packet arrival 

into the first queue. This is essentially the discrete-time analogue of Jackson’s result [19] 

involving tandems of M/M/1 queues. The key points of divergence between reference [18] and 

the present paper are presented below. 

 

It should be noted that unlike the model assumed in reference [18], where arrival and departure 

events are permitted to occur concurrently, interference constraints in wireless networks do not 

permit the occurrence of certain simultaneous events. For instance, as a node cannot transmit and 

receive information at the same time, the simultaneous occurrence of an arrival and a departure 

from the discrete-time queue at the node cannot be permitted. Secondary interference constraints 

place additional restrictions on the set of simultaneous events that can occur among neighbouring 

nodes. Even when there are no restrictions on simultaneous events, reference [20] notes that it is 

cumbersome to use balance equations to arrive at an appropriate expression for the joint 

stationary probability for tandems of discrete-time queues. For situations where there are 

restrictions on the nature of concurrent events that can occur in a tandem of queues, such as those 

that model wireless networks, the joint stationary state probability of a tandem of discrete-time 

queues is not guaranteed to have the product-form of reference [18]. This notwithstanding, it is 

possible to characterize the marginal probability distribution of each queue in the tandem. 

 

We first note that the analysis of reference [18] (cf. equations 1, 2 and the subsequent discussion 

of time-reversibility) applies mutatis mutandis to the case when utmost one packet is permitted to 

arrive, or depart from a single discrete-time queue of size M, along with the restriction that a 

simultaneous arrival and departure of a packet from the queue is not permitted. The probability of 

seeing i-many packets in the buffer at any time-instant in this restricted discrete-time queue is 

also given by equation 3. The probability of the queue of size M is non-empty is given by the 

expression 

1−
pa

pd











M

1−
pa

pd











M+1

pa

pd









  

and since the probability of a packet departure from a non-empty queue is pd, the probability of a 

packet-departure from the discrete-time queue is given by 

1−
pa

pd











M

1−
pa

pd











M+1

pa

pd









× pd < pa.  

It is not hard to see that if M = ∞, then the probability of a packet-departure from the discrete- 
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time queue is exactly equal to the probability of packet-arrival into the queue. For bounded 

queues (M< ∞) the output process of the queue is geometrically distributed with a parameter that 

is no greater than the input parameter pa. Additionally, there can be no more than M-many 

consecutive departures, or, M-many consecutive arrivals to the discrete-time queue due to the 

bound on the buffer-size. We assume packets that arrive into a full-queue get dropped. This 

observation holds for a tandem of discrete-time queues. That is, the output process of each queue 

is geometrically distributed with a parameter that is no greater than that of the input to the first 

queue (i.e. pa). This observation is used in establishing a bound on the buffer-overflow 

probabilities at each queue in a tandem of discrete-time queues in the following theorem. 

 

Theorem 1.1: Consider a tandem of n discrete-time queues, each with buffer-size M, whereat any 

discrete-time instant the probability of a packet-arrival into the first queue is pa, andthe 

probability of a packet-departure from the i-th, non-empty queue is pdi, (i = 1, 2, …, n). If

pd j = min
i=1,� ,n

{pdi}, and
pa

pd j

<
M

M +1
, then, the probability of seeing M packets in the i-th queue (i= 

1, …,n) is no greater than 

1−
pa

pd j

1−
pa

pd j











M+1





















pa

pd j











M

 

Proof: Suppose ρ =
pa

pd j

, we first note that the expression
1− ρ

1− ρ M+1









ρM

, increases 

monotonically with respect to ρ if ρ ≤
M

M +1
. Let pai be the probability of a packet arrival into the 

i-th queue, weknowpai≤pa.If ρi =
pai

pd i

,sincepdi≥pdj,itfollowsthat ρi ≤ ρ <
M

M +1
.Theobservation 

follows directly from the monotonicity property mentioned above.� 

 

A direct consequence of theorem 1.1 is that if we are able to pick a pa such that 

pa

pd j

<
β

1+ β











1/M

,  

then the buffer overflow probability at the i-th queue in the tandem of discrete-time queues will 

be no higher than β at all queues. In the next section, this observation is used in a convex 

programming solution to the problem of enforcing proportional fairness in the presence of 

constraints on the buffer overflow probabilities. 

 

2.5. Problem Formulation with Buffer Overflow and Capacity Constraints 

 
Let us assume the loss rate bounds for the l-thflow translates to each node along the 

flowsustaining a traffic intensity (ratio of arrival probability and departure probability at a node) 

nomore than ρl =
pa

pd j









.  
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Also, each link-rate in the network cannot exceed the capacity of that link given by (1). Since the 

logarithmic function is strictly increasing, each link constraint can be re-written as 

 

fl,q ≤ log(S l,q )   (5) 

Each link constraint (5) forms a convex set over (fl,q, p). We also assume that there is a minimum 

achievable data-rate for each flow, i.e., ∃ε, s.t.ε ≤ fl,q,∀l, q(1≤ l ≤ r,1≤ q ≤ kl ). Also, we 

assume that all the flows in the network have a maximum achievable data-rate i.e., 

∃δ, s.t. fl,q ≤ δ,∀l, q (1≤ l ≤ r,1≤ q ≤ kl ),(toaccommodatenetworkcontrol trafficlike routing 

messages, for example). We define the feasible set of access probabilities as, 

 

%P = p : pl,q ≤1,eε ≤ pl,q ≤ eδ, (i, j) ∈ E, l ∈ F (i, j)
{l:〈l,q〉=(i, j ), j∈N (i)}

∑











. 

Also, we define the QoS region as a set of vectors as defined by 

 

G = f̂ :ε ≤ fl,1, fl,q ≤ δ, fl,1 ≤ fl,q +δl, 2 ≤ q ≤ kl{ },  

whereδl = log ρl. The overall optimization problem can now be stated as: 

 

V : max : min fl,q :1≤ q ≤ kl{ },
l

∑   (6) 

fl,q ≤ log(Sl,q ),∀〈l, q〉∈ E,  

p ∈ %P, f̂ ∈G. 

From the constraint imposed by the QoS region, we observe that for any feasible solution to V, 

the first link will always have the lowest rate and hence it will be the bottleneck. Therefore for 

any feasible solution, the rate of any flow l, is same as fl,1. We replace fl,1 by fl, and define the 

feasiblesetofflowratesas %F = f :ε ≤ fl ≤ δ,∀l{ }, where,f=(fl, 1≤l≤r),wecanrewriteV as the 

following convex optimization problem, 

U : min − fl,
l

∑  (7) 

fl ≤ log(Sl,1), ∀〈l,1〉 ∈ E,  

fl ≤ log(Sl,q )+δl, ∀〈l, q〉 ∈ E, 2 ≤ q ≤ kl,  

p ∈ %P, f̂ ∈ %F.  
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3. SOLUTION APPROACH 

 
3.1. Dual-based Algorithm 
 

We can write the Lagrangian function for the problem stated in (7) as, 

 

L(f,p,λ) = − fl

l

∑ + λl,1( fl

l,1

∑ − log(Sl,1))+ λl,q ( fl − log(Sl,q )−δl ).
l,q(2≤q≤kl )

∑   (8) 

Let us denote Λ = (λl,q : ∀l,1≤ q ≤ kl )as a vector of Lagrange multipliers. As the Slater 

constraint qualification is satisfied by the convex program given by (7), convex duality implies 

that at the optimum Λ
*
, the corresponding f, p are the solutions to the primal problem [21]. The 

dual problem can be solved using the gradient projection method similar to the scheme used in 

[22]. Note that the Lagrangian is separable in terms of the probabilities p and the logarithm of the 

rates f. The dual function can be stated as: 

 

Q(Λ) = inf
f∈ %F,p∈ %P

L(f, p, Λ).   (9) 

The following proposition is significant for obtaining the distributed solution for the non-linear 

program given by (7). 

Proposition 2.1: For a given Λ(λl,q ≠ 0,∀〈l, q〉 ∈ E),  the solution to inf
f∈ %F,p∈ %P

L( f, p, Λ) is given 

by: 

pl,q = max min
λl,q

λy,z

〈 y,z〉=(i,k ),k∈N (i)

∑ + λy,z

〈 y,z 〉=(k,i),k∈N (i)

∑ + λy,z

〈 y,z〉=(k,v ),k∈N (v)−{i}

∑
v∈N (i)

∑
,eδ

















,eε

















,  (10) 

and, 

fl =

ε if λl,q ≥1
q

∑

δl if λl,q <1
q

∑











  (11) 

Proof: Since the Lagrangian is convex with respect to p, the unconstrained value of p thatyields 

the infimum of the Lagrangian is obtained by taking its derivative with respect to p and equating 

it to zero. This results in the expression involving λ-terms in equation 10. 

 

The denominator of this expression is essentially the sum of three terms. The first term is the sum 

of the Lagrange multipliers associated with all outgoing flows from node i. The second is the sum 

of the Lagrange multipliers associated with all incoming flows to node i. Finally, the third term is 

the sum of the Lagrange multipliers associated with all incoming flows to nodes in the one-hop 

neighborhood of node i (excluding the flows incoming from node i). It is not hard to show that 

this expression satisfies the constraint 0 ≤ pl,q ≤ 1 and 0 ≤ Pi ≤ 1. 

 

The remaining terms, and the structure of equation 10, are a direct consequence of the upper and 
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lower-bounds on pl,q (e
ε
 ≤ pl,q ≤ e

δ
). 

Also, for any l, the coefficient of fl in the Lagrangian, is given by (−1+ λl,q

q

∑ ).When 

λl,q

q

∑ ≠1,the infimum of Lagrangian with respect to fl is either the lower or the upper bound of 

fl, depending on the sign of its coefficient, which gives (11). When λl,q =1,
q

∑ fl can take 

anyvalue between [ε, δ].� 

 

The dual problem  

maximize: Q(Λ)   (12) 

subject to: Λ ∈ [η,∞) ×[η,∞) ×�  ×  [η,∞)  

whereη is a small number close (but not equal) to zero, can now be solved using the subgradient 

projection method, where the Lagrange multipliers are adjusted in the direction of thesubgradient 

 

λl,q

n+1 = λl,q

n +α n ∂Q(Λn )

∂λl,q













+

  (13) 

where z〈l,q〉
 

+

= max{η, z〈l,q〉}and 
∂x

∂y
denotes the subgradient of x with respect to y. The 

variableαn is the step size at the n
thiteration that can either be a constant, or, diminishing step 

sizethat satisfies the requirements 

 

lim
n→∞

α n = 0, α n

n=1

∞

∑ = ∞,  

and the subgradient is given by, 

 

∂Q(Λn )

∂λl,1

= ( fl

n − log(Sl,1

n )),   (14) 

∂Q(Λn )

∂λl,q

= ( fl

n − log(Sl,q

n )−δl ), 2 ≤ q ≤ kl,   (15) 

wherefl and λl,q are obtained from equations (10) and (11). 

 

3.2. Convergence of the Proposed Scheme 

 

Since p ∈ %P,  the norm of subgradients of the dual function given by (9), is bounded. Let Λ*be 

the solution to (12) for η = 0. Also let Λ̂η be the global maximum of (12) for η > 0.Let {Λη
n
}be 

the sequence generated by the subgradient method given by (13) for η > 0. 

Lemma 2.2: Let g(Q(Λη
n ))

2
≤ G,∀n ≥ 0 . For every η > 0, ∃Λ̂η , such that
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Q(Λ*)−Q(Λ̂η )
2

≤ Gη . 

The proof follows directly from the concavity of the dual function, and the property of the 

subgradients [23]. 

Theorem 2.3: For every η > 0, every limit point of the sequence of Λη
n{ }obtained using the 

diminishing step size, is the global maximum of (12). 

 

Proof: Chapter 2 of reference [23], presents a proof of convergence of approaches that use 

subgradient method involving diminishing step sizes, which can easily be extended to projected 

subgradientmethod for maximization of concave function over a convex set.� 

Theorem 2.4: For every η > 0, using the constant step size αn = α, as n → ∞, 

Q(Λ̂η )− lim
n→∞

inf(Q(Λη )) ≤
Gα 2

2
, where Λη =

1

n +1
Λη

i

i=0

n

∑ . 

The proof of convergence of projected subgradient method with constant step size,  

 

underassumption of bounded subgradients, is presented in the appendix for completeness. 

 

3.3. Implementation of the Dual-Based Algorithm 
 
The dual-based algorithm for end-to-end proportionally fair rate allocation under buffer overflow 

constraints in random access wireless networks can be summarized as follows: 

 

1. Initialize the iteration count n to zero. If 〈l, q〉 = (i, j)for some flow l, node i chooses an 

initial value of λl,q

0
 such that 0 < λl,q

0 <1.  

2. Node ipasses the value of λl,q

n
to the source of the l-thflow. The logarithm of the rates (fl) 

are then computed by sources using (11) in O(1) time.  

3. Every node that the l-thflow is routed through, obtains the value of fl

n
from the source.  

4. After obtaining the λl,q

n
-values from nodes within a 2-hop neighborhood, each node 

computes the access probability values (pl,q) according to (10).  

5. Each node increments the value of n and computes λl,q

n+1
by the gradient projection 

algorithmgiven by (13) in O(1) time.  

6. Steps 2, 3, 4 and 5 are repeated till an appropriate stopping condition is satisfied (based 

on heuristics or some other criteria, see discussion below).  

When flows can arrive and depart in the network, constant step size is the preferred optionand in 

this case there is no stopping criteria, i.e. the nodes continue to run the optimization algorithm 

without termination. The access probabilities are updated periodically and the source of each flow 

sets the flow rate as 

min log(Sl,1), min
2≤q≤kl

(log(Sl,q )−δl ){ } ,  (16) 

to maintain the flow rates in the QoS region. 
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4. PERFORMANCE EVALUATION 
 
For our simulation comparisons, we consider the example shown in figure 1, from references 

[10], [12]. The nodes are labeled from 1 to 6. The interference model is that each node interferes 

with the reception at its one-hop neighbors. For example nodes 1 and 3 cause interference at node 

2; nodes 6, 5, 2 and 4 cause interference at node 3. Three end-to-end flows, namely,flow1, flow2, 

and flow3 are setup in this network. The source, the sinks, and the path of three flows are shown in 

table I. 

 

We suppose each flow can tolerate a loss of 45 in every 100,000 packets. Additionally, we 

suppose each node has a buffer that can store 50 packets for each flow that is routed through it. 

 

Fig. 1.An ad-hoc wireless network. 

 

 

TABLE I:�Path of the flows and observed flow rates in a MATLAB simulation of the network 

shown in figure 1. 

 

This translates to a value of ρ = 0.86. For ρ1 = ρ2 = ρ3 = 0.86, the globally optimal solutions to the 

problem defined in (7) was computed using the fmincon function in MATLAB. This solution and 

the solutions given by the dual-based algorithm are presented in table II. More detailed 

experimentation results can be found in [24], which has been excluded from this paper due to 

page limitations. 

 

We have used two approaches to the dual-based algorithm outlined earlier. In the first approach 

we use a constant step size α
n
 = 5 × 10

−4
 (cf. (13)), and the logarithm of the minimal achievable 

rate, ε was set to be -10. Figure 2(a) shows how the flow rates (cf. (16)), converge when the dual-

based algorithm with fixed step size is used. 

 

The second approach involves the use diminishing step size. In this case the step size at the n
th
 

iteration αn
 = 1/n. The value of ε is set to be -10. Figure 2(b) illustrates the convergence ofthe 

flow rates (cf. (16)), when the dual-based algorithm with diminishing step sizes is used. 

 

If ρ1 = ρ2 = ρ3 = 1, we get the optimal solution of U* = −7.4897 using MATLAB’s fmincon 

function. This is higher than when ρ1 = ρ2 = ρ3 = 0.86, but the buffer overflow will be 

significantly higher. To demonstrate this, we simulated the network in figure 1 in 
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MATLAB,using access probabilities obtained for ρ1 = ρ2 = ρ3 = 1 and ρ1 = ρ2 = ρ3 = 0.86, and 

ran the simulation for a duration of 5×104 time slots, where each node in the network has infinite 

length buffers (i.e. no packets are dropped in the simulation). For a random instance of the 

simulation, we plot the queue-lengths as a function of time, for flow 1 at node 5. In the plots, unit 

of time is a single time-slot of fixed duration. The flow rates observed for ρ1 = ρ2 = ρ3 = 0.86are 

presented in table I. 

 

Figure 3 demonstrates the queueing performance of our algorithm at node 5. Case I is the plot of 

queue-length as a function of time when we use the optimal access probabilities without 

considering buffer overflow constraints i.e. ρ1 = ρ2 = ρ3 = 1. Case II shows how the queue- length 

varies as a function of time, when the optimal access probabilities obtained by setting ρ1 = ρ2 = ρ3 

= 0.86is used. We can observe from the plots that in case I, the queue is unstable, whereas, case II 

shows the queue at node 5 is stable. If a buffer size of 50 was used, then the fraction of packets 

transmitted that are lost, in case I will be much higher than as compared to case II. 

 

 

TABLE II: �The Optimal Results and the Solution given by the Distributed Algorithm 
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Fig. 2. The convergence of flow rates when dual-based algorithm is used. 

 

 

Fig. 3. The queue-length at Node 5. 

5. CONCLUSION 
 
In this paper, we proposed a distributed scheme for providing end-to-end proportionally fair flow 

rates in a slotted-time, multi-hop, random access network with a general network topology, with 

bounds on the buffer overflow probabilities at each node. After noting that each flow in the 

network can be viewed as a tandem of discrete-time queues, we converted the constraints on 

buffer overflow probabilities into appropriate constraints on the link rates, which permitted the 

reformulation of the original problem into an appropriately posed convex minimization problem 

under convex constraints. We solved this problem using an appropriately constructed Lagrange 

function, and discuss its convergence properties. After presenting aspects of distributed 

implementation of this dual-based approach, we verified the correctness of the approach using an 

example from the literature. 
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APPENDIX A: PROOF OF CONVERGENCE OF PROJECTED SUBGRADIENT 

METHODS WITH CONSTANT STEP SIZE 

 

Suppose  is a concave function defined over a convex set C, having a non-emptyset 

of maximum points M*. To maximize f, the projected subgradient method uses the iterationxk+1 = 

[xk + hk+1g(xk)]
+, where xk is the k-th iterate, g(xk)is the subgradient of f at xk andhk+1is the step 

size, and for constant step size we have hk = h,∀k . We assume that norm ofsubgradients of f is 

bounded and therefore, g(xk )
2

≤ G,∀k . Also, we define at the k-thiterate, x =
1

k +1
xi

i=0

k

∑ . 

Theorem A.1: For any x*
� M

*, as k → ∞ one can find a x̂ , such that either f (x̂) = lim
k→∞

f (xk )or 

f ( x̂) = lim
k→∞

inf( f ( x̂))and f (x*)− f (x̂) ≤ G2h / 2 . 

Proof: If g(x
k* ) = 0 for some k

*
, then f (xk ) = f (x

*),∀k ≥ k
*
and we may take x̂ = x

*
. If

g(xk ) ≠ 0,∀k , then xk+1 = xk + hg(xk )[ ]
+
. Let zk+1 = xk + hk+1g(xk )(without projection).Observe 

that 

xk+1 − x
*

2
≤ zk+1 − x

*

2
.   (17) 

This is true as when we project a point onto C, we move closer to every point in C. Now, 

 

zk+1 − x
*

2

2

= xk + hg(xk )− x
*

2

2

= xk − x
*

2

2

+ 2hg(xk )
T
(xk − x

*
)+ h

2
g(xk )

2

2
.  

From (17), we have 

 

xk+1 − x
*

2

2

≤ xk − x
*

2

2

+ 2hg(xk )
T
(xk − x

*
)+ h

2
g(xk )

2

2
  (18) 

From the definition of the subgradients for concave functions we have, 

 

f (x
*
) ≤ f (xk )+ g(xk )

T
(x

* − xk ).   (19) 

From (18) and (19), we get the following inequality� 

 

xk+1 − x
*

2

2

≤ xk − x
*

2

2

+ 2h( f (xk )− f (x
*))+ h

2
g(xk )

2

2
.    (20) 

Recursively from (20), we get 

 

xk+1 − x
*

2

2

≤ x0 − x
*

2

2

+ 2h ( f (xi )− f (x
*))

i=0

k

∑ + h
2

g(xi ) 2

2

i=0

k

∑ .    (21) 

Using xk+1 − x
*

2

2

≥ 0 , we have, 
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2h ( f (x
*)− f (xi ))

i=0

k

∑ ≤ x0 − x
*

2

2

+ h
2

g(xi ) 2

2
.

i=0

k

∑    (22) 

By property of concave functions, we have, 

 

f (xi )
i=0

k

∑
k +1

≤ f (x ),   (23) 

where, x =
1

k +1
xi

i=0

k

∑ .Thus we have, 

( f (x
*)− f (xi ))

i=0

k

∑ ≥ (k +1)( f (x
*)− f (x )).  

Combining this with (22), we get the inequality 

2h(k +1)( f (x
*)− f (x )) ≤ x0 − x

*

2

2

+ h
2

g(xi )
i=0

k

∑
2

2

.   (24) 

Given that ||g(xi)|| ≤ G, for all i, we have, 

f (x
*)− f (x ) ≤

x0 − x*

2

2

+ h2 (k +1)G2

2h(k +1)
.    (25) 

Taking the limit as k → ∞, we get, 

 

f (x
*)− lim

k→∞
inf( f (x )) ≤ G

2
h / 2.   (26) 

Hence the result.� 
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