
International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.2, March 2012

DOI : 10.5121/ijnsa.2012.4214 179

EFFICIENT CONDITIONAL PROXY RE-

ENCRYPTION WITH CHOSEN CIPHER TEXT

SECURITY

S. Sree Vivek1, S. Sharmila Deva Selvi1, V. Radhakishan2, C. Pandu Rangan1

1Department of Computer Science and Engineering, Indian Institute of Technology Madras
svivek@cse.iitm.ac.in, sharmila@cse.iitm.ac.in, prangan@iitm.ac.in

2National Institute of Technology Trichy, India
vrkishan@gmail.com

ABSTRACT

In a proxy re-encryption (PRE) scheme, Alice gives a special information to a proxy that allows it to

transform messages encrypted under Alice's public key into a encryption under Bob's public key such that

the message is not revealed to the proxy. In [14], Jian Weng and others introduced the notion of

conditional proxy re-encryption (C-PRE) with bilinear pairings. Later, a break for the same was

published in [17] and a new C-PRE scheme with bilinear pairings was introduced. In C-PRE, the proxy

also needs to have the right condition key to transform the ciphertext (associated with a condition set by

Alice) under Alice's public key into ciphertext under Bob's public key, so that Bob can decrypt it. In this

paper, we propose an efficient C-PRE scheme which uses substantially less number of bilinear pairings

when compared to the existing one [17]. We then prove its chosen-ciphertext security under modified

Computational Diffie-Hellman (mCDH) and modified Computational Bilinear Diffie-Hellman (mCBDH)

assumptions in the random oracle model.

KEYWORDS

Random Oracle Model, Proxy Re-Cryptography, Conditional Proxy Re-encryption, Chosen Ciphertext

Security.

1. INTRODUCTION

Encryption is used as a building block of any application requiring confidentiality. Let pki and
pkj be two independent public keys. As pointed out by Mambo and Okamato in [15], it is a
common situation in practice where a data encrypted under pki is required to be encrypted under

pkj (j ≠ i). When the holder of ski is online, Ei(m) is decrypted using ski and then message m is
encrypted under pkj giving Ej(m). But in many applications like encrypted mail forwarding,
secure distributed file systems, and outsourced filtering of encrypted spam, when the holder of
ski is not online, this has to be done by an untrusted party.

In 1998 Blaze, Bleumar, and Strauss [9] introduced the concept of proxy re-encryption (PRE).
A re-encryption key (rki,j) is given to a potentially untrusted proxy so that the proxy can
transform a message m encrypted under public key pki into an encryption of the same message
m under a different public key pkj without knowing the message. A PRE scheme can be of two
types - unidirectional and bidirectional. The former is a scheme in which a re-encryption key

(rki → j) can be used to transform from pki to pkj but not vice versa and the latter is a scheme in

which the same re-encryption key (rki ↔ j) can be used to transform from pki to pkj and vice
versa. The re-encryption algorithm can be of two types - single hop, in which the re-encrypted
ciphertext cannot be further re-encrypted and multi hop, in which the re-encrypted ciphertext
can be further re-encrypted.

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.2, March 2012

180

PRE can be used in many applications, including simplification of key distribution [9], key
escrow [13], multicast [19], distributed file systems [3, 5], security in publish/subscribe systems
[4], secure certified email mailing lists [20, 23], the DRM of Apple's iTunes [22], interoperable
architecture of DRM [21], access control [11], and privacy for public transportation [7].
Hohenberger and others published a result of securely obfuscating re-encryption [16], which is
the first positive result for obfuscating an encryption functionality. Shao and Cao have proposed
a unidirectional PRE scheme without pairing [2]. Matthew Green and Giuseppe Ateniese have
proposed a PRE scheme for ID-based cryptosystems [18].

Ran Canetti and Susan Hohenberger proposed a definition of security against chosen-ciphertext
attacks for PRE schemes and presented a scheme that satisfied the definition [1]. In 2009, Jian
Weng and others [14] introduced the concept of C-PRE, whereby Alice has a fine-grained
control over the delegation. As a result, Alice can flexibly assign Bob the decryption capability
based on the conditions attached to the messages using a proxy. For example, suppose Alice is
on a vacation. She can make Bob to read only those messages which have the keyword “urgent”
in their subject. This flexible delegation is obviously not possible with PRE schemes. In this
paper, two separate keys are used - a partial re-encryption key and a condition key. The message
can be delegated by the proxy only if both the keys are known.

Later in 2009, Jian Weng and others published a break of the scheme in [14] and gave a new
scheme for C-PRE [17], which combines the re-encryption key and the condition key into a
single key, which is then used for re-encryption. Also Cheng-Kang Chu and others in [8]
introduced a generalized version of C-PRE named conditional proxy broadcast re-encryption
(CPBRE), in which the proxy can re-encrypt the ciphertexts for a set of users at a time.

In this paper, we propose an efficient C-PRE scheme (single-hop and unidirectional) which uses
significantly less number of bilinear pairings when compared to the existing schemes in [14]
and [17]. Our scheme, as in [14], uses two separate keys for re-encryption.

1.1. Our Results

Let us briefly describe a C-PRE scheme. A C-PRE scheme involves a delegator (say user Ui), a
delegatee (say user Uj) and a proxy. A message sent to Ui with condition w is encrypted by the
sender using both Ui’s public key and w. To re-encrypt the message to Uj, the proxy is given the

re-encryption key (rki → j) and the condition key (cki,w) corresponding to w. Both the keys can be
generated only by Ui. These two keys form the secret trapdoor to be used by the proxy to
perform translation. Proxy will not be able to re-encrypt cipher texts for which the right
condition key is not available. Thus Ui can flexibly assign Uj the decryption rights by setting
condition keys properly. The scheme works in practice as follows: the message encrypted for Ui
is first handled by proxy and under appropriate conditions the proxy transforms the ciphertext
into a ciphertext for Uj. However, proxy will obtain no information about the original message.
While it is some what easier to design a PRE without pairing, designing C-PRE requires pairing
based operations crucially. We have used a few constructions from [12] which drastically
reduces the number of bilinear pairings. Table 1 compares the number of bilinear pairings and
exponentiations between the scheme in [17] and our scheme.

Table 1. Computational Complexity Comparison
Algorithm Scheme in [17] Our Scheme

BP EXP BP EXP

Encryption case 1 1 4 0 0

Encryption case 2 1 3 1 6

Re-Encryption 3 4 1 3

Decryption case 1 3 3 1 4

Decryption case 2 1 1 0 6
Total 9 15 3 19

BP − Bilinear Pairings, EXP − Exponentiations.

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.2, March 2012

181

Encryption case 1 refers to the encryption without the condition. Encryption case 2 refers to the
encryption with the condition. Decryption case 1 refers to the decryption of the re-encrypted
ciphertext (first level ciphertext) and Decryption case 2 refers to the decryption of the encrypted
ciphertext (second level ciphertext).

Although the number of exponentiations in our scheme is slightly more, it is insignificant when
compared to the reduction in number of bilinear pairings. Thus, our scheme is more efficient
than the existing one. We then formally prove the security of our scheme. We have slightly
modified the security model in [14], as discussed in Section 3.

The C-PRE scheme in [14] has a break as given in [17]. Scheme in [17] has combined the two
keys into a single key. Having the keys separate has an advantage. The delegation power of the
proxy can be controlled. One of the two keys can be given to the proxy for partial re-encryption
and the other key can be given to a third party for full re-encryption. Since the scheme in [14]
has a break, our scheme is the only existing scheme having this unique property.

2. PRELIMINARIES

Bilinear Groups and Bilinear Pairings: Let G and GT be two cyclic multiplicative groups

with the same prime order q. A bilinear pairing is a map e : G × G → GT with the following

properties.

− Bilinearity: We have G∈∀= 21
ab

21
b
2

a
1 g,g)g,(gê)g,(gê and

*
qba, Z∈∀ ;

− Non-degeneracy: There exist g1, g2 ∈ G such that 1)g,(gê 21 ≠ ;

− Computability: There exists an efficient algorithm to compute G∈∀ 2121 g,g)g,(gê .

Modified Computational Diffie-Hellman Problem: Let G be a cyclic multiplicative group
with a prime order q. Let g be the generator of G, The mCDH problem in G is as follows:

Given)g,g,g(g, baa
1

 for some a, b ∈ *
qZ , compute W = gab ∈ G. An algorithm A has an

advantage ε in solving mCDH in G if

εg)g,g,g(g,Pr abbaa
1

≥




 =A

where the probability is over the random choice of a, b ∈
*
qZ , the random choice of g ∈ G and

the random bits of A.

Modified Computational Bilinear Diffie-Hellman Problem: Let G and GT be two cyclic

multiplicative groups with the same prime order q. Let e : G × G → GT be an admissible

bilinear map and let g be the generator of G. The mCBDH problem in (G, GT, e) is as follows:

Given)g,g,g,g(g, cbaa
1

 for some a, b, c ∈ *
qZ , compute W = abcg)(g,ê ∈ GT. An algorithm A

has an advantage ∈ in solving mCBDH in (G, GT, e) if

[] εg)(g,ê)g,g,g,g(g,Pr abccbaa
1

≥=A

where the probability is over the random choice of a, b, c ∈
*
qZ , the random choice of g ∈ G

and the random bits of A.

3. MODEL OF CONDITIONAL PROXY RE-ENCRYPTION

We give the definitions and security notions for C-PRE systems in this section.

3.1. Definition of C-PRE systems

A unidirectional C-PRE scheme consists of seven algorithms which are described as follows:

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.2, March 2012

182

Global Setup (λ): The global setup algorithm takes a security parameter λ as input and outputs
the global parameters param. The parameters in param are implicitly given as input to the
following algorithms.

KeyGen (i): The key generation algorithm takes the user index i as input and generates a public
key(pki) and a secret key(ski) for user Ui.

ReKeyGen (ski, pkj): The partial re-encryption key generation algorithm takes a secret key ski

and another public key pkj as input and outputs the partial re-encryption key rki → j. This
algorithm is run by Ui. Here skj is not taken as input which indeed makes the scheme
unidirectional.

CKeyGen (ski, w): The condition key generation algorithm takes a secret key ski and a
condition w as input and outputs the condition key cki, w. This algorithm is run by Ui.

Encrypt (pk, m, w): The encryption algorithm takes a public key pk, a message m and a

condition w as input and outputs the ciphertext ζ associated with w under pk. Here m ∈ M

where M denotes the message space.

ReEncrypt (rki → j, cki, w,ζi): The re-encryption algorithm takes a partial re-encryption key rki →

j, a condition key cki, w associated with condition w and a ciphertext ζi under the public key pki

as input and outputs the re-encrypted ciphertext ζj under the public key pkj. This algorithm is
run by the proxy.

Decrypt (sk, ζ): The decryption algorithm takes a secret key sk and a ciphertext ζ as input and

outputs either a message m ∈ M or the error symbol ⊥.

Correctness: For any m ∈ M, any condition w, any (pki, ski) ← KeyGen (i), (pkj, skj) ←

KeyGen (j), and

ζi = Encrypt (pki, m, w),

Pr [Decrypt(ski, ζi) = m] = 1, and

Pr [Decrypt(skj, ReEncrypt (rki, j, cki, w, ζi)) = m] = 1.

while for any other condition w′ and user j′ with w′ ≠ w and j′ ≠ j, we have

Pr [Decrypt(skj, ReEncrypt (rki, j, cki, w′, ζi)) = ⊥] = 1−neg(λ)

Pr [Decrypt(skj, ReEncrypt (rki, j′, cki, w, ζi)) = ⊥] = 1−neg(λ).

3.2 Security Notions

The following game between an adversary A and a challenger C is used to define the semantic

security of our C-PRE scheme against chosen ciphertext attacks.

Setup. C takes a security parameter λ and runs the algorithm GlobalSetup(λ) and gives the

resulting global parameters param to A.

Phase 1. A adaptively issues queries q1, …, qm where qi is one of the following:

− Uncorrupted key generation query: C first runs algorithm KeyGen (i) to obtain the

public/secret key pair (pki, ski), and then gives pki to A.

− Corrupted key generation query: C first runs algorithm KeyGen (j) to obtain the

public/secret key pair (pkj, skj), and then gives (pkj, skj) to A.

− Partial re-encryption key generation query (pki, pkj): C runs the algorithm ReKeyGen(ski,

pkj) and returns the generated re-encryption key rki → j to A. Here ski is the secret key

corresponding to pki.

− Condition key generation query (pki, w): C runs the algorithm CKeyGen(ski, w) and

returns the generated condition key cki, w to A.

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.2, March 2012

183

− Re-encryption query (pki, pkj, w, ζi): C runs the algorithm ReEncrypt(ReKeyGen(ski, pkj),

CKeyGen(ski, w), ζi) and returns the generated ciphertext ζj to A.

− Decryption query (pk, w, ζ) or (pk, ζ): C runs the algorithm Decrypt(sk, ζ) and returns its

result to A. Here (pk, w, ζ) and (pk, ζ) are queries on original ciphertexts and re-encrypted

ciphertexts respectively.

For the last four queries it is required that pk, pki and pkj are generated beforehand by the
KeyGen algorithm.

Challenge. Once A decides Phase 1 is over, it outputs a target public key pki*, a target condition

w* and two equal-length plaintexts m0, m1 ∈ M. C flips a random coin δ ∈ {0, 1}, and sets the

challenge ciphertext to be ζ* = Encrypt(pki*, mδ, w
*), which is sent to A.

Phase 2: A adaptively issues queries as in Phase 1, and C answers them as before.

Guess: Finally, A outputs a guess δ′ ∈ {0, 1} and wins the game if δ′ = δ. Adversary A is

subject to the following restrictions during the above game.

1. A cannot issue corrupted key generation queries on i* to obtain the target secret key ski*.

2. A can issue decryption queries on neither (pki*, w
, ζ) nor (pkj, ReEncrypt(rki* → j,

cki*,w*, ζ
*)).

3. A cannot issue re-encryption queries on (pki*, pkj, w*, ζ*) if pkj appears in a previous

corrupted key generation query.

4. A cannot obtain the partial re-encryption key rki* → j if pkj appears in a previous corrupted

key generation query.

We refer to the above adversary A as an IND-CPRE-CCA adversary. A’s advantage in attacking

our CPRE scheme is defined as [] ,1/2δδPrAdv CCACPREIND
PRE,C −=′=−−

− A
 where the probability is

taken over the random coins consumed by the adversary and the challenger. As in [14], we also
distinguish between two types of IND-CPRE-CCA adversaries as follows:

− Type I IND-CPRE-CCA adversary: In the game, adversary A does not obtain the re-

encryption key rki* → j with pkj corrupted.

− Type II IND-CPRE-CCA adversary: In the game, adversary A does not obtain both the

condition key cki*, w* and the re-encryption key rki* → j with pkj corrupted.

4. AN EFFICIENT C-PRE SCHEME

Here we present our efficient C-PRE scheme and then prove its security.

4.1 Construction

Our proposed scheme consists of the following seven main algorithms and one auxiliary
algorithm for checking the validity of the ciphertext.

Global Setup (λ) : This algorithm takes the security parameter λ as input. Then two primes p

and q are chosen such that q | p−1 where q is a λ bit prime. Then the algorithm generates (q, G,

GT, e) where G and GT are two cyclic groups with prime order q and e is a bilinear pairing e : G

× G → GT. Let g be the generator of group G, which is a subgroup of
*
qZ with order q. Choose

hash functions as follows:

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.2, March 2012

184

*
1

10 {0,1}{0,1}:H q

ll
Z→× ,

**
2 {0,1}:H qZ→ , 10{0,1}:H3

ll +→G ,
**

4 {0,1}:H qZ→ ,

*
5 :H qZG → , GGG →××*

6 {0,1}:H , and .}1,0{:H 10

T7
ll +→G

param = ((q, G, GT, e), g, H1, ..., H7). l0 and l1 are determined by λ and the message space M is

.}1,0{ 0l

KeyGen (i): This algorithm randomly picks ski = (xi,1, xi,2
*
qZ

$

←) and sets pki =).g,(g 2i,1i xx

ReKeyGen(ski, pkj) : The re-encryption key rki → j is generated as follows:

1. Pick 0}1,0{h
$

l← and 1}1,0{π
$

l← and compute v = H1(h, π).

2. Compute V = gv and W = H3(
v
j,2pk) ⊕ (h || π).

3. Compute
i,2i,25i,1

(1)
ji

x)(pkHx

h
rk

+
=→ and return W).V,,(rkrk (1)

jiji →→ =

CKeyGen(ski, w) : This algorithm outputs the condition key cki, w = .)pk(w,H 1i,x
1

i6

Encrypt(pki, m, w) : This algorithm encrypts a message m with condition w for pki as follows:

1. Pick s, *
q

$

z Z← and compute B = s
i,1pk and D = z

i,1pk .

2. Pick 1}1,0{r
$

l←′ . Compute r = H2(m, r′, pki, w) and .)pk(pkA r
i,2

)(pkH

i,1
i,25=

3. Compute C = H3(g
r) ⊕ (m || r′) ⊕).))pk(w,H(g,ê(H s

i67

4. Compute E = s + zH4(A, B, C, D) mod q.

5. Output the ciphertext ζi = (A, B, C, D, E).

Validity(): This algorithm implicitly takes all the inputs of the calling algorithm as its input and
works as follows:

If D)C,B,(A,HE
i,1

4B.Dpk ≠ return ⊥.

ReEncrypt(rki → j, cki, w, ζi, pki, pkj): This algorithm re-encrypts ζi to ζj as follows:

1. Return ⊥ if Validity() returns ⊥.

2. Compute A′ =
(1)

jirk
A → and C′ = C ⊕))ck(B,ê(H wi,7 .

3. Output the transformed ciphertext as ζj = (A′, C′, V, W).

Decrypt(ski, ζi): Parse the ciphertext ζi. Decryption of ζi is done as follows:

− ζ is the original ciphertext in the form ζ = (A, B, C, D, E).

1. Return ⊥ if Validity() returns ⊥.

2. Compute (m || r′) = C ⊕)))pk(w,H(B,ê(H)(AH i,1x
1

i,2x)i,2(pk5Hi,1x
1

i673 ⊕
+

.

3. If
w),pk,r(m,H

i,2

)(pkH

i,1
i2i,25)pk(pkA

′
= holds, return m; else return ⊥.

− ζ is the re-encrypted ciphertext in the form ζ = (A′, C′, V, W).

1. Compute (h || π) = W ⊕)(VH i,2sk

3 and (m || r′) = C′ ⊕)A(H h
1

3
′ .

2. If π)(h,H1gV = and w),pk,r(m,hH i2gA
′

=′ hold, return m; else return ⊥.

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.2, March 2012

185

Correctness: The proxy must have both the right re-encryption key and the condition key to re-
encrypt a ciphertext to the delegatee. Otherwise, the delegatee will not be able to decrypt the

ciphertext with non-negligible probability. Suppose a proxy has the re-encryption key rki → j and

the condition key cki, w′ (w′ ≠ w), he will generate the re-encrypted ciphertext ζj = (A′, C′, V, W)
as

A′ = grh

C′ = H3(g
r) ⊕ (m || r′) ⊕)))pk(w,H(g,ê(H s

i67 ⊕))ck(B,ê(H wi,7 ′

 = H3(g
r) ⊕ (m || r′) ⊕)))pk(w,H(g,ê(H s

i67 ⊕)))pk,w(H,(gê(H i,1x
1

i,1

i6

sx

7
′

 = H3(g
r) ⊕ (m || r′) ⊕)))pk(w,H(g,ê(H s

i67 ⊕)))pk,w(H(g,ê(H s
i67

′

V = gv

W =)(pkH v
j,23 ⊕ (h || π).

Note that the two H7 terms do not cancel each other implying that C′ ⊕)A(H g
1

3
′ in the

decryption algorithm will not reveal the message m with overwhelming probability. The
resulting value will also not pass the condition checks. Hence the delegatee cannot decrypt the
re-encrypted ciphertext with high probability.

Security intuitions: It is impossible for the adversary to manipulate the ciphertext. This is
because the validity of the original ciphertext can be publicly verified by the Validity()
algorithm. Thus our scheme can ensure chosen-ciphertext security. Even if the conditional key

w is changed to another value w′ by the adversary, the scheme is secure because w is a
parameter for H2 and when w changes the value of r also changes.

4.2. Security

The proposed C-PRE scheme is IND-CPRE-CCA secure in random oracle model. This follows
directly from Theorem 1 and Theorem 2.

Theorem 1. Our scheme is IND-CPRE-CCA secure in the random oracle model, assuming the
mCDH assumption holds in group G and the Schnorr signature is EUF-CMA secure.

Concretely, if there exists a Type I adversary A, who asks at most
iHq random oracle queries to

Hi with i ∈ {1, 2, ..., 7}, and breaks the (t, qu, qc, qrk, qck, qre, qd, ε)-IND-CPRE-CCA of our

scheme, then, for any 0 < ψ < ε, there exists

1. either an algorithm B which can break the (t′, ε′)-mCDH assumption in G with








 +
−

++++
−

+

−
≥′

++++++++++

+++++++++++++≤′

+
q

)q2(q

2

)q)(qq(qqq

)qε(1

ψε

q

1
ε

t)q(qt)))q2q(2q1)(2q(qq6q2q2q(

(1))qqqqqqqqqqqqq(tt

dre

ll

dreHHHH

rkH

pdreexpdHHdreckrkuc

dreckrkcuHHHHHHH

10

3242

3

32

7654321
O

where texp denotes the running time of an exponentiation in group G and tp denotes the

running time of a pairing in groups (G, GT).

2. or an attacker who breaks the EUF-CMA security of the Schnorr signature with advantage

ψ within time t′.

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.2, March 2012

186

 PROOF. Without loss of generality, we assume that the Schnorr signature is (t′, ψ)-EUF-CMA

secure for some probability 0 < ψ < ε. If there exists a t-time adversary A who can break the

IND-CPRE-CCA security of our scheme with advantage ε-ψ, then we show how to construct an
algorithm B which can break the

(t′, ε′)-mCDH assumption in G. Suppose B is given as input a challenge tuple)g,g,g(g, baa
1

with unknown *
q

$

ba, Z← . Algorithm B′s goal is to output gab. Algorithm B first gives (q, G, g,

H1, ..., H7, l0, l1) to A. Next, B acts as a challenger and plays the IND-CPRE-CCA game with

adversary A in the following way:

Hash Oracle Queries: At any time adversary A can issue random oracle queries Hi with i ∈ {1,

..., 7}. Algorithm B maintains seven hash lists list
iH with i ∈ {1, ..., 7} which are initially empty,

and responds as below:

1. H1 queries: If H1(h, π) has appeared on the list
iH in a tuple (h, π, v), return the predefined

value v. Otherwise, choose *
q

$

v Z← and add tuple (h, π, v) to list
iH and respond with H1(h,

π) = v.

2. H2 queries: If H2(m, r′, pki, w) has appeared on the list
2H in a tuple (m, r′, pki, w, r), return

the predefined value r. Otherwise, choose *
q

$

r Z← and add tuple (m, r′, pki, w, r) to list
2H

and respond with H2(m, r′, pki, w) = r.

3. H3 queries: If H3(R) has appeared on the list
3H [R ∈ G] in a tuple (R, β), return the

predefined value β. Otherwise, choose 10{0,1}β
$

ll +← , add tuple (R, β) to list
3H and respond

with H3(R) = β.

4. H4 queries: If H4(A, B, C, D) has appeared on the list
4H in a tuple (A, B, C, D, γ), return

the predefined value γ. Otherwise, choose *
q

$

γ Z← , add tuple (A, B, C, D, γ) to list
4H and

respond with H4(A, B, C, D) = γ.

5. H5 queries: If H5(pk) has appeared on the list
5H in a tuple (pk, τ), return the predefined

value τ. Otherwise, choose *
q

$

τ Z← , add tuple (pk, τ) to list
5H and respond with H5(pk) =

τ.

6. H6 queries: If H6(w, pk) has appeared on the list
6H in a tuple (w, pk, t, S), return the

predefined value S. Otherwise, choose *
q

$

t Z← , compute S = gt, add the tuple (w, pk, t, S)

to list
6H and respond with H6(w, pk) = S.

7. H7 queries: If H7(U) has appeared on the list
7H [U ∈ GT] in a tuple (U, η), return the

predefined value η. Otherwise, choose 10{0,1}η
$

ll +← , add tuple (U, η) to list
7H and

respond with H7(U) = η.

Phase 1. In this phase, adversary A issues a series of queries subject to the restrictions of the

Type I IND-CPRE-CCA game. B maintains three lists Klist, Rlist and Clist which are initially

empty, and answers these queries for A as follows:

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.2, March 2012

187

− Uncorrupted key generation query. B picks *
q

$

i,2i,1 x,x Z← . Next, using the Coron's

technique [6], it flips a biased coin ci ∈ {0, 1} that yields 1 with probability θ and 0

otherwise. If ci = 1, it defines)g,(gpk i,2i,1 xx

i = ; else))(g,)((gpk i,2a
1

i,1a
1 xx

i = . Then, it

adds the tuple (pki, xi, 1, xi, 2, ci) to Klist and returns pki.

− Corrupted key generation query. B picks *
q

$

i,2i,1 x,x Z← and defines)g,(gpk i,2i,1 xx

i = , ci

= ‘−’. Then, it adds the tuple (pki, xi, 1, xi, 2, ci) to Klist and returns (pki, (xi, 1, xi, 2)).

− Re-encryption key generation query (pki, pkj). If R
list has an entry for (pki, pkj), return the

predefined re-encryption key to A. Otherwise, algorithm B acts as follows:

1. Recover tuples (pki, xi, 1, xi, 2, ci) and (pkj, xj, 1, xj, 2, cj) from Klist.

2. Pick 0{0,1}h
$

l← and 1{0,1}π
$

l← ; compute v = H1(h, π), V = gv and W =)(pkH v
j,23

⊕ (h || π).

3. Construct the first component
(1)

jirk → according to the following cases:

• ci = 1 or ci = ‘−’: Define
i,2i,25i,1

(1)
ji

x)(pkHx

h
rk

+
=→ .

• (ci = 0 ∧ cj = 1) or (ci = 0 ∧ cj = 0): Pick *
q

$
(1)

jirk Z←→ .

• (ci = 0 ∧ cj = ‘−’): Output “failure” and abort.

4. If B does not abort, add h)W),V,,(rk,pk,(pk (1)
jiji → into list Rlist, return

W)V,,(rk(1)
ji→ .

− Condition key query (pki, w). If Clist has an entry for (pki, w), return the predefined
condition key cki, w to A. Otherwise algorithm B acts as follows:

1. Recover tuples (pki, xi,1, xi,2, ci) from Klist and (w, pki, t, S) from list
6H .

2. It constructs the condition key cki,w for adversary A according to the following

cases:

• ci = 1 or ci = ‘−’: Algorithm B responds with cki,w = i,1x
1

S .

• ci = 0: Algorithm B responds with cki,w = i,1x
1

)(ga which is same as i,1sk
1

S .

3. Add (pki, w, cki,w) to Clist.

− Re-encryption query (pki, pkj, w, ζi)}. Algorithm B parses ζi = (A, B, C, D, E). Return ⊥ if

Validity() returns ⊥. Otherwise it constructs the condition key cki,w by issuing a condition
key query (pki, w) and does the following:

1. Recover tuples (pki, xi,1, xi,2, ci) and (pkj, xj,1, xj,2, cj) from Klist.

2. If (ci = 0 ∧ cj = ‘−’) does not hold, issue a re-encryption key generation query (pki,

pkj) to obtain rki → j, and then ReEncrypt(rki → j, cki,w, ζi, pki, pkj) to A.

3. Else B does the following.

• Pick 0{0,1}h
$

l← and 1{0,1}π
$

l← and compute v = H1(h, π).

• Compute V = gv and W =)(pkH v
j,23 ⊕ (h || π).

• Since the ciphertext is valid, issue a decryption query (pki, ζi) and get
message m.

• Pick 1{0,1}r
$

l←′ . Compute r = H2(m, r′, pki, w).

• Compute A′ = grh and C′ = H3(g
r) ⊕ (m || r′).

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.2, March 2012

188

• Add tuple (h, π, v) to list
iH and tuple (m, r′, pki, w, r) to list

2H , if they are not

present in their respective lists.

• Return (A′, C′, V, W) to A as the re-encrypted ciphertext.

− Decryption query (pki, w′, ζi) or (pki, ζi). B recovers tuple (pki, xi,1, xi,2, c) from Klist. If c =

1 or c = ‘−’, algorithm B runs Decrypt((xi,1, xi,2), ζi)) and returns the result to A.

Otherwise, algorithm B works according to the following two cases:

• ζi is an original ciphertext ζI = (A, B, C, D, E):

1. Return ⊥ if Validity() returns ⊥.

2. Construct condition key cki,w′ as in the condition key query and define C = C′ ⊕

))ck(B,ê(H wi,7 ′ .

3. Search tuples (m, r′, pk, w, r) ∈ list
2H and (R, β) ∈ list

3H such that pki = pk, w =

w′, β ⊕ (m || r′) = C, gr = R and A)pk(pk r
i,2

)(pkH

i,1
i,25 = .

4. If yes, return m to A. Otherwise, return ⊥.

• ζi is a re-encrypted ciphertext ζi = (A′, C′, V, W):

1. Search tuples (m, r′, pk, w, r) ∈ list
2H , (h, π, v) ∈ list

1H , (R, β) ∈ list
3H and (R′,

β′) ∈ list
3H such that pki = pk, w = w′, grh = A′, gr = R, β ⊕ (m || r′) = C′, gv = V,

β′ ⊕ (h || π) = W and Rpk v
i,2

′= .

2. If yes, return m to A. Otherwise, return ⊥.

Challenge. When A decides that Phase 1 is over, it outputs a public key pki* = (pki*,1, pki*,2), a

condition w* and two equal-length messages m0, m1 ∈ 10}1,0{ ll + . Algorithm B responds as

follows:

1. Recover tuple (pki*, xi*,1, xi*,2, c
) from Klist. If c ≠ 0, B outputs “failure” and aborts.

Otherwise, B proceeds to execute the following steps.

2. Pick *
q

$
** z,s Z← and compute i*,1

*
a
1 xs*)(gB = and i*,1

*
a
1 xz*)(gD = .

3. Pick 10{0,1}C
$

* ll +← .

4. Compute i*,2i*,25i*,1 x)(pkHxb*)(gA
+

= and E* = s* + z*H4(A
, B, C*, D*) mod q.

5. Construct the condition key cki*,w*, as in the condition key query.

6. Pick a random bit {0,1}δ
$

← and 1{0,1}r
$

l←′ . Implicitly define H2(mδ, r′, pki*, w*) = ab

and

H3(g
ab) = C* ⊕ (mδ || r′) ⊕))ck,(Bê(H *wi*,

*
7 (note that B knows neither ab nor gab).

7. Return ζ* = (A*, B*, C*, D*, E*) as the challenged ciphertext to adversary A.

Observe that the challenge ciphertext ζ* is identically distributed as the real one from the
construction. To see this, letting r* = ab, we have

A* = i*,2i*,25i*,1 x)(pkHxb)(g
+

 =
ab

i*,2i*,25i*,1a
1

))((g
x)(pkHx +

 =
*r

i*,2

)(pkH

i*,1)pk(pk i*,25

B* = *s
i*,1

*xs
pk)((g i*,1a

1

=

C* = H3(g
ab) ⊕ (mδ || r′) ⊕))ck,(Bê(H *wi*,

*
7

 = H3(g
ab) ⊕ (mδ || r′) ⊕)))(g,)((gê(H i*,1x

1

i*,1a
1

a*xs

7

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.2, March 2012

189

 = H3(g
ab) ⊕ (mδ || r′) ⊕))g(g,ê(H *sy

7

 = H3(g
r*) ⊕ (mδ || r′) ⊕)))pk,(wH(g,ê(H *s

wi,
*

67

D* = *z
i*,1

x*z
pk)(g i*,1a

1

=

E* = s* + z*H4(A
, B, C*, D*) mod q

Phase 2. Adversary A continues to issue queries as in Phase 1, with the restrictions prescribed in

the IND-CPRE-CCA game. Algorithm B responds to these queries for A as in Phase 1.

Guess. Eventually, adversary A returns a guess δ′ ∈ {0, 1} B. Algorithm B randomly picks a

tuple (R, β) from the list
3H and outputs R as the solution to the given problem instance.

Analysis. Now let's analyse the simulation. From the constructions of H1, H5, H6 and H7, it is

clear that the simulations of these oracles are perfect. Let *
4AskH be the event that A queried

(A*, B*, C*, D*) to H4 before challenge phase. The simulation of H4 is perfect as long as *
4AskH

did not occur. Since C* is randomly chosen from 10{0,1} ll + by the challenger in the challenge

phase, we have
10

4

2

q
]Pr[AskH

H*

4 ll +
= . Let *

2AskH be the event that (mδ ,r′, pki*, w*) has been

queried to H2 and *
3AskH be the event that gab has been queried to H3. The simulations of H2

and H3 are perfect as long as *
2AskH and *

3AskH did not occur, where δ and r′ are chosen by B

in the challenge phase.

B’s responses to A’s uncorrupted/corrupted key generation queries are perfect. Let Abort denote

the event of B’s aborting during the simulation of the re-encryption key queries or in the

challenge phase. We have Pr[¬Abort] ≥ θ)(1θ rkq − , which is maximized at
rk

rk
opt

q1

q
θ

+
= .

Using θopt, the probability Pr[¬Abort] is at least
)qe(1

1

rk+
.

The simulation of the re-encryption key queries is same as the real one, except for the case (ci =

0 ∧ cj = 1) or (ci = 0 ∧ cj = 0), in which the component (1)
jirk → is randomly chosen. If Abort does

not happen, this is computationally indistinguishable from the real world because:

1. Secret key skj is unknown to A since cj ≠ ‘−’.

2. h is encrypted under pkj using the “hashed” ElGamal encryption scheme. So, if A can

distinguish rki → j from jikr →
′ , it means that A can determine (V, W) is an encryption of h

or h′, which breaks the CCA security of the “hashed” ElGamal based on the CDH
assumption.

The re-encryption queries are also perfect, unless A can submit valid original ciphertexts

without querying H2 or H3 (denote this event by REErr). This is because we issue a decryption
query in the third case of the re-encryption query. We will calculate Pr[REErr] shortly.

The simulation of the decryption oracle is perfect, with the exception that simulation errors may
occur in rejecting some valid ciphertexts. A can submit valid original ciphertexts without

querying H2 or H3 (denote this event by DErr). Let Valid be the event that the ciphertext is

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.2, March 2012

190

valid. Let AskH3 and AskH2 be the events gr has been queried to H3 and (m, r′, w) has been
queried to H2 respectively. We have,

q

1

2

q

]AskHAskH|Pr[Valid]AskH|Pr[AskH

]AskH|AskHPr[Valid]AskH|AshHPr[Valid]AskH|Pr[Valid

10

3

ll

H

2323

23232

+≤

¬∧¬+¬≤

¬¬∧+¬∧=¬

+

Similarly, we have
q

1

2

q
]AskH|Pr[Valid

10

2

ll

H

3 +≤¬
+

. Thus we have,

q

2

2

qq

]AskH|Pr[Valid]AskH|Pr[Valid)]AskHAskH(|Pr[Valid

10

32

ll

HH

3232

+
+

≤

¬+¬≤∨¬

+

Let DErr be the event that Valid |(¬ AskH2 ∨ ¬ AskH3) happens during the entire simulation.

Then since A issues utmost qd decryption oracles, we have
q

2q

2

)qq(q
Pr[DErr] d

ll

dHH

10

32 +
+

≤
+

.

By the definition of REErr as stated above, since A issues utmost qre re-encryption oracles, we

have

q

2q

2

)qq(q
Pr[REErr] re

ll

reHH

10

32 +
+

≤
+

.

Now, let Good denote the event

Abort|DErr)REErrAskH)AskH|(AskH(AskH *
4

*
3

*
2

*
3 ¬∨∨∨¬∨ .

If Good does not happen, due to the randomness of the output of the random oracle H3, it is

clear that A cannot gain any advantage greater than
2
1 in guessing δ. Thus we have Pr[δ′ = δ | ¬

Good] =
2
1 . Hence by splitting Pr[δ′ = δ], we have

Pr[Good]

Good]Good]Pr[|δδPr[δ]δPr[

Pr[Good]

Pr[Good]Good]Pr[

od]Good]Pr[Go|δδPr[Good]Good]Pr[|δδPr[δ]δPr[

2
1

2
1

2
1

2
1

2
1

−=

¬¬=′≥=′

+≤

+¬≤

=′+¬¬=′==′

By definition of the advantage for the IND-CPRE-CCA adversary, we then have

.
Abort]Pr[

Pr[DErr]Pr[REErr]

Abort]Pr[

]Pr[AskH]AskH|Pr[AskH]Pr[(AskH

Abort]|DErr)REErrAskH)AskH|(AskHPr[(AskH

Pr[Good]

1δ]δPr[2ψε

*
4

*
3

*
2

*
3

*
4

*
3

*
2

*
3

¬

+
+

¬

+¬+
=

¬∨∨∨¬∨=

≤

−=′×=−

Substituting values which have been computed, we get

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.2, March 2012

191

q

)q2(q

2

)q)(qq(qqq

)qε(1

ψε

q

2q

2

)qq(q

q

2q

2

)qq(q

2

q

2

q

)qε(1

ψε

Pr[Derr]Pr[Reerr]]Pr[AskH]AskH|Pr[AskHψ)(εAbort]Pr[]Pr[AskH

dre

ll

dreHHHH

rk

d

ll

dHHre

ll

reHH

ll

H

ll

H

rk

*

4

*

3

*

2

*

3

10

3242

10

32

10

32

10

4

10

2

+
−

++++
−

+

−
=

−
+

−−
+

−−−
+

−
≥

−−−¬−−⋅¬≥

+

++++

If *

3AskH happens, algorithm B will be able to solve mCDH instance. Therefore we get,










 +
−

++++
−

+

−
≥

≥′

+ q

)q2(q

2

)q)(qq(qqq

)qε(1

ψε

q

1

]Pr[AskH
q

1
ε

dre

ll

dreHHHH

rkH

*

3

H

10

3242

3

3

From the description of the simulation, B’s running time can be bounded by

pdreexpdHHdreckrkuc

dreckrkcuHHHHHHH

t)q(qt)))q2q(2q1)(2q(qq6q2q2q(

(1))qqqqqqqqqqqqq(tt

32

7654321

++++++++++

+++++++++++++≤′ O

This completes the proof of Theorem 1.

Theorem 2. Our scheme is IND-CPRE-CCA secure in the random oracle model, assuming the
mCBDH assumption holds in groups G, GT and the Schnorr signature is EUF-CMA secure.

Concretely, if there exists a Type II adversary A, who asks at most
iHq random oracle queries to

Hi with i ∈ {1, 2, ..., 7}, and breaks the (t, qu, qc, qrk, qck, qre, qd, ε)-IND-CPRE-CCA of our

scheme, then, for any 0 < ψ < ε, there exists

1. either an algorithm B which can break the (t′, ε′)-mCBDH assumption in G with




+
−

+++
−




 +++
−−

+

−
+

+

−
≥′

++++++++++

+++++++++++++≤′

−+

++

q

)q3(q

2

)q)(qqq(q

4

)q)(qqqqqq(q

2

q

)qε(1

ψε

)qε(1

ψε

q

1
ε

t)q(qt)))q2q(2q1)(2q(qq6q2q(2q

)O(1)qqqqqqqqqqqq(qtt

dre

1ll

dreHHH

ll

dreHHHHHH

ll

H

ckrkH

pdreexpdHHdreckrkuc

dreckrkcuHHHHHHH

10

732

10

277332

10

4

7

32

7654321

where texp denotes the running time of an exponentiation in group G and tp denotes the

running time of a pairing in groups (G, GT).

2. or an attacker who breaks the EUF-CMA security of the Schnorr signature with advantage

ψ within time t′.

PROOF. Without loss of generality, we assume that the Schnorr signature is (t′, ψ)-EUF-CMA

secure for some probability 0 < ψ < ε. If there exists a t-time adversary A who can break the

IND-CPRE-CCA security of our scheme with advantage ε−ψ, then we show how to construct
an algorithm B which can break the

(t′, ε′)-mCBDH assumption in G. Suppose B is given as input a challenge tuple

)g,g,g,g(g, cbaa
1

 with unknown *

q

$

b.ca, Z← . Algorithm B’s goal is to output abcg)(g,ê .

Algorithm B first gives (q, G, g, H1, ..., H7, l0, l1) to A. Next, B acts as a challenger and plays the

IND-CPRE-CCA game with adversary A in the following way:

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.2, March 2012

192

Hash Oracle Queries. At any time adversary A can issue random oracle queries Hi with i ∈ {1,

..., 7}. Algorithm B maintains seven hash lists list

iH with i ∈ {1, ..., 7} which are initially empty,

and responds as below:

− H1 queries: If H1(h, π) has appeared on the list

1H in a tuple (h, π, v), return the predefined

value v. Otherwise, choose *

q

$

v Z← and add tuple (h, π, v) to list

1H and respond with H1(h,

π) = v.

− H2 queries: If H2(m, r′, pki, w) has appeared on the list

2H in a tuple (m, r′, pki, w, r), return

the predefined value r. Otherwise, choose *

q

$

r Z← and add tuple (m, r′, pki, w, r) to list

2H

and respond with H2(m, r′, pki, w) = r.

− H3 queries: If H3(R) has appeared on the list

3H [R ∈ G] in a tuple (R, β), return the

predefined value β. Otherwise, choose 10 ll
$

{0,1}β
+← , add tuple (R, β) to list

3H and respond

with H3(R) = β.

− H4 queries: If H4(A, B, C, D) has appeared on the list

4H in a tuple (A, B, C, D, γ), return

the predefined value γ. Otherwise, choose *

q

$

γ Z← , add tuple (A, B, C, D, γ) to list

4H and

respond with H4(A, B, C, D) = γ.

− H5 queries: If H5(pk) has appeared on the list

5H in a tuple (pk, τ), return the predefined

value τ. Otherwise, choose *

q

$

τ Z← , add tuple (pk, τ) to list

5H and respond with H5(pk) = τ.

− H6 queries: If H6(w, pk) has appeared on the list

6H in a tuple (w, pk, t, S, coin), return the

predefined value S. Otherwise, choose *

q

$

t Z← . Next, using the Coron's technique [6], flip

a random biased coin [coin ∈ {0, 1}] that yields 0 with a probability θ and 1 with

probability 1−θ. If coin = 0, compute S = gt. Otherwise, compute S = (gb)t. Add the tuple

(w, pk, t, S, coin) to list

6H and respond with H6(w, pk) = S.

− H7 queries: If H7(U) has appeared on the list

7H [U ∈ GT] in a tuple (U, η), return the

predefined value η. Otherwise, choose 10 ll
$

{0,1}η
+← , add tuple (U, η) to list

7H and respond

with H7(U) = η.

Phase 1. In this phase, adversary A issues a series of queries subject to the restrictions of the

Type II IND-CPRE-CCA game. B maintains three lists Klist, Rlist and Clist which are initially

empty, and answers these queries for A as follows:

− Uncorrupted key generation query. B picks xi,1, xi,2
*

q

$

Z← . Next, it defines ci = 0 and

))(g,)((gpk i,2a
1

i,1a
1

xx

i = . Then it adds the tuple (pki, xi,1, xi,2, ci) to Klist and returns pki.

Here the bit ci is used to denote whether the secret key with respect to pki is corrupted,
i.e., ci = 0 means uncorrupted and ci = 1 means corrupted.

− Corrupted key generation query. B picks xi,1, xi,2
*

q

$

Z← and defines)g,(gpk i,2i,1 xx

i = , ci =

1. Then, it adds the tuple (pki, xi,1, xi,2, ci) to Klist and returns (pki, (xi,1, xi,2)).

− Re-encryption key generation query (pki, pkj). If R
list has an entry for (pki, pkj), return the

predefined re-encryption key to A. Otherwise, algorithm B acts as follows:

1. Recover tuples (pki, xi,1, xi,2, ci) and (pkj, xj,1, xj,2, cj) from Klist.

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.2, March 2012

193

2. Pick 0l
$

{0,1}h ← and 1l
$

{0,1}π← ; compute v = H1(h, π), V = gv and W = H3(
v

j,2pk)

⊕ (h || π).

3. Construct the first component (1)

jirk →
 according to the following cases:

• ci = 1: Define
i,2i,25i,1

(1)

ji
x)(pkHx

h
rk

+
=→ .

• (ci = 0 ∧ cj = 0): Define
i,2i,25i,1

(1)

ji
x)(pkHx

h
rk

+
=→ . Here define h = ah′ so

that
a

x)(pkHx

(1)

ji i,2i,25i,1

h
rk

+→

′
= where 0l{0,1}h ∈′ .

• (ci = 0 ∧ cj = 1): Output “failure” and abort.

4. If B does not abort, add h)W),V,,(rk,pk,(pk (1)

jiji → into list Rlist, return W)V,,(rk (1)

ji→

.

− Condition key query (pki, w). If Clist has an entry for (pki, w), return the predefined
condition key cki,w to A. Otherwise algorithm B acts as follows:

1. Recover tuples (pki, xi,1, xi,2, ci) from Klist and (w, pki, t, S, coin) from list

6H .

2. It constructs the condition key cki,w for adversary A according to the following

cases:

• ci = 1: Algorithm B responds with i,1x

1

wi, Sck = .

• (ci = 0 ∧ coin = 0): Algorithm B responds with i,1x

1

a

wi,)(gck = which is same

as i,1sk

1

S .

• (ci = 0 ∧ coin = 1): Output “failure” and abort.
3. If B does not abort, add (pki, w, cki,w) to Clist.

− Re-encryption query (pki, pkj, w, ζi). Algorithm B parses ζi = (A, B, C, D, E). Return ⊥ if

Validity() returns ⊥. Otherwise it does the following:
1. Recover tuples (pki, xi,1, xi,2, ci) and (pkj, xj,1, xj,2, cj) from Klist.
2. If (ci = 0) does not hold, issue a condition key generation query (pki, w) to obtain

cki,w and a re-encryption key query (pki, pkj) to obtain rki → j, and then

ReEncrypt(rki → j, cki,w, ζi, pki, pkj) to A.

3. Else B does the following.

• Pick 0l
$

{0,1}h ← and 1l
$

{0,1}π← and compute v = H1(h, π).

• Compute V = gv and W = H3(
v

j,2pk) ⊕ (h || π).

• Since the ciphertext is valid, issue a decryption query (pki, ζi) and get
message m.

• Pick 1l
$

{0,1}r ←′ . Compute r = H2(m, r′, pki, w).

• Compute A′ = grh and C′ = H3(g
r) ⊕ (m || r′).

• Add tuple (h, π, v) to list

1H and tuple (m, r′, pki, w, r) to list

2H , if they are not

present in their respective lists.

• Return (A′, C′, V, W) to A as the re-encrypted ciphertext.

− Decryption query (pki, w′, ζi) or (pki, ζi)}. B recovers tuple (pki, xi,1, xi,2, c) from Klist and

(w, pki, t, S, coin) from list

6H . If c = 1, algorithm B runs Decrypt((xi,1, xi,2), ζi)) and returns

the result to A. Otherwise, algorithm B works according to the following two cases:

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.2, March 2012

194

• ζi is an original ciphertext ζi = (A, B, C, D, E):

1. Return ⊥ if Validity() returns ⊥.

2. Search tuples (m, r′, pk, w, r) ∈ list

2H , (R, β) ∈ list

3H and (U, γ) from list

7H

such that pki = pk, w = w′, β ⊕ (m || r′) ⊕ γ = C, gr = R and

A)pk(pk r

i,2

)(pkH

i,1

i,25 = .

3. If yes, return m to A. Otherwise, return ⊥.

• ζi is a re-encrypted ciphertext ζI = (A′, C′, V, W):

1. Search tuples (m, r′, pk, w, r) ∈ list

2H , (h, π, v) ∈ list

1H , (R, β) ∈ list

3H and (R′,

β′) ∈ list

3H such that pki = pk, w = w′, grh = A′, gr = R, β ⊕ (m || r′) = C′, gv =

V, β′ ⊕ (h || π) = W and Rpk v

i,2
′= .

2. If yes, return m to A. Otherwise, return ⊥.

Challenge. When A decides that Phase 1 is over, it outputs a public key pki* = (pki*,1, pki*,2), a

condition w* and two equal-length messages m0, m1 ∈ 10}1,0{ ll + . Algorithm B responds as

follows:

1. Recover tuple (w*, pki*, t*, S*, coin*) from list

6H . If coin* ≠ 1, B outputs “failure” and

aborts. Otherwise, B proceeds to execute the following steps.

2. Pick u*, e* *

q

$

Z← and compute t

x

c
i*,1

)(gB* = and *e
1

)pk((B*)D* *u

i*,1

1−= .

3. Pick 10 ll
$

{0,1}*C +← and 1l
$

{0,1}r ←′ .

4. Pick a random bit {0,1}δ
$

← and compute r* = H2(mδ ,r′, pki*, w*).

5. Compute *rx)(pkHx
))((gA* i*,2i*,25i*,1a

1
+

= and E* = u*.

6. Define H4(A*, B*, C*, D*) = e*.

7. Implicitly define)(gH)r||(m*C)g)(g,ê(H r

3δ

abc

7 ⊕′⊕= (note that B does not know
abcg)(g,ê).

8. Note that *isk
1

i*,1x

a

t

i*,1cx

))pk(w*,H(B*,ê)g,(gêg)(g,ê i*6

btabc == .

9. Return ζ* = (A*, B*, C*, D*, E*) as the challenged ciphertext to adversary A.

Observe that the challenge ciphertext ζ* is identically distributed as the real one from the

construction. To see this, letting
t

ac
s* = , we have

*r

i*,2

)(pkH

i*,1

*rx)(pkHx
)pk(pk))((gA* i*,25i*,2i*,25i*,1a

1

==
+

*s

i*,1

c pk)(g)(gB* t
ac

a

i*,1x

t

i*,1x

===

)))pk(w*,H(g,ê(H)r||(m)(gH

))g(g,ê(H)r||(m)(gH

)g)(g,ê(H)r||(m)(gHC*

*s

wi,67δ

*r

3

bt

7δ

*r

3

abc

7δ

*r

3

t
ac

⊕′⊕=

⊕′⊕=

⊕′⊕=

*e
1

)pk((B*)D* *u

i*,1

1−=

E* = u*
Since u* and e* are random, adversary cannot distinguish D* and E* from the real one.

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.2, March 2012

195

Phase 2. Adversary A continues to issue queries as in Phase 1, with the restrictions prescribed in

the IND-CPRE-CCA game. Algorithm B responds to these queries for A as in Phase 1.

Guess. Eventually, adversary A returns a guess δ′ ∈ {0, 1} to B. Algorithm B randomly picks a

tuple (U, γ) from the list

7H and outputs U as the solution to the given problem instance.

Analysis. Now let's analyse the simulation. From the constructions of H1, H2, H3, H5 and H6, it

is clear that the simulations of these oracles are perfect. Let *

4AskH be the event that A queried

(A*, B*, C*, D*) to H4 before challenge phase. The simulation of H4 is perfect as long as
*

4AskH did not occur. Since C* is randomly chosen from 10}1,0{
ll + by the challenger in the

challenge phase, we have
10

4

ll

H*

4
2

q
]Pr[AskH

+
= . Let *

7AskH be the event that abcg)(g,ê has been

queried to H7. The simulation of H7 is perfect as long as *

7AskH did not occur.

B’s responses to A’s uncorrupted/corrupted key generation queries are perfect. Let Abort denote

the event of B’s aborting during the simulation of the re-encryption key queries, condition key

queries or in the challenge phase. We have θ),(1θθ)(1θAbort}Pr[ckrk qq −+−≥¬ which is

maximized when each of the two terms are maximized. First term maximizes at
rk

rk
opt1

q1

q
θ

+
=

and the second term maximizes at
ck

ck
opt2

q1

q
θ

+
= . Thus the probability Pr[¬Abort] is at least

)qe(1

1

)qe(1

1

ckrk +
+

+
. Here we assume that probability of a key being uncorrupted is same as θ

in H6 queries and 1−θ if it is a corrupted one.

The simulation of the re-encryption key queries is same as the real one, except for the case (ci =

0 ∧ cj = 0), in which the component (1)

jirk →
 is chosen by choosing h randomly, where h is defined

as ah′. If Abort does not happen, this is computationally indistinguishable from the real world
because :

1. Secret key skj is unknown to A since cj ≠ 1.

2. h is encrypted under pkj using the “hashed” ElGamal encryption scheme. So, if A can

distinguish rki → j from jikr →
′ , it means that A can determine (V, W) is an encryption of h

or h′, which breaks the CCA security of the “hashed” ElGamal based on the CDH
assumption.

The re-encryption queries are also perfect, unless A can submit valid original ciphertexts

without querying H2 or H3 or H7 (denote this event by REErr). This is because we issue a
decryption query in the third case of the re-encryption query. We will calculate Pr[REErr]
shortly.

The simulation of the decryption oracle is perfect, with the exception that simulation errors may
occur in rejecting some valid ciphertexts. A can submit valid original ciphertexts without
querying H2 or H3 or H7 (denote this event by DErr). Let Valid be the event that the ciphertext is

valid. Let AskH7, AskH3, and AskH2 be the events abcg)(g,ê has been queried to H7, g
r has been

queried to H3, and (m, r′, w) has been queried to H2 respectively . We have,

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.2, March 2012

196

q

1

2

qq

4

qq

]AskHAskHAskH|Pr[Valid]AskH|AskH|AskHPr[Valid

]AskHAskH|AskHPr[Valid]AskH|AskHAskHPr[Valid

]AskH|AskHAskHPr[Valid]AskH|AskHAskHPr[Valid

]AskH|AskHAskHPr[Valid]AskH|AskHAskHPr[Valid

]AskH|Pr[Valid

10

73

10

73

ll

HH

ll

HH

273237

273273

273273

273273

2

+
+

+≤

¬∧¬∧¬+¬¬¬∧+

¬∧¬∧+¬∧∧=

¬¬∧∧+¬∧¬∧+

¬¬∧∧+¬∧∧=

¬

++

Similarly, we have

q

1

2

qq

4

qq
]AskH|Pr[Valid

10

72

10

72

ll

HH

ll

HH

3 +
+

+≤¬
++

 and
q

1

2

qq

4

qq
]AskH|Pr[Valid

10

32

10

22

ll

HH

ll

HH

7 +
+

+≤¬
++

Thus we have,

q

3

2

qqq

4

qqqqqq

]AskH|Pr[Valid]AskH|Pr[Valid]AskH|Pr[Valid

)]AskHAskHAskH(|Pr[Valid

1ll

HHH

ll

HHHHHH

732

732

10

732

10

277332 +
++

+
++

≤

¬+¬+¬=

¬∨¬∨¬

−++

Let DErr be the event that Valid|(¬ AskH2 ∨ ¬ AskH3 ∨ ¬ AskH7) happens during the entire
simulation. Then since A issues utmost qd decryption oracles, we have

q

3q

2

)qqq(q

4

)qqqqqq(q
Pr[DErr] d

1ll

dHHH

ll

dHHHHHH

10

732

10

277332 +
++

+
++

≤
−++

.

By the definition of REErr as stated above, since A issues utmost qre re-encryption oracles, we

have

q

3q

2

)qqq(q

4

)qqqqqq(q
Pr[REErr] re

1ll

reHHH

ll

reHHHHHH

10

732

10

277332 +
++

+
++

≤
−++

.

Now, let Good denote the event Abort|DErr)REErrAskH(AskH *

4

*

7 ¬∨∨∨ . If Good does not

happen, due to the randomness of the output of the random oracle H7, it is clear that A cannot

gain any advantage greater than
2
1 in guessing δ. Thus we have Pr[δ′ = δ | ¬ Good] =

2
1 . Hence

by splitting Pr[δ′ = δ], we have

Pr[Good]

Good]Good]Pr[|δδPr[δ]δPr[

Pr[Good]

od]Good]Pr[GoPr[

od]Good]Pr[Go|δδPr[Good]Good]Pr[|δδPr[δ]δPr[

2
1

2
1

2
1

2
1

2
1

−=

¬¬=′≥=′

+≤

¬≤

=′+¬¬=′==′

By definition of the advantage for the IND-CPRE-CCA adversary, we then have

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.2, March 2012

197

Abort]Pr[

Abort]|DErr)REErrAskHPr[(AskH

Abort]|DErr)REErrAskHPr[(AskH

Pr[Good]

1δ]δPr[2ψε

*

4

*

7

*

4

*

7

¬

¬∨∨∨
=

¬∨∨∨=

≤

−=′×=−

Substituting values which have been computed, we get

q

)q3(q

2

)q)(qqq(q

4

)q)(qqqqqq(q

2

q

)qε(1

ψ

)qε(1

ψ

Pr[DErr]Pr[REErr]]Pr[AskHψ)(εAbort]Pr[]Pr[AskH

dre

1ll

dreHHH

ll

dreHHHHHH

ll

H

ckrk

*

4

*

7

10

732

10

277332

10

4

+
−

+++
−

+++
−−

+

−∈
+

+

−∈
≥

−−−−⋅¬≥

−+

++

 If *

7AskH happens, algorithm B will be able to solve mCBDH instance. Therefore we get,

q

)q3(q

2

)q)(qqq(q

4

)q)(qqqqqq(q

2

q

)qε(1

ψ

)qε(1

ψ1

]Pr[
1

dre

1ll

dreHHH

ll

dreHHHHHH

ll

H

ckrk

*

7

10

732

10

277332

10

4

7

7

+
−

+++
−

+++
−−

+

−∈
+

+

−∈
≥

≥′

−+

++

H

H

q

AskH
q

ε

From the description of the simulation, B’s running time can be bounded by

pdreexpdHHdreckrkuc

dreckrkcuHHHHHHH

t)q(qt)))q2q(2q1)(2q(qq6q2q2q(

(1))qqqqqqqqqqqqq(tt

32

7654321

++++++++++

+++++++++++++≤′ O

This completes the proof of Theorem 2.

5. CONCLUSION

In this paper, we proposed a more efficient CCA secure unidirectional C-PRE scheme with less

number of bilinear pairings. The scheme is more elegant when compared to its counterparts. We

have proved the security of the scheme in the random oracle model under appropriate security

definitions. There are still many open problems to be solved, such as designing CCA secure C-

PRE scheme in the standard model, C-PRE in other settings like identity based and

certificateless cryptography.

REFERENCES

[1] Ran Canetti and Susan Hohenberger. Chosen-ciphertext secure proxy re-encryption. In ACM

Conference on Computer and Communications Security 2007, pages 185−194, 2007.
[2] Jun Shao and Zhenfu Cao. CCA-Secure Proxy Re-encryption without Pairings. In Public Key

Cryptography 2009, volume 5443 of LNCS, pages 357−376, 2009.
[3] G. Ateniese, K. Fu, M. Green, and S. Hohenberger. Improved proxy re-encryption schemes with

applications to secure distributed storage. In Internet Society (ISOC): NDSS 2005, pages 29−43,
2005.

[4] H. Khurana and R. Koleva. Scalable security and accounting services for content-based publish
subscribe systems. International Journal of E-Business Research, 2006.

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.2, March 2012

198

[5] G. Ateniese, K. Fu, M. Green, and S. Hohenberger. Improved proxy re-encryption schemes with
applications to secure distributed storage. ACM Transactions on Information and System Security

(TISSEC), pages 1−30, 2006.
[6] Jean-Sebastien Coron. On the Exact Security of Full Domain Hash. In CRYPTO, volume 1880 of

LNCS, pages 229−235, 2000.
[7] T.S. Heydt-Benjamin, H. Chae, B. Defend, and K. Fu. Privacy for public transportation. In PET

2006, volume 4258 of LNCS, pages 1−19, 2005.
[8] Cheng-Kang Chu, Jian Weng, Sherman S. M. Chow, Jianying Zhou, and Robert H. Deng.

Conditional Proxy Broadcast Re-Encryption. In ACISP 2009, volume 5594 of LNCS, pages

327−342, 2009.
[9] Matt Blaze, Gerrit Bleumer, and Martin Strauss. Divertible protocols and atomic proxy

cryptography. In EUROCRYPT 1988, volume 1403 of LNCS, pages 127−144, 1998.
[10] Claus-Peter Schnorr. Efficient Identification and Signatures for Smart Cards. In CRYPTO 1989,

volume 435 of LNCS, pages 239−252, 1989.
[11] A. Talmy and O. Dobzinski. Abuse freedom in access control schemes. In AINA 2006, pages

77−86, 2006.
[12] Jian Weng, Sherman S.M. Chow, Yanjiang Yang, and Robert H. Deng. Efficient Unidirectional

Proxy Re-Encryption. Cryptology ePrint Archive, Report 2009/189 (2009) http://eprint.iacr.org/.
[13] A. Ivan and Y. Dodis. Proxy cryptography revisited. In Internet Society (ISOC): NDSS 2003,

2003.
[14] Jian Weng, Robert H. Deng, Xuhua Ding, Cheng-Kang Chu, and Junzuo Lai. Conditional proxy

re-encryption secure against chosen-ciphertext attack. In ASIACCS, pages 322−332, 2009.
[15] Masahiro Mambo and Eiji Okamoto. Proxy Cryptosystems: Delegation of the Power to Decrypt

Ciphertexts. IEICE Trans. Fund. Elect. Communications and CS, E80-A/1:54−63, 1997.
[16] S. Hohenberger, G.N. Rothblum, A. Shelat, and V. Vaikuntanathan. Securely obfuscating re-

encryption. In TCC 2007, volume 4392 of LNCS, pages 233−252, 2007.
[17] Jian Weng, Yanjiang Yang, Qiang Tang, Robert H. Deng, and Feng Bao. Efficient Conditional

Proxy Re-encryption with Chosen-Ciphertext Security. In ISC 2009, volume 5735 of LNCS, pages

151−166, 2009.
[18] Matthew Green and Giuseppe Ateniese. Identity-Based Proxy Re-encryption. In ACNS 2007,

volume 4521 of LNCS, pages 288−306, 2007.
[19] Y-P. Chiu, C-L. Lei, and C-Y. Huang. Secure multicast using proxy encryption. In ICICS 2005,

volume 3783 of LNCS, pages 280−290, 2005.

[20] H. Khurana and H-S. Hahm. Certified mailing lists. In ASIACCS 2006, pages 46−58, 2006.
[21] G. Taban, A.A. C'ardenas, and V.D. Gligor. Towards a secure and interoperable drm architecture.

In ACM DRM 2006, pages 69−78, 2006.
[22] Smith. Tony. Dvd jon: buy drm-less tracks from apple itunes. 2005.

http://www.theregister.co.uk/2005/03/18/itunes pymusique.
[23] H. Khurana, A. Slagell, and R. Bonilla. Sels: A secure e-mail list service. In ACM SAC 2005,

pages 306−313, 2005.

Authors

S.Sree Vivek

He is currently a PhD scholar in the Department of Computer Science and
Engineering, of IIT Madras. His research focuses on Provably Secure Public
Key Cryptosystems.

S.Sharmila Deva Selvi

She is currently a PhD scholar in the Department of Computer Science and
Engineering, of IIT Madras. Her research focuses on Provably Secure Public
Key Cryptosystems.

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.2, March 2012

199

V. Radhakishan

He is currently pursuing a Bachelor of Technology in the Department of
Computer Science and Engineering, of National Institute of Technology,
Tiruchirappalli. His research interests include 1) Public key cryptography 2)
Randomized Algorithms and 3) Graph theory.

C. Pandu Rangan

He is currently a Professor in the Department of Computer Science and
Engineering of IIT Madras. His research focuses on the design of pragmatic
algorithms. His research interests include 1) Restricting the problem domain 2)
Approximate algorithm design 3) Randomized algorithms 4)Parallel and VLSI
algorithms and 5) Cryptography Applications. He is also a Fellow of Indian
National Academy of Engineering (FNAE).

