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ABSTRACT 

 In this paper, we propose an elliptic curve key generation processor over GF(2
163

) scheme based on the 

Montgomery scalar multiplication algorithm. The new architecture is performed using polynomial basis.  

The Finite Field operations use a cellular automata multiplier and Fermat algorithm for inversion. For 

real time implementation, the architecture has been tested on an ISE 9.1 Software using Xilinx Virtex II 

Pro FPGA and on an ASIC CMOS 45 nm technology as well. The proposed implementation provides a 

time of 2.07 ms and 38 percent of Slices in Xilinx Virtex II Pro FPGA. Such features reveal the high 

efficiently of this implementation design.     
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1. INTRODUCTION 

Elliptic Curve Cryptography (ECC) has been proposed by Miller [25] and Koblitz [17] in the 

mid 1980s. Recently, ECC has gained much attention in industry and academia. The main 

reason is that for a properly chosen elliptic curve, the sub-exponential algorithm that can be 

used, to break the system through the solution of the discrete logarithm problem, is not easy to 

be defined. Elliptic Curve Cryptography is one among the most powerful public keys [25]. The 

security of 160-bit and 224-bit of ECC has been shown to be equivalent to 1024-bit and 2048-

bit of RSA [29]. Different security organizations like ISO, ANSI, IEEE and NIST, have been 

working to standardize the use of ECC. 

To implement ECC, finite fields GF(p) and GF(2
m
) have been used, where p is prime and m is 

positive integer. In particular, GF(2m), which is an m-dimensional extension field of GF(2), is 

suitable for hardware implementation because there is no carry propagation in arithmetic 

operations. The function used for this purpose is the scalar multiplication K.P, where K is an 

integer and P is a point on an elliptic curve.  

Recently, Hardware and firmware implementation of ECC over different fields GF(2
m
) have 

been reported in numerous works. Leung et al. [26] presented a microcoded FPGA-based 

elliptic curve processor. This design is parameterized for arbitrary key sizes and allows the rapid 

development of different control flows. They have used a normal basis for the Galois field 

operations, and the point multiplication can be computed in 14.3 ms for GF(2
281

). Morales-
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Sandoval and Feregrino-Uribe [27] proposed a hardware architecture that can perform three 

different ECC algorithms. The main functional units in their cryptosystem are coprocessor for 

scalar multiplication, random number generator, algorithm units, and main controller. Its scalar 

multiplication can be computed in 4.7 ms for GF(2
191

). Orland and Paar [28] designed a 

reconfigurable elliptic curve processor over GF(2167), the processor consists of main controller 

and arithmetic units.  

For the implementation of ECC in GF(2
163

), Chang Hoon et al [4] described an FPGA 

implementation of high performance ECC processor over GF(2163). The proposed architecture is 

based on Lopez- Dahab elliptic curve point multiplication algorithm and Gaussian normal basis 

for GF(2
163

) and drive parallelized elliptic curve in point doubling and point addition algorithms 

with uniform addressing. Dan Young-ping et al, proposed a parallel hardware processor to 

compute elliptic curve scalar multiplication in polynomial basis representation over GF(2
163

) 

[7]. Bednara et al [3] designed an FPGA-based cryptographic processor architecture that allows 

to use multiple squares, adders and multipliers. They are looking for an hybrid coordinate 

representation in affine projective Jacobian and Lopez-Dahab form. Two prototypes were 

synthesized for GF(2
191

).  In Ref [5], Cheung et al proposed an ECC design for various field 

operations, which is, however, not optimized for fixed field. The implementations of ECC in an 

integrated circuit (ASIC), are presented in works [18] and [19]. 

Cellular automata (CAs) have been used in evolutionary computation for over a decade [15]. 

They have been used in variety of applications, such as parallel processing and number theory. 

Programmable cellular automata architecture has been used to design arithmetic computations 

by Zhang et al. [24]. Choulhury has designed an LSB multiplier based on CA [6]. As reported in 

Ref [25], Jun–Cheol Jeon has proposed an efficient division architecture using restricted 

irreducible polynomial on ECC based cellular automata. 

In the present paper, we report a fast parallel architecture, for the Implementation of the elliptic 

curve scalar multiplication processor using programmable cellular automata, In our scheme, 

Montgomery algorithm for key generation is used. The key operations of scalar multiplication 

are GF(2
163

). GF(2
163

) multiplier is implemented using LSB multiplier based on CA. GF(2
163

) 

inversion is implemented using Fermat algorithm. 

The rest of the paper is organized as follows: the theoretical background, including ECC and 

CA is described in section 2; section 3 presents the design of elliptic curve crypto-processor 

using programmable cellular automata. The experimental results are discussed in section 4. 

Section 5 concludes the paper. 

2. PRELIMINARY 

In this section, we briefly discuss the mathematical background of the ECC, the characteristics 

and the properties of the programmable cellular automata. 

2.1. Elliptic Curve Cryptosystem  

Elliptic curves over GF(2m) are particularly attractive because of the finite field operations that 

can be implemented efficiently in hardware. In this paper, the selected finite field GF(2
m
) is an 

elliptic curve E(a,b). It is defined as a set of points satisfying eq (1).   

             2 3 2 (mod ( ))y xy x ax b P x+ = + +                                                                          (1) 

Where a, b ∈ GF(2m), b ≠ 0 and P(x) is the irreducibly polynomial. 

Let P1(x1, y1) and P2(x2, y2) be points in E(GF(2
m

)) given in affine coordinates.  

Assuming P1, P2 ≠ 0 and P1 ≠ - P2. The sum  

P3(x3, y3) = P1 + P2 is computed as follows: 

If P1 ≠ P2: 
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2

3 1 2x =λ +λ+x +x +a  

                                          3 1 3 1 3y =λ.(x +x )+y +x                                                                                                      (2) 

                                       2 1 2 1λ=(y +y )/(x +x )  

If P1= P2: 

                                       
2

3x =λ +λ+a  

                                       
2

3 1 3y =x +(λ+1).x                                                                                                                  (3) 

                                       1 1 1λ=x +y /x  

ECC security is based on the discrete logarithm problem and called the Elliptic Curve Discrete 

Logarithm Problem (ECDLP). Thus, a cryptosystem could be built using this approach. The 

ECDLP consists of giving two points P, Q Є GF (2
m

) to find the positive integer k such as  

Q = kP. On the contrary, knowing the scalar k and the point P, the operation kP is relatively 

easy to compute [14]. The hierarchy of an Elliptic Curve Point Multiplication is depicted in 

Fig.1. 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 1: Elliptic Curve hierarchy 

 

Compared with the field multiplication in affine coordinates, inversion is the most expensive 

basic arithmetic operation in GF(2m). Inversion can be avoided by means of projective 

coordinate’s representation [8]. A point P in projective coordinates is represented by three 

coordinates X, Y, and Z. This representation reduces the internal computational operations. It is 

expected to convert back the point P from projective coordinates to affine coordinates in the 

final step. This is because the affine coordinate’s representation involves the usage of only two 

coordinates and therefore is more useful for external communication saving some valuable 

bandwidth. In standard projective coordinates, the projective point (X: Y: Z) with Z ≠ 0 

corresponds to the affine coordinates where, x = X / Z and y = Y / Z. (X: Y: Z). the projective 

equation of the elliptic curve is given by: 

              
2 3 2 3Y .Z+X.Y.Z= X +a.X .Z+b.Z                                                                                    (4) 

where a, b ∈ GF(2
m

). 

2.2. Cellular Automata 

A cellular automaton (CA) is defined as an uniform array of identical cells in a n-dimensional 

space. Each cell can exist in a finite discrete state space where, the state space is fairly small. 

The evolution of a cellular automaton occurs in a series of time steps (clock cycles). It can be 

characterized by four basic properties: the cellular geometry, the neighborhood specification, 

the number of states per cell, and the algorithm under which the cellular automaton computes its 

successor states. 

Elliptic 
curve 

Operations 

GF (2m) 

arithmetic 

Scalar multiplication 

Q=K.P 

Point doubling : Q=2.P 

Point addition : R=P+Q 

Multiplication, Squaring,   

Inversion, Addition 
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A CA can be defined as a d-dimensional Euclidean space (with d =1, 2 or 3). In this paper, we 

use d = 1, i.e. one dimensional grids. The identical rule contained in each cell is essentially a 

finite state machine, usually specified in the form of a rule table, with an entry for every 

possible neighbourhood configuration of states. 

A 1-D binary CA is an array of cells (registers) [q0(t),q1(t),…,qn(t)] where each cell’s state qi Є 

{0,1} and i Є [0,n-1] is any of its permissible state [20]. At each discrete time step (clock cycle), 

each cell of the CA updates its state using a transition rule based on a Boolean function applied 

to the current states of each cell’s state transition neighborhood qi(t+1) = fi (q1(t),q2(t),…). The 

conventional nearest three-cell state transition neighborhood, having a radius r = 1, consists of 

itself (qi) and its left/right most neighbors (qi-1/qi+1). Cellular automata may be uniform, with the 

same set of state transition neighborhood/rules used for each cell, or hybrid. 

The Programmable cellular automata (PCA) [13] is a CA whose the state transition rule for each 

cell is not fixed but controlled by a number of control signals where different functions can be 

generated. 

 
Q

D

'1' '0'

Q

D

'1' '0'

Q

D

'1' '0'

'0'
'0'

'0' '0' '0'
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Figure 2: Programmable cellular automata  

Figure.2 shows the PCA with four programmed state transition rules. It is denoted as PCA 

90/105/150/165. When both control signals S1 and S2 are open, the rule 90 is applied to the 

cell. The cell configured with rule 150 when the control signals S1 and S2 are open and closed, 

alternatively. In table 1, we write down the different states of the control signals S1 and S2 and 

the corresponding rule. 

 

Table1: The state transition rule for PCA 90/150/165/105 

Control signal S1 Control signal S2 Rule name 

0 0 90 

0 1 150 

1 0 165 

1 1 105 
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3. DESIGN OF THE ELLIPTIC CURVE CRYPTO-PROCESSOR 

3.1. Elliptic curve scalar multiplication algorithm  

As mentioned above, we will study the scalar multiplication method based on Montgomery 

algorithm. The main advantages of this algorithm are: it does not have any extra storage 

requirements; the same operations are performed in every-iteration of the main loop, thereby 

potentially increasing resistance of timing attacks and power analysis attacks. The algorithm is 

shown below. In this algorithm, Madd, Mdouble and Mxy are three basic functions for point 

addition, point doubling and conversion of projective coordinates to affine coordinates. 

---------------------------------------------------------------------------------------------------------- 

Algorithm1: Montgomery point Multiplication Algorithm 

Input: k = (kn−1, kn−2....., k1, k0)2 with  

           kn−1 = 1,  P(x, y)∈ E(F2
m
) 

Output: Q = kP 

Procedure: MontPointMult (P, k) 

 1. Set X1←x, Z1←1, X2←x
4
+b,Z2←x

2
 

 2.     For i from n − 2 downto 0 do 

 2.1   if (ki = 1) then  

        Madd(X1, Z1,X2, Z2),   Mdouble(X2, Z2) 

2.2 else  

       Madd(X2, Z2,X1, Z1),    Mdouble(X1, Z1) 

  end if 

End for 

3. Q ← Mxy (X1, Z1, X2, Z2) 

4. Return Q 

---------------------------------------------------------------------------------------------------------- 

According to this algorithm, the scalar multiplication is performed over three steps; (i) 

initialization operations, (ii) iteration of the point addition and point doubling; and (iii) the 

conversion to affine coordinates. 

3.2. Architecture of the processor 

The Elliptic Curve Point Multiplication processor is depicted in Figure 3. The scalar number k 

represents the number of time P is added to itself. It is performed by expressing k in binary form 

K=KiKi-1…K1K0 and applying double and add method according to: 

 

 

The main units of the proposed Elliptic Curve Point Multiplication processor are shown in 

figure.3, including the input and the output interfaces for storing the input and the output data. 

The control module consists of a finite state machine. It generates the control signals for the 

initialization operations of finite field, the point addition and point doubling operations, and the 

conversion to affine coordinates operations, relying on the key values by the Montgomery 

algorithm. The elliptic curve operator is formed by the point addition and the point doubling 

modules. Finally the arithmetic and logical unit (ALU) allow parallel execution of finite field 

addition, inversion and multiplications, which are controlled by the control unit. 

 

( )( )( ) PKPKPKKP ii 01 ...2...2 +++=
−

(5) 
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Figure 3: Elliptic Curve Point Multiplication Processor 

3.3 Arithmetic and logic unit (ALU) 

The arithmetic and logic unit is an important module for elliptical processor. It might complete 

the arithmetic operations, such as the finite field addition, multiplication and inversion 

operations. In the present work, the finite field GF (2m) is the underlying field used as a basis for 

the elliptic curves. It can be viewed as a vector space of dimension m over the field GF (2). In 

hardware field, elements can be easily implemented as a bit vector, which makes this kind of 

finite fields interesting for hardware implementations [16]. In this section, we present the 

hardware implementation of the finite field operations using PCA in GF (2m); the representation 

treated is a polynomial basis.  

3.3.1. Addition 

The addition of two elements in GF(2m) is performed by adding the coefficients modulo 2, 

which is a simple bit-wise XOR-ing the coefficients of equal powers of x, that is :   

A = (am-1am-2 … a2a1a0); B = (bm-1bm-2…b2b1b0) and C= (cm-1cm-2…c2c1c0), where  

                                    2mod
1

0

i

m

i

i baC +=∑
−

=

                                                                             (7) 

3.3.2. Multiplication 

The multiplication of two field elements C(x) = A(x). B(x), where

m-1
i

i

i=0

A(x)= A x∑ ; 
m-1

i
i

i=0

B(x)= b x∑  

and

m-1
i

i

i=0

C(x)= c x∑ , finite field multiplication can be carried out by multiplying A(x) and B(x) and 

then performing reduction modulo P(x) or alternatively by interleaving multiplication and 

reduction, the multiplication is shown as:  

            ( )m-1 2
m-1 2 1 0b(x)a x +...+b(x)a x +b(x)a x+b(x)a mod (x)P                                           (8) 

In Ref [15], H. Li and C.N Zhang presented a low complexity programmable cellular automata 

based versatile modular multiplier in GF(2
m
). The PCA rules are shown in table 1, where Cm 

are configured as coefficients of B(x) and Cr are configured as coefficients of P(x), Xs are 

configured as coefficients of A(x), Xl and Xs are partial results of neighborhood PCA. 

The algorithm of the multiplier based on PCA rules is shown in algorithm.2 
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---------------------------------------------------------------------------------------------------------- 

Algorithm 2: PCA based modular multiplication algorithm 

 

 Input: A(x), B(x), P(x) ∈ GF(2m) 

Output C = AB mod P(x) 

 Reset PCA 

 Configure Coefficients of B(x) as Cm, and Coefficients of P(x) as Cr 

 Run PCA m clock cycle 

---------------------------------------------------------------------------------------------------------- 

In figure.4, we present the general architecture of the serial multiplier based on PCA in GF(2m). 

According to figure.4, we notice that the architecture of the serial multiplier is consisted of a 

logical block (LB) of m combination logic (CL) and m bascules. The execution time to compute 

the complete modular multiplication in GF(2m) with this architecture is equal to (m.T), where T 

is the critical time of this architecture. 

D Q

CLK

D Q

CLK

D Q

CLK

D Q

CLK

Xl   Xm  Xr

Cm  Xm Cr

Xl   Xm  Xr Xl   Xm  Xr Xl   Xm  Xr

....

C0 C1 Cm-2 Cm-1

CLK

0
A0,.., Am-1

B0 P0 B1 P1 Bm-2 Pm-2 Bm-1 Pm-1

Cm  Xm Cr Cm  Xm Cr Cm  Xm Cr
....

 

Figure.4 Serial Multiplier architecture in GF(2m) 

3.3.3. Inversion 

The inversion is a complex operation that is computed only once in a k.P operation. In this 

subsection, we select the Fermat’s theorem to perform inversion in a finite field GF(2m). To 

apply this theorem, the multiplicative inverse of the field element A can be obtained by 
recursive squaring and multiplication, since the field element A is expressed as: 

            
n-1 2 -2 2 2 2 2 2C=A =A =(A(A(A...A(A(A) ) ...) ) )                                                                     (9) 

The above equation can be generalized as follows. 

---------------------------------------------------------------------------------------------------------- 

Algorithm 3: Fermat’s algorithm 

Input: A(x), P(x) ∈ GF(2
m
) 

Output C = A-1 mod P(x) 

1.  C0 = A 

2.  For i in 1 to n-2 do 

  Ci = A (Ci-1)
2 = A2i-1, (1 2)i n≤ ≤ −  

 End for. 

3.  Cn-1 = (Cn-2)
2 = A-1 

4. Return C 

---------------------------------------------------------------------------------------------------------- 
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According to algorithm 3, the inversion operation is divided in three steps: initialization 

operation, iteration of the squaring and multiplication, and finally the final result. In our 

scheme, we select the multiplier based on cellular automate to complete multiplication and 

squaring operations. 

3.4 The elliptic curve operator 

The elliptic curve operator is defined by the point addition module and the point doubling 

module. According to our scheme, we select the Montgomery method in projective coordinate 

to perform the elliptic curve operations.  

3.4.1. Point addition module 

In standard projective coordinates, the projective point (X: Y: Z) with Z ≠ 0 corresponds to the 

affine coordinates x = X / Z and y = Y / Z. The projective equation of the elliptic curve E is 

written as: 

                        
2 3 2 3Y .Z+X.Y.Z= X +a.X .Z+b.Z                                                                 (10) 

Let P = (X1, Z1) and Q = (X2, Z2) be two points in projective coordinates, belong to the curve of 

(10). The coordinates of P + Q = (x3, y1) in projective coordinates is given by eq (11): 

3 3 1 2 2 1

2
3 1 2 2 1

X = x.Z +(X .Z )(X .Z )

Z = (X .X +X .Z )

            
The point addition module is shown in Fig.5. The required field operations for point addition are 

as follows: three general multiplications, one multiplication by x, one squaring and two 

additions. 

Mux

Mux

Mult

Reg A

Reg B

Reg C

Reg D

Xor

Xor

Sqr

X1

X2

p

 x

Z2

Z1

q

Z3

Z3

X3

p

q

m

n

 

Figure 5: Montgomery point addition architecture 

3.4.2. Point doubling module 

Let P = (X1, Z1) be one point in projective coordinates, the point addition 2P = (X3, Z3) in 

projective coordinate can be deduced from equation.12: 

                                  

4 4
3 1 1

2 2
3 1 1

X = X + b .Z

Z = X .Z
                                                 

The computation of (6) requires a general multiplication, a multiplication by a constant b, four 
squaring and an addition (XOR). The architecture of the point doubling module is shown in 

Fig.6. 

(11) 

(12) 
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Figure 6: Montgomery point doubling architecture 

4. EXPERIMENTAL RESULTS 

In this section, we present a results of the implementation of the elliptic curve key generation 

processor on GF(2163) using polynomial basis. In our scheme, two types of implementations are 

presented. The first implementation is on the ISE 9.1 software using Xilinx Virtex II pro FPGA, 

and the second is one the implementation of ECC on ASIC circuit using CMOS 45 nm 

technology 

4.1. FPGA Implementation of ECC Processor 

The ECC processor over GF(2163) has been coded using VHDL language and synthesized using 

ISE Xilinx 9.1 software, in which Virtex II pro. P(x)=x
163

+x
8
+x

7
+x

3
+1 is the irreducible 

polynomial (see Fig.3). 

In table 2, we present the synthesis results of the arithmetic unit. Three criteria are summarized: 

the occupied resources (number of slices), the frequency and the timing of the field operations. 

Table 2: Synthesis of the finite field arithmetic 

Operations Frequency 

(Mhz) 

Occupation 

(Slices) 

Time 

(µs) 

Multiplication 177.89 225 0.91 

Inversion 179.08 1505 26 

 

According to that reported in table 2, we notice the high speed of the multiplier based on 

cellular automata and the low occupation of the resources. The multiplication is performed in 

915 ns. The total number of slices is equal to 225. The inversion occupies 1505 slices, and one 

field inversion is performed in 0.266 ms. 

In table 3, we present the synthesis results of the elliptic curve operations. All operations were 

defined over the finite field GF(2
163

). 

Table 3: Synthesis of the elliptic curve operations 

Operations Frequency 

(Mhz) 

Occupation 

(Slices) 

Time 

(µs) 

Point Addition 160.83 961 3.05 x 10
-3

 

Point Doubling 177.89 873 1.84 x 10
-3

 

Point 

multiplication 

167.838 12861 2.07 
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Comparison with results in terms of frequency to recent proposed architectures is given in table 

4. Results of the present work are not comparable to previous hardware implementations. This 

is because each design uses a different hardware platform, finite field and finite size.  

Table.4 Performance comparison of Frequency results 

 Device Frequency 

(MHz) 

Shu et al [21], GF(2163) XCV2000E-7 68.9 

Eberte et al [9], GF(2
m
) <256 XCV2000E-7 66.4 

Benaissa and Wim [2], GF(2
160

) XCV2000E-7 150 

Gura et al [11] , GF(2163) XCV2000E-7 66.5 

Saqib et al [22] , GF(2
191

) XCV3200E 9.99 

Grabbe et al [12], GF(2233) XC2V6000 100 

This work, GF(2
163

) Virtex II pro 167.83 

XCV2000E-7 69.15 

 

 

Table 5 shows a comparison of the performance of the scalar multiplication timing result that 

we have obtained with the same hardware implementations. 

Table.5 Performance comparison of timing results 

Reference m Platform Time (ms) 

[10] 113 Atmel AT94K40 10.9 

[1] 160 Virtex-E 3.9 

[23] 163 VirtexE 

XCV2600 

2.618 

This work 163 Virtex-II Pro 2.07 

    

4.2.ASIC Implementation based on Platform 

We designed an ECC IP using the VHDL language and synthesized using Synopsys Design 

Compiler. The resulting netlist is used as input to Cadence in order to perform mapping and 

routing with a 45 nm CMOS technology. The results obtained from these operations are 
reported in table 6 and figure.7. The final ASIC has been implemented using CMOS 45nm 

technology. The result in synthesis operating frequency is about 346 Mhz and data arrival time 

about 2.89 ns. The ECC processor areas are about 0.54 mm
2
. The total Input/output is equal to 

44. 

The core dimension of the ECC processor is about 0.416mm x 0.416mm, and the core is about 

0.173 mm
2
. 

Table 6. ASIC implementation of ECC processor 

Core dimension 0.416mm x  0.416mm 

Core area 0.173 mm
2
 

Circuit dimension 0.735mm x 0.735mm 

Circuit area 0.54 mm
2
 

Data arrival time 2.89 ns 

Core dimension 0.416mm x  0.416mm 
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Figure.7: Layout of the design 

 

5. CONCLUSIONS 

This paper proposes a parallel and high performance architecture of elliptic curve key 

generation over GF(2
163

) scheme based on the Montgomery scalar multiplication 

algorithm. In our scheme, we have developed the arithmetic unit over the finite field GF 

(2
163

) and the elliptic curve operations. We have provided a comparison with some ECC 

hardware implementations in terms of occupation (Slices) and performances. The 

proposed ECC implementation outperforms all other implementations used for 

comparative purposes. It provides a time of 2.07 ms and 38 % slices in platform Xilinx 

Virtex II pro FPGA. The second part of the paper, present’s the first design of the ECC 

processor using a 45 nm CMOS technology. The ASIC area is about 0.54 mm
2
. This 

circuit operates with clock frequency of 346 Mhz.   
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