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ABSTRACT 

We propose a method to recover the structure of a randomly permuted chained code and how to cryptanalyse 

cryptographic schemes based on these kinds of error coding. As application of these methods is a 

cryptographic schema using regular Low Density Parity Check (LDPC) Codes. This result prohibits the use 

of chained code and particularly regular LDPC codes on cryptography. 
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1. INTRODUCTION 

 

RSA and McEleice are the oldest public key cryptosystems. They are based respectively on 

intractability of factorization and syndrome decoding problems [1]. However, McEliece [2] was not 

quite as successful as RSA, partiallydue to its large public key and to the belief that could not be 

used in signature. In 2001, Courtois, Finiasz and Sendrier [3] show a new method to build practical 

signature schemes with the McEliece public key cryptosystem. This scheme has the drawback of a 

high signature cost. One idea to counter this drawback consists in replacing Goppa code by other 

codes which have faster decoding algorithms like chained codes. In this paper, we show an 

invariant in the structure of chained codes which makes a weakness in cryptographic schemes based 

on chained codes. Our approach is based on the fact that any given chained equivalent code can be 

transformed in a systematic code which has a special generator matrix representation. Regular 

LDPC code is generally a chained repetition code. We show that these codes are useless in 

cryptography. 
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2. CHAINED CODE 

A chained code C is defined as a direct sum of γ elementary codes iC . This code is of length 
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To encode an information ),...,( 1 γmmm = , where im is ik bits, we simply multiply it by the 

generator matrix to obtain the codeword ( )γuuGmu ,...,. 1==  with iu is the in bits codeword 

obtained from im  using the elementary code iC . So, G is a diagonal matrix in blocs and whose 

diagonal is formed by elementary generator matrices iG of the code iC . 

We assume that we have an efficient decoding algorithm for each elementary code iC . To decode 

( )γuuu ,...,1= , we apply for each codeword iu its correspondent decoding algorithm ( )
iCdec . The 

decoded word is ( )γmmm ,...,1=  with ( )iCi udecm
i

= . 

We define the support of a non zero word ( )nxxx ,...,1= , denoted )sup(x , as the set of its non 

zero positions. { }{ }0,,..,1)sup( ≠∈= ixnix  and the support of a set { }γyyS ,...,1=  as the union 

of the supports of its words )sup()sup( i

Sy

yS

i

U
∈

= . So the support of a code ),( KNC  is the union 

of its 
k2  codeword supports. 

Two words x and y  are said to be connected if their supports are not 

disjoints i.e Θ=∩ )sup()sup( yx  and two sets I and J  are said to be disjoints if there is no 

connection subset between them. 

A non zero codeword x  of C  is said to be minimal support if there is no codeword Cy ∈ such that 

)sup()sup( xy ⊂ . 

Two codes ),( KNC  and ),(' KNC  are said to be equivalents if there is a permutation σ of { }N,..,1  

such as: { }
)()1( ,..,)(' NccCC σσσ == . In other words, C and 'C are equivalents if there is a 

permutation matrix such as for any generator matrix G of C , the matrix PGG .'= is a generator 

matrix of 'C . 
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3. CHAINED CODES AND CRYPTOGRAPHY 

 

 

As we mentioned in the introduction, the drawback of the unique digital signature scheme based 

on error coding is the high signature complexity which is due to Goppa decoding algorithm. One 

idea to counter this drawback consists in replacing Goppa code by chained code which have faster 

decoding algorithm. 

Generally, the secret key of a cryptographic scheme based on error coding is the code itself, for 

which an efficient decoding algorithm is known, and the public key is a transformation of the 

generator or parity check matrices. We consider a digital signature scheme based on chained 

code, and then we develop an algorithm to discover the private key from public key. This attack is 

applicable for each cryptographic scheme since it is a structural attack. 

Secret key: 

o S  is a random )( KK × non singular matrix called the scrambling matrix. 

o G is a )( NK × generator matrix of a chained code 

o P  is a random )( NN ×  permutation matrix  

 Public key: 

o PGSG ..'=  is a randomly scrambled et permuted generator matrix. It is a 

generator matrix of an equivalent non structured code to the chained code ∑
i

ic  

is the completed correction capacities calculated as [3]. 

o ( )h is a hash function. 

Signature: 

o The signer, first, calculates 
1).( −= PMhy , where )(Mh is the N bit message, 

1−P  is the inverse of P . Then he uses the completed decoding algorithm [3] for 

the original chained code C  to obtain σ.Sx = . Finally, the receiver obtains the 

signature by computing xS .1−=σ  where 
1−

S is the inverse of S . 

Verification: 

o The verifier calculates '.' Gσρ =  and )(Mh=ρ  

o The signature is valid if  ∑<
i

icd )',( ρρ  

 

We have introduced a digital signature scheme and then we present the weakness of this scheme. 

This weakness is due to the fact that chained codes have an invariant. Code equivalence means 

that one generator matrix is a permutation of the other, because matrix S does not change the code 

but only performs a modification on the basis of the linear subspace. Canteaut showed that the 
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matrix S may be important to hide the systematic structure of the Goppa codes, therefore having 

an important security role [4]. However, Heiman was the first to study this point and states that 

the random matrix S used in the original McEliece scheme serves no security purpose concerning 

the protection [5]. We confirm this argument and we show that the random matrix S has no 

security role for cryptographic schemes based on linear codes. We state also that disjoint 

elementary code supports is an invariant by permutation. 

To avoid exhaustive attack, we used at least five different elementary codes and to avoid attack by 

information set, we used a chained code with length at least equal to 900 bits. 

The attack explores the characteristics of the code transformation in order to identify its building 

blocks. Its input is a generating matrix 'G of a randomly permuted chained code of length N and 

dimension K . Its output is a structured chained code. The algorithm’s steps are: 

o Apply a Gauss elimination to the rows of the matrix 'G to obtain the systematic 

form ( )ZIG d ,0 = . 

Sendrier shows that rows of any systematic generator matrix of a code C are minimal 

support codewords of C and that any minimal support codeword of C is a row of a 

systematic generator matrix of C [4]. 

The systematic chained code support is formed by disjoint sets. Each set represents 

the support of an elementary code. The transformation of any randomly permuted 

chained code generator matrix into a systematic matrix by linear algebraic 

algorithms will allow us to find these supports and thus elementary codes. 

o  Search the disjoint sets of rows of the systematic matrix 0G . Each set forms the 

elementary code support. 

o Use elementary decoding algorithms to decode every message. As application of 

these codes, regular LDPC codes which represent chained repetition codes. Next 

sections represent the proprieties of these codes. 

 

4. LOW DENSITY PARITY CHECK CODES 

Low-density parity-check (LDPC) codes were first discovered by Gallager [6] in 1962 and have 

recently been rediscovered by Mackay and Neal [7], [8]. In fact, when LDPC codes have been 

invented, their decoding was too complicated for the technology, and so they have been forgotten. 

These codes deliver very good performance when decoded with the belief-propagation (BP) 

algorithm [7]. 

Binary LDPC codes, are linear block codes defined by a sparse parity check matrix )( NMH × , 

where N denotes the codeword length and M  the number of parity-check equations. When the 

numbers of 1’s in each column and row are constant the code is called a regular LDPC code. 

Otherwise, it’s said to be irregular. 

4.1.  Regular LDPC codes 

In this section, we show that the parity check matrix of an LDPC code has a particular structure. 

The uniqueness of the canonical matrix provides us to recover used codes of any equivalent code.  
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The support of systematic LDPC code is formed by disjoint sets. Each set represents the support 

of an elementary repetition code. The transformation of any randomly permuted LDPC code 

parity check matrix into a systematic matrix by linear algebraic algorithms will allow us to find 

these supports and thus elementary codes. 

The regular LDPC parity check matrix is constructed as follows: it is a concatenation of permuted 

repetition code. 

 



























=

100100100

010010010

001001001

111000000

000111000

000000111

H  

4.2.  Parity check matrix properties 

We are interested, in this section, on parity check matrix properties which will be used to analyse 

the regular LDPC code structure. The parity check matrix H of a linear code is not unique, any 

S.H is also a parity check matrix. 

o If the systematic parity check matrix exists then it is unique [4]. 

o Rows of any systematic parity check matrix of a code C are minimal support 

codewords of C [4]. 

o Any minimal support codeword of C is a row of a systematic parity check matrix 

of C [4]. 

Consequently, the systematic LDPC code parity check matrix rows are divided in γ disjoint sets. 

Each set defines the support of a repetition code iC . This property is invariant by permutation. 

Based on this property, we show that, a randomly permuted LDPC parity check matrix 

SHPH =' has a particular structure. This structure permits to discover easily the hidden 

matrix 'H . 

5.  RESULTS 

5.1.  Attack complexity on chained linear codes 

The security of cryptographic schemes based on error coding is highly dependent on the class of 

used codes. Some class of codes reveal their characteristics even when they go through the 

permutation used to construct the public code. It is the case of chained codes. The starting point 

was the observation that any systematic matrix is formed by small weight codeword and that 

chained code contains so many minimal support codewords. These two properties lead to a 

structural attack of digital signature scheme based on chained code. Figure 1 shows the 

complexity of the attack of some cryptosystems using chained codes. The complexity is always 

less 
452  even with so long codes ( N = 3000). This complexity prohibits using chained code in 

cryptography. 
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Figure 1: Attack complexity on chained linear codes 
 

5.2.  Attack complexity on LDPC Codes 

The complexity is the number of binary operations to discover a randomly permuted regular 

LDPC code structure. 

o 2/. 2
MN  binary operations for Gaussian elimination. 

o NM . binary operations to compute all line weights. 

Thus, the number of binary operations necessary for this algorithm is equal to MNMN .2/. 2 + .  

 

Figure 2: Complexity of the attack on cryptosystem using regular LDPC 
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Figure 2 shows the complexity of the attack of some cryptosystems using regular LDPC. The 

complexity is always less 
452  even with so long codes ( N = 3000). This complexity prohibits 

using LDPC in cryptography. 

6.  CONCLUSION 

In this paper, we discussed the structure of a randomly permuted chained code. We explored 

potential threats from systematic generator matrix that has particular structure. Chained code 

generator matrices have the properties of disconnected elementary code supports. This property is 

invariant by permutation, which make this kind of code useless in cryptography. Regular LDPC 

codes have this property. 
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