
International Journal of Network Security & Its Applications (IJNSA) Vol.7, No.1, January 2015

DOI : 10.5121/ijnsa.2015.7103 29

SERVICE ORIENTED CONFIGURATION MANAGEMENT

OF SOFTWARE ARCHITECTURE

 Razie Alidoosti
1
, Shahrouz Moaven

2
and Jafar Habibi

3

1,2,3

Department of Computer Engineering, Sharif University of Technology

ABSTRACT

Software configuration management (SCM) is an important activity in the software engineering life cycle.

SCM by control of the evolution process of products leads to constancy and stability in software systems.

Nowadays, use of software configuration management is essential during the process of software

development as rules to control and manage the evolution of software systems. SCM effects different levels

of abstraction included the architectural level. Configuration of software architecture causes improvement

in the configuration of the lower abstraction levels. CM of software architecture is more significant in

large scale software with longevity of life cycle. Traditional SCM approaches, at the architectural level, do

not provided the necessary support to software configuration management, so systems that use these

approaches are faced with problems. These problems arise because of the lack of a serious constant and

repeated changes in the software process. To overcome this it is necessary to create an infrastructure.

Hence, a service oriented approach for configuration management is presented in this paper. In this

approach, the activities of configuration management are conducted from a service oriented viewpoint.

This approach was also used to try and control the evolution and number of versions of different software

systems in order to identify, organize and control change and reforms during the production process. This

approach can compose services and create composite services for new undefined activities of

configuration.

KEYWORDS

Software configuration management, Service-oriented approach, Version control

1.INTRODUCTION

The ability to manage the evolution of software architecture is an important issue in the domain

of software engineering. In this regard, many methods have been proposed for logical level

software systems. These methods present the relationship between the concepts of software

configuration management and software architecture [1]. Configuration management for each

domain should adopt a comprehensive strategy that includes a set of rules and policies for the

specific field.

Configuration management of software architecture demands special considerations. Not only is

there revision or change management based on the components, connectors, and their governing

rules; but the same discussion is also necessary for architectural artifacts such as software

documents, directories, etc. In other words, since there is the possibility of changes being made to

International Journal of Network Security & Its Applications (IJNSA) Vol.7, No.1, January 2015

30

the system at any time it is essential that there be some sort of software configuration

management, such as change control and identification, to ensure and report the correct

implementation of these changes [2]. In fact, one of the most important objectives of software

configuration management is change control which is also one of most effective factors in quality

assurance.

A review of activities in the field of software configuration management shows that there have

been many attempts in this field. Previous attempts to create models of different configuration

management systems and architectures have been based on their infrastructures. The major

problem of these infrastructure is mostly due to the lack of mechanisms in different levels of

coarse grain [3]. At the architectural level, traditional SCM approaches do not provide the

necessary software configuration management support, therefore the systems that use these

approaches are faced with problems. These problems arise because of the lack of a serious

constant and repeated changes in the software process.

The main goal of this paper is to present a comprehensive model that covers all aspects of

configuration management at the architectural level, such as parallel development, distributed

engineering, build and release management, change management, and process management.

Appling these service-oriented principles in this field can create a comprehensive and efficient

infrastructure [4] that could be used for composite services and to create any new services

required. In this context, service-oriented principles is important to almost all of the principles,

models, and standards used in service-oriented architecture that lead to characteristics, such as

loose coupling, abstraction, reuse, heritability, autonomy, etc [5]. Applying these principles may

improve some issues in configuration management of the infrastructure such as reusability of

fine grain at different levels, scalability, flexibility, availability, reliability, complexity, and

efficiency.

The service-oriented approach is facilitated by simplification of the problem, by breaking each

problem into smaller problems, analysing the issues, and finally combining the obtained

solutions. It can solve many of the problems involved in configuration management [6]. In other

words, the service-oriented approach supports granularity at different levels. Basically, service-

oriented principles from the service concept supported by standards and technologies, such as

web services, can be used to create applications that are quick, cost effective, interoperable, and

expansible It should be noted that the concept of object versioning is also considered together

with the service-oriented approach in this model.

The remainder of the paper is structured as follows: Section 2 briefly discusses related concepts

about software architecture, configuration management and the service oriented approach.

Section 3 summarizes previous related works on software architecture via SCM. Section 4

introduces the service oriented configuration management model. Comparison between previous

works and the proposed method have been carried out in Section 5. Section 6 summarizes and

concludes the key contributions.

2. BACKGROUND

The architectural model developed in Section 4 relies on concepts from software architecture, CM

fields, and the service oriented approach. This following section discusses these concepts.

International Journal of Network Security & Its Applications (IJNSA) Vol.7, No.1, January 2015

31

2.1. Software architecture

With software systems becoming more complex over time, using coarse-grained building blocks

for the design has become essential. In this regard, software architecture is used to provide a high

level of abstraction to display the structure, behavior and properties of software systems [7]. The

architecture provides the infrastructure which is used in the design and implementation process.

In fact, architecture is able to control the evolution of the design [8].

2.2. Configuration management

Software configuration management is about managing the evolution of systems [9].

Configuration management is a discipline for recording information about CIs [10]. Indeed, it is a

task embedded in the system to control change. Recently, it has been used mainly in systems that

are very large and complex [11].

Configuration management is used to maintain the integrity of elements in software projects.

Since evolution and change is unavoidable in software systems configuration management is

considered as an integral element of software development and activity maintenance [12].

Software configuration management consists of activities such as: change management, version

managements, system construction, and release management

2.3. Service oriented approach

A service-oriented paradigm can be used to enhance non-functional requirements such as

flexibility, reusability, extensibility, portability, and maintainability [13]. The service-oriented

paradigm can be used in major program management to enhance coordination between different

elements and organizing data between various applications. Generally, the final objective of this

paradigm is integration of the application's element with lower coupling. In fact, a service

oriented approach is a simplifying approach which breaks a problem into sub problems, analyzes

them and produces a composition of the results for their solutions. In this approach, the emphasis

is on functional decomposition at a coarse level instead of structural decomposition [14].

.Basically, using the service concept from a service-oriented paradigm will support quick, low

cost, interactional and extensional application development. Services are a common language for

heterogeneous system providing the component that connects them during development so that

their information can be shared.

3. RELATED WORK

This section discusses existing SCM-based related works for managing architectural evolution.

Given the importance of configuration management as an umbrella activity in the software

development cycle, numerous studies have been done in this area.

An environment for architecture evolution, called Mae was introduced in [7]. This environment

was created to facilitate an incremental design process and also to combine architectural concepts

with concepts from the field of configuration management to be used in a generic system model

for integration. Ragnarok [8] presented a software configuration management model which

emphasized the traceability and reproducibility of the architecture changes and configurations.

One of interesting feature of this model has been implemented in three research prototype in three

projects with different sizes. This model used logical software architecture from other cases for a

International Journal of Network Security & Its Applications (IJNSA) Vol.7, No.1, January 2015

32

version and configuration control process. Problems containing the Architectural Run-time

Configuration Management (ARCM) system were discussed in [15]. The ARCM system is used

to improve the dependability of such systems by developing facilities for adaptation recording,

enhancing configuration visibility, and providing user-driven support. The study in [16] explains

that the proposed service-oriented accounting configuration management system complies with

all requirements defined. The new accounting configuration management system was based on

Diameter and is highly suitable for wireless and mobile communication systems.

Molhado [3] introduced a novel approach to manage architectural evolution of software systems

at the logical level. It presents a novel approach to managing both planned and unplanned

architectural evolution. This architectural system model has extensibility functionality to support

different architectural description languages and architectural styles. Existing SCM-based

approaches were discussed in [1] to manage architectural evolution and classified those

approaches into the following categories: orthogonal integration, SCM-supported software

architecture, SCM-centered software architecture, and architecture-centered SCM. Each of these

approaches expresses the relationship between architectural concepts and configuration

management. Flexible product versioning and a structural configuration management model were

introduced in [17] and used in the software concordance environment to manage the evolution of

a software project and hypermedia structures by focusing on Molhado’s hypertext versioning.

This model avoids the complications of version selection rules in composition models and the

version proliferation problem in total versioning models. A demonstration in [18] presents an

extensible object-oriented approach to managing the evolution of system objects at the logical

level. This approach applies in different development paradigms such as UML-based object

oriented software development, architecture-based software development, and Web application

development.

A novel framework and infrastructure provided in [19] was used to build object-oriented software

configuration management services in a SCM-centered integrated development environment. This

framework included a product versioning model, object-oriented system model, and a reusable

product versioning SCM infrastructure. In other words, it demonstrated the feasibility of an

object-oriented approach that could be reused in object-oriented SCM systems. A novel

architectural SCM system, called MolhadoArch, is introduced in [20] whose configurations are

maintained at all levels of abstraction including the architecture and implementation levels. It

presents a system for object-oriented software configuration and version management technology

to manage versions of architectural structure/entities, source code, and the traceability

relationships among them. An architecture-based approach to runtime software evolution is

presented in [21]. The approach highlights the role of software connectors in supporting runtime

change. This approach has an important role in mitigating the costs and risks of an update. In [22]

the application of that infrastructure used for the construction of a multi-level SCM system for

source code and structured documents is described. The study in [23] presented a candidate

routing architecture for the Airborne. The primary characteristic of this architecture was to

implement many of the networks and platforms as separate AS domains via BGP. This

architecture is based on Internet Protocol (IP). In [16] a role model was defined covering all

involved entities in a distributed service provisioning environment which provided for mobile

networks together with key requirements. A new web services discovery model was proposed in

[24] which uses functional and non-functional requirements for the service discovery. This

service also discusses issues related to slow take up.

International Journal of Network Security & Its Applications (IJNSA) Vol.7, No.1, January 2015

33

4. SERVICE ORIENTED CONFIGURATION MANAGEMENT MODEL

This section presents a model derived from the service oriented paradigm to improve reusability

in different levels of coarse-grained. This model takes advantage of service oriented principles

such as loose coupling, abstraction, reusability, composition, autonomous, etc. The use of some of

these principles can cause improvement in existing configuration management field issues such as

scalability, variability, availability, reliability and complexity. The proposed architectural model

shown in Figure 1, which in we have tried to incorporate the principles of service orientation as

much as possible. The concept of service can be used in concepts such as component and class,

but conceptually is at a higher level of abstraction with respect to objects and components and is

not a substitute for them.

Figure 1. The proposed architectural model

The proposed architectural model includes elements that each plays a special role in the

configuration management of architecture. In addition to the service-oriented approach, the

concepts of object and versioning are also considered. Elements that are considered in this model

include:

A Service-oriented system model; is considered as a framework for modeling a software system.

This element receives software system architecture as input. The received architecture

decomposes to components and connectors. In the proposed solution for software architecture

configuration a system architecture can be mapped to a particular service through different

approaches. The first approach considers communication and limitations of the service-oriented

model according to the functionality of components in the architecture, and maps one or more

components of the architecture together with its connections to the corresponding service.

According to the model presented in Figure 1, the most cost effective solution for identifying

services, takes advantage of a repository that will be filled over time and used as a source of

knowledge for future works.

Services can overlap, be added or even contradict each other. First, we detect services and based

on the existing rules in the service-oriented approach, optimize these services. This means that

some services are combined or broken down into separated services. Then the well-defined

International Journal of Network Security & Its Applications (IJNSA) Vol.7, No.1, January 2015

34

services are added to the service repository. Some of the services defined for configuration

management are shown in Table 1.

Identified services based on architecture layers can be categorized in three groups: process

services, basic services and application services. The techniques, principles and modeling

languages of the service-oriented paradigm are used in this context. Moreover, this element has

the property of extensibility to support the creation of new kinds of software artifacts.

In fact, the element forms an abstract service-oriented model of received system by taking

advantage of service repository, data- service model, provider and standard service contract will

be discussed later. The formed model is referred to structure versioning infrastructure and service

versioning infrastructure in order to save changes and the reconfigurations have been done over

several times.

Service repository; services stored in this repository are divided into two categories: 1) basic

services identified in the architecture of the systems such as remove service, insert service,

overlap service, etc. and 2) the architecture that can be used to configure services such as

versioning, change control, identifying CIs, etc. The repository take advantage of the registration

and discovery approach for services and also supports various interactive protocols between

services. the element is used for retrieving the saved services and maintain the changed services

or newly created ones.

Services versioning infrastructures; the identifying services may change as the system changes

for different reasons, and over time creates new versions of the systems as seen in Figure 2.

Some of these changes include contract changes, changes during construction, implement

changes, and changes in address. The advantage of loose coupling in the service oriented

paradigm can reduce the effect of the variability of a component with other components, and this

in turn, can affect the versioning services. It should be noted that this element keeps versions of

the existing services. The information related to different versions of services will be sent to

repository service.

Figure 2. Versioning of services

Standard service contract; the relationships between the services are defined according to the

contract Properties of this contract are specified in the implementation documents. The

considerable points in this contract include purpose of service and functionality capabilities of

services. The element declare standards and contracts that is allowed to be used in service-

oriented architecture and should be followed in versioning and changes of configuration.

International Journal of Network Security & Its Applications (IJNSA) Vol.7, No.1, January 2015

35

Data-service model; this element is used to define new services that can lead to the definition of

components and connectors in the architecture model.

User-specific modules; are used by the user to communicate with the mentioned elements.

Indeed, they play the role of user interfaces in this architecture.

Structure versioning infrastructure; supports versioning of the created components, connectors

and artifacts that includes a series of fine version control algorithms. Figure 3 display the

configuration related to an artifact of software architecture. All cases of architecture is versioned

and configured based on a series of architectural baselines and aggregated and moved to a higher

level, so architecture is versioning and finally, configuring.

We can use this element for each of the mentioned cases in the software system to control and

manage different versions. This infrastructure recieves support from software configuration

management policies and transactions. The information related to different versions of services

will be sent to repository service.

Figure 3. Versioning of an artifact of software architecture

Provider; the task of this element is to provide the needed services to perform work. As

mentioned above, the identified services are grouped in two categories: 1) services identified

based on the functionality of the components and 2) services identified based on the service

repository. It also defines new services which utilize and cooperate with the data-service model

element. The services are then stored in the repository and the element provides the necessary

accesses at required times. The element is used for versioning, configuration and changes has

been done in reconfigurable items by using existing services in repository service. In addition, it

changes the received architectural model on the basis of configuration services that the changed

model will be sent to structure and service versioning infrastructure to versioning.

The dynamic composite of services found in configuration management of software architecture

is another activity considered in the provider element and is from main feature of proposed paper.

Dynamic composite of services for configuration management of software architecture occurs

when we apply reconfigure, which occurs when an event changes in the architectural level. This

requires configuration activities to be conducted if there aren’t architectural design alternatives.

International Journal of Network Security & Its Applications (IJNSA) Vol.7, No.1, January 2015

36

In these cases several different services together with several application services perform related

activities that require a combination of different services. For this purpose, the service

composition mechanism is use, this mechanism is described below. The number of services is

increased in all areas usually. But it is not possible that service repository and its services

respond to all the considered requests. So one way to solve or reduce this problem is to combine

existing services to create a new service that is able to satisfy these requirements. In general, the

problem of service composition is very difficult. Composition methods of web services are based

on the degree of composition of the production process and are divided into three categories:

automatic, semi-automatic and manual. We considered an automatic method here. In the

automatic methods, the goal is to produce a perfect combination without human intervention. In

these methods the requirements are expressed in a specific language, and then produce a

combination that tries to meet these requirements. In cases where more than one composition can

meet the requirements it is necessary to select the most suitable combination using quality of

service parameters. The problem of what extent the process must be done automatically remains

the subject of many of those who work in this field.

To identify and explore existing services in the domain of configuration management we should

consider activities, tasks, types of configurations and other items. Accordingly, we can classify

services and the related sub-services in accordance with Table 1. Then combine the identified

services in this domain. A directed graph called the dependency graph is used to store information

of incoming and outgoing services. In this graph, there are two different types of nodes: data

nodes and service nodes. Service nodes represent services registered in the service repository and

data nodes are used to display the types of data that are produce by the service as output or for

performing the services needed as inputs. Also edges of the graph are used to represent

dependencies, see Figure 4.

Using information from the service composition we assume that given a service request the model

will receive Type of change input data and produce Create version diagram output data.

Initially, we need a way to intuitively show that each service in the dependency graph produces a

value in Create version diagram data.

Figure 4. Dependency graph of the created change service

International Journal of Network Security & Its Applications (IJNSA) Vol.7, No.1, January 2015

37

For comparison we use a numerical method of valuation. First, given that the value of a node of

data type is equal to one value which the user has requested as output and the given value of the

other nodes are equal to zero. Then explore at one loop for each service if the total value of

service outputs divided by 2 is greater than the current value of the service, the service will be

changed to Formula (1) as below:

}
2

,max{
),(OEOS

O

SS
i

i
Value

OldValueNewValue
 (1)

If the value of a service changes during the process it is necessary to update the value of the input

data associated with these services. In this case the value of data type will be equal to the

maximum current value and half the value of the service provided

In addition to the mentioned updates, if the value of a node of data type is changed, the value of

other nodes of data type that are connected by edges of the cutting line will be changed to the

maximum current value of this node. These updates will continue until the value of all the nodes

in the dependency graph is fixed and there is no other change. Figure 5 shows the values of

different nodes in the Create version diagram output produced

Change management and Change control services have no value in the production of the output

and thus will not be included in the desired composition.

Figure 5. The value of nodes of dependency graph in the produced Create version diagram

We need to see which services are worth more than zero in the output produced and which one of

these will be placed in composition structure. For this purpose we must find a way to move from

inputs to outputs. In the first phase, check which services are applicable and obtain their input.

Regarding our example in the first step, we possess data type "Type of change" so Classification

and Check change services are applicable. As another service may have a higher value of

International Journal of Network Security & Its Applications (IJNSA) Vol.7, No.1, January 2015

38

Classification services, these services are added to the composition and its output is added to the

list of available data types. In addition, all data types of its parent are added to the list for each

data type. Similarly, in the next stage, we are looking for the most valuable service that all input

data types are available and they have not already been used. Figure 6 shows the structure of the

produce composition.

Figure 6. Composition of the Create version diagram Output from the Type of change input

Table 1. Services and Sub-services of Configuration Management.

Subservices of sub-services Sub-services of services Services

Service to identification CIs
Service to explore

communications among CIs

Service for

identification

configuration

Service for applying criteria of

selection such as risks, technology,

etc
Service for providing

information include requirements,

documents, etc Service for access to

configuration items
Service for communicate

information

- Service for enumeration CIs

Service for information

gathering related to product

configuration

Service to create product

baseline

Service to explore details of CIs

Service to identify and

documentation necessity of

Change Service for control

of configuration

changes

Service to describe proposed

change

Service to explore reasons to

create change

Service to explore type of

change

Service to explore technical

advantages of the proposed change Service for evaluation of

change Service to explore risks related

change

International Journal of Network Security & Its Applications (IJNSA) Vol.7, No.1, January 2015

39

Subservices of sub-services Sub-services of services Services

Service to explore effect change

on scheduling and costs

-
Service to explore status

change

-
Service for implementation and

release of change

-
Service for validation of

change

Service for composite methods

and tools
Service for version

management

-
Service to record changes in

CIs

Service for status

accounting

configuration

-
Service for identification

information of status

configuration

-
Service for maintenance

history related to status CIs

Service for support tools and

processes
Service for tracking change

-
Service for reporting status

configuration

-
Service for validation, tracking,

and proper implementation of

changes

Service for audit

configuration

-
Service for measuring impact

of configuration management

process

-
Service for guaranteed proper

management of CIs

-
Service for identification

information to review

-
Service for analysis and

documenting the revised results

Service for identification

components, connectors and

interfaces
Remove service

Service for

reconfiguration

Service for identification of

components, connectors and

interfaces

Overlap service

Service for identification of

components, connectors and

interfaces
Insert service

Service for identification of

components, connectors and

interfaces
Move service

International Journal of Network Security & Its Applications (IJNSA) Vol.7, No.1, January 2015

40

Subservices of sub-services Sub-services of services Services

Service for identification

components, connectors and

interfaces
Replace service

Service for identification of

components, connectors and

interfaces
Implode service

5. COMPARISON

In this section, we compare a number of previous works done in the field of configuration

management software architecture and our proposed solution based on quality attributes. Solution

1 (S1) stands for the Mae environment, solution 2 (S2) denotes the Molhado approach and

solution 3 (S3) is the Ragnarok model.

Table 2. KPI for Solutions.

Quality

Indicator

Solution

1

Solution

2

Solution

3

Our

solution

Run-time

support
0.441 0.343 0.439 0.484

Flexibility 0.352 0.434 0.272 0.566

Variability 0.522 0.250 0.400 0.411

Completeness 0.537 0.496 0.496 0.666

Tool Support 0.640 0.375 0.401 0.555

Table 2 shows solution candidates for different indicators and Table 3 ranks which candidate

solutions are best for each quality attribute. These two tables were obtained from an experimental

study by seven domain experts with more than ten years of experience in this field [13].

Table 3. Solution in KPI.

Quality

Indicator

Solution

1

Solution

2

Solution

3

Our

Solution

Run-time

support
0.711 0.706 0.550 0.729

Flexibility 0.765 0.543 0.388 0.649

Variability 0.695 0.555 0.333 0.588

Completeness 0.617 0.765 0.500 0.649

Tool Support 0.473 0.578 0.732 0.416

Table 2 was constructed from a pairwise comparison of solution candidates for all quality

attributes and Table 3 shows each quality attribute for all candidate solutions. Colored cells in the

table indicate how the comparison has been done. Pairwise comparisons were calculated with the

International Journal of Network Security & Its Applications (IJNSA) Vol.7, No.1, January 2015

41

Analytic Hierarchy Process approach (AHP) by taking advantage of the scales mentioned in

Table 4.

Table 4. Scale for Pairwise Comparison using AHP [25].

Relative

Intensity
Definition

1 Of equal importance

3 Slightly more important

5 Highly more important

7 Very highly more important

9 Extremely more important

Run-time of our solution was more than both S1 and S2. This improvement is due to the use of

service-oriented approach. Also, the flexibility in our solution was better than the solutions in

Table 2 but only better than S2 and S3 from Table 3. As a result we can conclude that this

indicator is better than S2 and S3; however, we can't conclude it is better than S1. Variability of

our solution is better than S2 and S3 but is worse than S1. Completeness of our solution is better

than S1 and S3 but we not S2. Finally, tool support in our approach is worse than S1 but

approximately the same as S2 and S3. According to the quality attribute results obtained in this

study the effect of the service-oriented approach produced an improvement in the configuration of

software architecture.

6. CONCLUSIONS

Software configuration management has the potential to managing evolution and control changes

in software systems. In fact, software architecture is one of the most challenging issues in the

maintenance phase of very large systems. In this paper we reviewed a variety of previous works

and existing challenges in this field, and also examined weaknesses associated with these works.

Hence, in this paper an architectural model has been presented that takes advantage of existing

concepts and mechanisms in the configuration management field, such as versioning,

composition, consistency and construction; it also uses the concepts of the service oriented

approach such as loose coupling, abstraction, reuse, heritability, autonomy, etc. The model then

applies these two ideas to construct a better configuration to optimize the software architecture. It

also provides the possibility for a composite of services and improvement of the configuration of

the software architecture.

Generally, the model reduces total cost. In the future, we will try to improve our view by utilizing

mechanisms base on the enterprise service bus concept.

REFERENCES

[1] Westfechtel, B., & Conradi, R. Software architecture and softwareconfiguration management. In

Software Configuration Management,pp. 24-39, 2003.

[2] Santiago, I., Vara, J. M., Verde, J., de Castro, V., & Marcos, E.Supporting Service Versioning-MDE

to the Rescue. In ENASE, pp. 212-217, 2013.

International Journal of Network Security & Its Applications (IJNSA) Vol.7, No.1, January 2015

42

[3] Nguyen, T. N., Munson, E. V., Boyland, J. T., & Thao, C. Architecturalsoftware configuration

management in Molhado. In SoftwareMaintenance, 2004. Proceedings. 20th IEEE International

Conference,pp. 296-305, 2004.

[4] Cândido, G., Colombo, A. W., Barata, J., & Jammes, F. Service-orientedinfrastructure to support the

deployment of evolvable productionsystems. Industrial Informatics, IEEE Transactions on, 7(4), pp.

759-767, 2011.

[5] Balderrama, J. R., Montagnat, J., & Lingrand, D. jGASW: a service-oriented framework supporting

HTC and non-functional concerns.InWeb Services (ICWS), 2010 IEEE International Conference, pp.

691-694, 2010.

[6] Jones, M., & Hamlen, K. W. A service-oriented approach to mobilecode security. Procedia Computer

Science, pp.531-538, 2011.

[7] van der Hoek, A., Mikic-Rakic, M., Roshandel, R., & Medvidovic, N.Taming architectural evolution.

ACM SIGSOFT Software EngineeringNotes, 26(5), pp. 1-10, 2001.

[8] Christensen, H. B. The Ragnarok Architectural Software ConfigurationManagement Model. In

Systems Sciences, 1999. HICSS-32.Proceedings of the 32nd Annual Hawaii International

Conferenceon IEEE, pp. 7, 1999.

[9] Estublier, J. Software configuration management: a roadmap. InProceedings of the Conference on the

Future of Software Engineering,pp. 279-289, 2000.

[10] Lacy, S., & Norfolk, D. Configuration Management: Expert guidancefor IT service managers and

practitioners-Revised edition. BCS, 2014.

[11] Hardion, V., Spruce, D. P., Lindberg, M., Otero, A. M., Lidon-Simon, J.,Jamroz, J. J., & Persson, A.

Configuration Management of the controlsystem. THPPC013, 2013.

[12] Pressman, R. S., & Lowe, D. B. Web engineering: a practitioner'sapproach. McGraw-Hill Higher

Education, 2009.

[13] Erl, T. Service-oriented architecture: concepts, technology, and design.Pearson Education India, 2005.

[14] Lublinsky, B. Defining SOA as an archi-tecture style.IBM DeveloperWorks, 2007.

[15] Georgas, J.C., van der Hoek, A., Taylor,R.N.Architectural RuntimeConfiguration Management in

Support ofDependable Self-AdaptiveSoftware. In: Workshop onArchitecting Dependable Systems,

2005.

[16] Eyermann, F., Racz, P., Stiller, B., Schaefer, C., & Walter, T. Service-oriented accounting

configuration management based on diameter.In Local Computer Networks, 2005. 30th Anniversary.

The IEEEConference ,pp. 621-623, 2005.

[17] Nguyen, T.N., Munson, E.V. andBoyland,J.T. The molhado hypertextversioning system. In

Conferenceon Hypertext and Hypermedia,pp.185-194, 2004.

[18] Nguyen, T. N.,Munson, E. V., & Thao, C. Object-oriented configurationmanagement

technologycanimprove software architecturaltraceability. In Soft-wareEngineering Research,

Management andApplications, 2005.Third ACIS International Conference, pp. 86-93,2005.

[19] Nguyen, T. N., Munson, E. V., Boyland, J., & Thao, C. An Infrastructurefor Development of Multi-

level, Object-Oriented ConfigurationManagement Services. In Proceedings of the 27th

InternationalConference on Software Engineering, pp. 215-224, 2005.

[20] Nguyen, T. N., Munson, E. V., Boyland, J. T., & Thao, C. Multi-levelconfiguration management with

fine-grained logical units. In SoftwareEngineering and Advanced Applications, 2005. 31st

EUROMICROConference, pp. 248-255, 2005.

[21] Oreizy, P., Medvidovic, N., & Taylor, R. N. Architecture-based runtimesoftwareevolution.

InProceedings of the 20th internationalconferenceon Softwareengineering, pp. 177-186, 1998.

[22] Nguyen, T. N., Munson, E. V., Boyland,J. T., &Thao, C. Multi-levelconfigurationmanagement with

fine-grained logical units. In SoftwareEngineering and AdvancedApplications, 2005.31st

EUROMICROConference, pp. 248-255, 2005.

[23] Pizzi, S. V. A routing architecture forthe airborne network. In MilitaryCommunications Conference,

pp. 1-7, 2007.

[24] Ran, S. A model for web services discoverywith QoS. ACM Sigecomexchanges, pp. 1-10, 2003.

[25] Svahnberg, M., & Wohlin, C. A Comparative Study of Quantitative andQualitative Views of Software

Architectures. In Proceedings of the 7thInternational Conference on Empirical Assessment in

SoftwareEngineering, pp. 1-8, 2003.

International Journal of Network Security & Its Applications (IJNSA) Vol.7, No.1, January 2015

43

Authors

Razie Alidoosti received her MS degree in computer engineering from Sharif University

of Technology, Tehran, Iran. She is currently a Research Assistant at Sharif University of

Technology. Her research interests include Software Architecture, multi agent systems,

machine learning, Analyze Method. She can be contacted at Performance Evaluation

Software Engineering Lab, No. 601, Computer Engineering Department, Sharif University

of Technology; Alidoosti@ce.sharif.edu.

Shahrouz Moaven is a PhD candidate at Sharif University of Technology from 2009. He

received his MS degree in Software Engineering at Sharif University of Technology,

Tehran, Iran. His research interests include software architecture, software engineering,

decision support system and business intelligent. He can be contacted at Performance

Evaluation Software Engineering Lab, No. 601, Computer Engineering Department,

Sharif University of Technology; moaven@ce.sharif.edu.

Jafar Habibi received PhD degree in computer science from University of Manchester in

1998. He is currently an associate professor and chairman of Computer Engineering

Department at the Sharif University of Technology, where he has been a faculty member

since 1989. His research interests include software engineering, software architecture

and design, performance evaluation, system analysis and design, information systems

and simulation. He can be contacted at No. 626, Department of Computer Engineering, Sharif University of

Technology; jhabibi@sharif.edu.

mailto:moaven@ce.sharif.edu
mailto:moaven@ce.sharif.edu
mailto:jhabibi@sharif.edu

